用户名: 密码: 验证码:
氢气和天然气用于钢液脱氧的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在炼钢生产中,氧及其在钢中的存在形式对钢的性能有很大的影响。随着社会的进步和科技的发展,对钢的性能要求日益提高,现代炼钢对脱氧工艺提出了新的要求。如何降低钢中的氧含量,提高钢的洁净度,越来越为冶金工作者关注。因此,长期以来人们在不断地改进脱氧方法,探索新的脱氧工艺。
     传统的脱氧方法主要还是使用脱氧剂直接脱氧。这种脱氧法的缺点是,脱氧产物残留在钢液中造成了对钢液的污染。而钢液中的夹杂物,尤其是脱氧生成的氧化物夹杂直接影响到钢材的质量。尽管采取了多种工艺手段去除夹杂物,仍无法彻底避免脱氧产物对钢液的污染。因此,如何减少脱氧对钢液污染的脱氧方法成为炼钢脱氧工艺的发展方向之一。
     氢气具有较强的脱氧能力。而且生成的脱氧产物为H2O,不会残留在钢中形成氧化物夹杂。将氢气用于钢液的脱氧,可以避免脱氧产物对钢材质量的不利影响。因此,开发用氢气的脱氧工艺,对提高钢的洁净度具有重要意义。然而,在氢气用于钢液脱氧的脱氧效果,脱氧机理及动力学规律等方面还需要系统的研究。
     本文首先对氢气和天然气的脱氧能力进行热力学计算。同时,对其脱氧机理及影响脱氧效果的因素进行了探讨。在本计算条件下,氢脱氧反应以氢气泡中的氢分子与钢液中的氧之间的反应为主。天然气脱氧过程中,CH4发生分解产生C和H2,C和H2均会与钢中的氧反应使氧含量降低,同时C会溶解于钢液中使碳含量增大。
     在热力学计算的基础上,进行了钢液吹H2、CH4的脱氧效果及动力学规律的实验研究。考察了吹气量、气相组成及吹气管孔径对脱氧速率的影响。实验结果表明,钢液用H2脱氧可以得到较低氧含量。同时,H2可以减小了钢中表面活性元素[O]对钢液脱氮的阻碍,在高氧含量条件下,仍会使得钢中[N]含量降低。本实验中,在常压下吹H2脱氧基本满足一级反应规律,反应由[O]在钢液侧边界层的传质控制,脱氧反应总的速率常数约在0.0363~0.0494s~(-1)之间。通过理论和实验研究,提出了在转炉吹炼结束后,通过透气砖向转炉中通入氢气,对不同碳含量的钢液脱氧生产低碳、高纯净度钢的脱氧工艺。
     钢液吹CH4脱氧过程中,碳脱氧为脱氧的主要反应,在15min的吹气过程中,脱氧量约为总量的60%以上,氧含量可以降低到较低水平。而且,脱氧以及增碳速度随气相中CH4含量的增大而增大。[%O]=0.01%~0.02%为脱氧和增碳平均速度的转折点,钢中氧含量降低至此值时,往钢液中吹CH4生成的碳主要溶解于钢液中使碳含量增加。综合对CH4脱氧的研究,提出了在UHP电弧炉吹氧助熔后,通过喷枪或透气砖向钢液中通入天然气,生产中高碳、高纯净度、低氮钢的脱氧工艺。
     为将氢脱氧工艺应用于实际生产,针对吹氢脱氧后钢液氢含量增加的问题。在实验室条件下进行吹氩脱氢的动力学实验研究。结果表明,脱氢的反应由氢原子[H]穿过钢液侧液相边界层向液-气表面的传质所控制。总的反应速度常数约在0.0022~0.0052s~(-1)之间。加强搅拌,增大液-气反应面积可提高吹氩脱氢速度。
     进行了不同初始氧含量的氢脱氧后钢液加铝脱氧的实验,探讨氢脱氧对钢液洁净度的影响。通过光学显微镜观察金相试样上的夹杂物,进行不同初始氧含量加铝脱氧后钢中氧化物夹杂数量和尺寸关系的研究。结果表明,钢中夹杂物颗粒大小、数量受钢中氧含量与脱氧合金的浓度支配。将氢气用于钢液的初脱氧来降低钢中的氧含量,可以减小脱氧合金加入量降低过饱和度而减小生成氧化物夹杂的数量和尺寸,提高钢的洁净度。
     最后,提出在RH精炼过程中进行吹氢脱氧,并对其进行可行性及精炼效果分析。RH吹氢精炼过程的数学模型研究表明,吹氢可以有效脱除钢中溶解的氧,随着吹氢精炼时间的延长,氧含量可以降低到接近产品最终要求。RH吹氢精炼过程,脱碳速度要快于常规的吹Ar真空精炼。同时,可以将氮含量降低到较低水平。可以用于高纯净度、超低碳,低氮钢的冶炼。
In steel-making process, the properties of steel products are greatly effected by the oxygen and it’s form in the steel. With the progressing of society and developing of science and technology, demands for the quality of steel have been increased. New requirements are put forward on deoxidation process. How to decreased the oxygen content and improve the degree of cleanness of steel have attracted more and more attention. For these reasons, deoxidation process was constantly improved and explored for a long time.
