用户名: 密码: 验证码:
新型复合胶结材料的性能及在尾矿胶结中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶结材料可以说是矿山尾矿胶结工艺中料浆配合设计的核心,它既是决定胶结体强度的关键指标,又是影响工艺成本的最重要因素。因此,开发低成本、性能优良的新型胶结材料成为国内外矿业学者广泛关注和研究的热点。
     针对传统尾矿胶结材料存在用量大、成本高及性能差等问题,本文主要探讨以普通硅酸盐水泥和改性水淬渣胶凝材料作为原料复合而成的新型胶结材料。主要从新型复合胶结材料的组分配合、胶结机理以及固结尾砂的应用三个方面进行研究,旨在开发出一种性能较传统胶结材料更优良的新型材料。
     通过对新型胶结材料组分配合研究发现:尾砂骨料的粒度是影响新型胶结材料最佳组分配合比的关键因素,两者之间存在明显的匹配性——随着尾砂粗粒级含量的增加,对应最佳组分中的改性水淬渣胶凝材料含量要增加。基于以上研究结果,总结出新材料的特性,同时从复合理论分析了新材料性能优异的原因。在胶结机理研究中,利用SEM、EDS、XRD和DSC对新型胶结材料水化产物微观分析发现:与普通硅酸盐水泥或铝酸盐水泥的水化产物不同,不含水化铝酸盐,不含或含有极少量的Ca(OH)_2,主要为微晶或隐晶结构的C-S-H凝胶或C-S-A-H凝胶。基于以上研究,初步探讨新型胶结材料的水化作用机制:一方面就是利用硅酸盐水泥水化生成的碱性产物发生二次反应,激发水淬渣胶凝材料;另一方面,由于“晶种诱导结晶”作用使水化反应历程和产物有所不同。进而分析出其胶结机理:不同组分配合的胶结材料的水化产物不同,根据胶结骨料粒度的不同,要求水化产物在胶结体系中要么起填充颗粒空隙作用、要么起骨架支撑作用。这也解释了组分配合与尾砂粒度存在的匹配性关系的原因。最后,以固结北洺河铁矿尾砂的应用研究为例,利用二元正交回归试验,建立胶结强度的二元二次模型。同时,基于复合胶结材料最佳配合比与胶结尾砂粒度的匹配性关系,提出利用多元正交试验,建立胶结强度多元线性模型,以便对胶结最佳工艺条件的选择与控制。
     本研究对开发新型尾矿胶结材料提供技术支持和理论依据,同时,提出建立强度与相关因素数学定量关系能指导胶结材料在尾矿胶结实际生产中更好的应用。
Binding materials is the core of slurry design in the tailings cementation process, as it is not only the key index of cementation strength but also the most important factor of technologic cost. So, the novel binding materials which are low cost and superior performances catch many scientist's attention in recent years.
     The project is aimed at that traditional binding materials have been being high dosage, high cost, and inferior performances, The composite binding material which is made of Portland cement and Modified slag cement, was discussed in this thesis. The ratio of raw binding materials, matching mechanism relationship between mixing ratio and tailing granularity and application of the novel binding material in the field of tailing cementation were mainly investigated. In order to develop a new composite binding material which is lower dosage, lower cost and more inferior performances .
     According to the study on ratio of the raw binding material, it was found that the matching relationship between composite ratio and tailing granularity existed. Tailing granularity is the key factor of optimal mixing ratio of the novel binding material. Based on the results of reseach, the characteristics of the novel binding material were summarized, meanwhile, the reason of superior performances were analyzed by composite theory. Hydration products and course were discussed through microcosmic analyze of the novel material were studied by SEM, EDS, XRD and DSC. Compared with silicate cement and sulphoaluminate cement, the novel composite binging material has its own hydration products, not containing hydrate aluminates and containing little or a little of calcium hydroxide. The hydration produces of the composite binding material were C-S-H gel or C-S-A-H gel. Based on above, the hydration mechanism is that one side, calcium hydroxide that is produced by silicate cement occur the second react to excitated the reaction of Modified slag cement. On the other hand, hydration products and course were determined by the "principle of crystalloid abduction". Then According to theories of filling aggregate, the cementation mechanism of the novel material was discussed. With the change of mixing ratio, its hydration products were different, which play either fill or framework sustain role in tailing cementation. Those explained the matching relationship between composite ratio and tailing granularity. At last, application of the novel binding material in the field of Bei Minghe iron mine tailing cementation as example, cementation strength model was set up through two way orthogonal regression design. Considering matching relationship between composite ratio of the novel material and tailing granularity, multiple factors orthogonal experiment and multiple linearity model were set up, in order to choose and control optimal condition in the application of binding materials.
     The conclusions of this thesis provides a certain theoretical base and technical foundation for the research on the novel tailings binding materials. Design of mathematics' model between cementation strength and technologic parameter can supervise the application of the novel binding material.
引文
[1].王喜兵,连民杰,吕宪俊等.北洺河铁矿清洁生产综合技术研究[J],金属矿山,2003,(8):15—47.
    [2].袁先乐,徐克创.我国金属矿山固体废弃物处理与处置技术进展[J],金属矿山,2004,(6):46—49,60.
    [3]. Archibald. J. F. Beneficial impacts of paste tailings on environmental hazard mitigation and engineering performance improvement[J], Intemational Mining and Environment Congress, 1999(10), 537-548.
    [4].吕宪俊,连民杰.金属矿山尾矿处理技术进展[J],金属矿山,2005,(8):1-4,38-41.
    [5].连民杰,吕宪俊.北铭河铁矿建设无尾矿山探讨[J],中国矿业,2002,11(2):65-68.
    [6]. N. Sivakugan. Geotechnical considerations in mine backfilling in Australia[J], Journal of Cleaner Production, 2004 (10) :1-8.
    [7].王燕谋,苏慕珍,张量著.硫铝酸盐水泥[M],北京:北京工业大学出版社,1999:3—4.
    [8].吕辉.矿山胶结充填技术述评与展望[J],矿业快报,2004,(10):1-6.
    [9].李冬青.我国金属矿山充填技术的研究与应用[J],采矿技术,2001,1(2):16—19,52.
    [10].胡华.矿山充填工艺的发展及似膏体充填新技术[J],中国矿业,2001,10(6):40—50.
    [11].刘同有.充填采矿技术与应用[M],北京:冶金工业出版社,2001.
    [12].孙恒虎.高水固结充填采矿[M],北京:机械工业出版社,1998.
    [13].袁宏进.尾砂高水基固化剂充填新技术的应用[J],江苏地质,1997,21(3):183—186.
    [14].余其俊.高水速凝材料的性能及其水化硬化机理研究[J],水泥技术,1995,(5):3—6.
    [15].宋存义,陈克丕,汪辉.高水材料的水化硬化反应机理的研究[J],矿物岩石地球化学通报,1999,18(4):261-263.
    [16].司志明.高水材料的性能研究及其水化硬化机理探讨[J],山东建材学院学报,1996,10(3):72—75.
    [17].周明凯,张文生,李北星.高水速凝固结材料性能和硬化机理研究[J],武汉工业大学学报,1998,20(4):18—21.
    [18].李家和,王政,周丽雪等.硫铝酸盐基高水材料强度与微观结构研究[J],材料科学与 工艺,2004,12(1):8—11.
    [19].蔡嗣经,毛市龙,方祖烈.高水速凝充填材料的风化特征和风化机理[J],北京科技大学学报,1996,18(5):406—408.
    [20].宋存义,程相利,汪增乐.钙矾石材料硬化体风化机理[J],北京科技大学学报,1999,2l(5):459—461.
    [21].郑娟荣,孙恒虎.矿山充填胶凝材料的研究现状及发展趋势[J],有色金属(矿山部分),2006,(6):12—15.
    [22].谢龙水.矿山胶结充填技术的发展[J],湖南有色金属,2003,19(4):1-5.
    [23].胡家国.电厂粉煤灰矿山充填胶凝机理研究及水化反应动力学特性[D],湖南长沙:中南大学,2004.
    [24].张钦礼,王新民,古德生等.新桥硫铁矿粉煤灰充填技术研究[J],第八届国际充填采矿会议论文集,2004:76-79.
    [25].周爱民,姚中亮.赤泥胶结充填特性研究[J],第八届国际充填采矿会议论文集,2004:153-157.
    [26].付毅.氟石膏粉煤灰胶结充填材料试验研究[J],矿冶,2000,9(4):1-5,24.
    [27].陈云嫩,梁礼明.脱硫石膏胶结尾砂充填研究[J],金属矿山,2003,(3):45—46,51.
    [28].陈云嫩,梁礼明.脱硫石膏粉煤灰胶结全尾砂充填的试验研究[J],有色金属(矿山部分),2004,56(2):5—6
    [29]. L. M. AMARATUNGA. Cold-Bond Agglomeration Of Relative Pyrrhotite Tailings For Backfill Using Low Cost Bingers: Gypsum β-Hemihydrate And Cement[J], Minerals Engineering, 1995, 18(12): 1455-1465.
    [30]. L. M. AMARATUNGA. Cold-Bond Agglomeration Of Gold Mill Tailings For Backfill Us-ing Gypsum Beta-Hemihydrate And Cement As Low Cost Bingers[J], Canadian Metallurgy Quarterly, 1997, 36(4):283-288.
    [31].肖智政,王新民,张钦礼.开阳磷矿磷石膏胶结充填试验研究[J],第八届国际充填采矿会议论文集,2004:98—100.
    [32].王新民,姚建,田冬梅,张钦礼.磷石膏作为胶结充填骨料性能的试验研究[J],金属矿山,2005,(12):14—16,64.
    [33]. Mehta P K Brady J R. Utilization of phospor gypam in Portland cement industry[J],Cement and concrete Research, 1977, 7(2):92-96.