     Generally, the main deoxidation method of steel melts is performed by adding deoxidizers such as Al and ferrosilicon. In this process, deoxidation product remained in steel melt and effected the properties of steel directly. It is well known that many efforts have been made to remove the deoxidation products from molten steel. But the pollution could not be avoided yet. Therefore, reducing the pollution of deoxidation has become a development tendency of deoxidation process.
     Hydrogen has strong deoxidizing capability. The deoxidation product (H2O) is easily removed from the melt and no non-metallic inclusions are generated. The bad effect of remained inclusions in liquid steels on the properties of steel should be avoided by deoxidation using hydrogen. Therefore, it is great significant to develop the deoxidation by hydrogen for cleanness improvement of steel. However, the deoxidation effect, mechanism and kinetics law by hydrogen need to be studied more systematically.
     In this subject, the thermodynamic calculations of deoxidizing capabilities of hydrogen and nature gas were carried out respectively. The mechanism and influence factors of deoxidation were discussed. On the conditions of calculations in this subject, the oxygen in the molten steel mainly reacted with hydrogen molecule in the hydrogen bubble in the deoxidation process. During the deoxidation by nature gas, carbon and hydrogen were decomposed from natural gas. Oxygen content was decrease by reaction with carbon and hydrogen. At the same time, the carbon content was increased for carbon solution.
     Based on the thermodynamic calculation, the experiment of deoxidation effects and kinetics law by hydrogen and methane were studied by measuring the influence of gas flow rate, orifice diameter of submerged lance and gas compound in laboratory scale experiment. Lower oxygen content can be obtained by hydrogen deoxidation. In addition, the retarding for nitrogen desorption by surface-active elements such as oxygen was minished by hydrogen blowing. The nitrogen content was still decreased at high oxygen content. Hydrogen deoxidation obeyed first-order kinetics and reaction is mainly controlled by the mass transfer of oxygen in the liquid boundary layers. The value of total reaction rate constant was between 0.0363~0.0494s~(-1) under the present condition. Based on theoretical analysis and experiments, deoxidation by hydrogen in the end of converter blowing for various carbon content steel was presented, which can be used in low carbon, high cleanness steel production.
     In the deoxidation process by methane, oxygen removed by carbon was the main deoxidation reaction. It is about 60 percent of whole removal amount of oxygen during gas blowing for 15min. Lower oxygen content can be obtained. Furthermore, the rate deoxidation and carburization increased by increasing the content of methane in the gas phase. The value of critical oxygen content below which the carbon decomposed from methane was mainly dissolved in the melt for carburization is between 0.01~0.02%. According to the character of deoxidation by methane. deoxidation by nature gas after oxygen blowing in UHP electric arc furnace melting was presented, which can be used in medium and high carbon, high cleanness, low nitrogen steel production.
     In order to apply deoxidation by hydrogen in the practical production, the kinetics of hydrogen desorption from steel melt by blowing argon gas has been studied in laboratory experiment for hydrogen content increasing after hydrogen blowing. The result showed that the rate of hydrogen desorption was controlled by mass transfer of hydrogen atoms in liquid phase. The value of total reaction rate constant was between 0.0022~0.0052s~(-1) under the present condition. It was deduced that the rate of hydrogen desorption could be increased by strengthening stirring and increasing the area of the reaction surface.
     Relationship between the size distribution and number of inclusions with varying initial oxygen content as a function of added aluminum was studied for the improvement in cleanness of the steel by hydrogen deoxidation, the inclusions in steel samples were observed by optical microscope in this subject. The result showed that the size distribution and number of inclusion after deoxidation with alumina were dominated by the content of oxygen and deoxidizing alloy , and decreased by decreasing deoxidizing alloy amount and supersaturation degree for hydrogen deoxidation.