    [34].江梅.磷石膏胶结充填技术开发及应用[J],非金属矿,2006,29(2):32—34.
    [35]. MANCA P EMASSACCIG, et al. Mill tailing and various binder mixtures for cemented backfill:Analysis of properties related to mining problems[A], Granholm S:Mining with Backfill[C], Rotterdam:A. A. Balkema, 1983(2):39-47.
    [36]. Malhotra. V. M., ed., supplementary cementing material for concrete[M], Ottawa:Canadia Government Publishing Center, 1987.
    [37].许新启,杨焕文,杨小聪.我国全尾高浓度(膏体)胶结充填简述[J],矿冶工程,1998,18(2):1-4.
    [38].言军跃.全尾砂胶结充填工艺在金属矿山的应用[J],有色矿山,1998,(4):16—19.
    [39].田斌.新桥硫铁矿高水材料胶结充填的实践[J],金属矿山,1997,(3):44—45.
    [40].李翁然,杨耀亮,罗元新.我国地下金属矿山全尾砂胶结充填技术述评[J],矿业研究与开发,1996,16(增刊):72—75.
    [41].GB177—85.水泥胶砂强度检验方法.
    [42].周玉等.材料分析方法[M],北京:机械工业出版社,2006.
    [43].祁景玉.现代分析测试技术[M],上海:同济大学出版社,2006.
    [44].刘粤惠,刘平安.X射线衍射分析原理与应用[M],北京:化学工业出版社,2006.
    [45].冯乃谦,石云兴.水淬矿渣超细粉混凝土[J].混凝土,1997,(1):24-26.
    [46] S. AAustin and P. J. robin. Influence of early curing on the sub-surface perm eability and of silica fume concrete[J]. Magazine of Concrete Reseach, 1997(1):128-136.
    [47].冯乃谦.高性能混凝土结构性能与粉体效应[J].混凝土与水泥制品,1996,(2):24.
    [48].蒲心诚,严吴南.100—150Mpa超高强高性能混凝土的配制技术[J].混凝土与水泥制品,1998(6):30—33.
    [49]. M. Benzaazoua, etal. A contribution to understanding the hardening process of cemented pastefill[J], Mineral Engineering, 2004, (17):141-152.
    [50]. M. Fall, et al. Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill[J], Mineral Engineering, 2005, (18):41-44.
    [51]. Ayhan Kensimal, et al. Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill[J], Materials letters, 2005, (59): 3703-3708.
    [52]. Ayhan Kensimal, et al. Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents[J], Cement and Concrete Research, 2004, (34): 1817-1822.
    [53].秦力川,杨峻峰.建筑材料微观测试分析[M],重庆:重庆大学出版社,1990.
    [54].杨南如.无机非金属材料测试方法[M],湖北:武汉土业大学出版社,2002.
    [55].陈益民,许仲梓.高性能水泥基础研究[M],北京:中国纺织出版社,2004.
    [56]. Taylar H. F. W. Cement Chemistry[M], St Edmundsbury Press Ltd., 1990.
    [57].李北星,胡晓曼,陈娟等.高掺量混合材复合水泥的水化性能[J],硅酸盐学报,2004,32(10):1304-1309.
    [58].张月星,陆文雄,王律等.复合矿物掺合料在水泥中水化机理的试验研究[J],粉煤灰综合利用,2006,(3):15—17.
    [59]. 禹尚仁等.无熟料硅酸钠矿渣水泥水化机理[J],硅酸盐学报,1990,8(2):104—109.
    [60].李永鑫.粉煤灰玻璃态胶凝材料的制备与研究[D],湖北:武汉工业大学,2000.
    [61].徐瑛,陈友治,吴力立.建筑材料化学[M],北京:化学工业出版社,2005.
    [62].徐家保.建筑材料学[M],广东:华南理工大学出版社,1997.
    [63].柯国军.土木工程材料[M],北京:北京大学出版社,2006.
    [64].杨振杰.胶结界面的微观结构与界面胶结强度强化机理研究[D],四川南充:西南石油学院,2002.
    [65]. Monteiro P. J. M. Improvement of the aggregate-cement paste transition zone by grain refinement of hydration products[J], 8th Int. Cong. on the chem. of cement. Rio, Brasilia, 1996, 3:433-443.
    [66].刘少波编译.化学外加剂对氢氧化钙晶体的生长的影响[J],国外建材科技,1999,(3):25—29.
    [67].盛骤,谢式千,潘承毅.概率论与数理统计[M],北京:高等教育出版社,2001.
    [68].李云雀,胡传荣.试验设计与数据处理[M],北京:化学工业出版社,2005.
    [69].周爱民.基于工业生态学的矿山充填模式与技术[D],湖南长沙:中南大学,2004.
    [70].李兴尚.水砂胶结充填材料配合比的优化研究[D],云南:昆明理工大学,2005.
    [71].王新民,肖卫国等.深井矿山充填理论与技术[M],长沙:中南大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700