     Lastly, hydrogen gas injection method in the RH degasser was developed. Refining effect and feasibility were analyzed for the process. The mathematical model for hydrogen deoxidation in the RH degasser was developed. The analysis of the process by the model clarified that the dissolved oxygen could be removed efficiently by hydrogen gas injection in RH degasser. The oxygen content in steel could be decreased to final demand by increasing the process time. During the hydrogen injection, the rate of decarburization and nitrogen removal from liquid steel were increased efficiently. Hydrogen gas injection method in the RH degasser can be used for high cleanness, ultra low carbon nitrogen steel production.
引文
[1]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社, 1990.
    [2]佩尔克.R.D.氧气顶吹转炉炼钢[M].北京:冶金工业出版社, 1980.
    [3]陈襄武.炼钢过程中的脱氧[M].北京:冶金工业出版社, 1999.
    [4]李为镠.钢中非金属夹杂物[M].北京:冶金工业出版社, 1988.
    [5]蔡开科,张立峰,刘中柱.纯净钢生产技术及现状[J].河南冶金. 2003, 11(3): 3-10.
    [6]蔡开科,张立峰,刘中柱.纯净钢生产技术及现状[J].河南冶金. 2003, 11(4): 3-8.
    [7]刘中柱,蔡开科.纯净钢生产技术[J].钢铁. 2000, 35(2): 64-68.
    [8]李正邦.超洁净钢的新发展[J]. 2002, 1(3): 161-165.
    [9]蔡开科.转炉—精炼—连铸过程钢中氧的控制[J].钢铁. 2004, 39(8): 49-57.
    [10]董瀚.先进钢铁材料[M].北京:科学出版社, 2008: 117-127.
    [11]崔忠沂.金属学与热处理[M].北京:机械工业出版社, 1992.
    [12] L.Brinkmeger. Influence Factor of Steel Cleanliness in Continuous Casting[J]. Ironmaking and Steelmaking. 1995, 22(6): 6.
    [13] V .Ludlow. Oxygen in Steelmaking:towards Cleaner Steels[J]. Ironmaking and Steelmaking. 2002, 29(2): 83.
    [14] L.zhang, W.pluschkell. NUCLEATION AND GROWTH OFALUMINA INCLUSIONS DURING STEEL DEOXIDATION[J]. Ironmaking Steelmaking,. 2003, 30: 106-118.
    [15] L .kampmann, M. Kahlweit. Ber Bunsenges physik[J]. phys chen. 1970, 74: 456.
    [16] Masamitsu Wakoh. Behavior of alumina inclusions just after deoxidation[J]. ISIJ International. 2007, 47(5): 627-632.
    [17]肖英龙.钢中氧含量及脱氧合金对夹杂物直径的影响[J].世界金属导报. 2001.
    [18]薛正良,齐江华,金焱,等.超低氧条件下钢液脱氧与氧化物夹杂尺寸[J].武汉科技大学学报:自然科学版. 2006, 29(6): 541-543.
    [19] Tc Pennington. Partial Coke Ladle Deoxidation[J]. STEELMAKING CONFERENCE PROCEEDINGS,. 1998.
    [20]肖清安.硅钡铝合金用于炼钢脱氧的探讨[J].钢铁. 1996(8): 15-19.
    [21]韩其勇,唐历,王庆奎.含钡合金在钢生产中的应用[J].钢铁研究学报. 1992, 4(3): 98-106.
    [22]韩其勇,唐历,王庆奎.含钡合金在钢生产中的应用(续)[J].钢铁研究学报. 1992, 4(4): 93-101.
    [23]龙云鑫. Si-Ca-Ba复合脱氧剂在炼钢生产中的应用与研究[J].炼钢. 2005, 21(2): 19-21.
    [24]李阳,姜周华,姜茂发,等.含钡合金在钢液中的脱氧行为研究[J].炼钢. 2003, 19(3): 26-29.
    [25]杜成武,朱苗勇,董世泽,等.硅铝钡铁合金在炼钢中的脱氧研究[J].铁合金. 2003, 34(2): 7-10.
    [26]李尚兵,王谦.铝镁合金脱氧热力学分析与实验研究[J].铁合金. 2007, 38(2): 23-27.
    [27] Seon-hyokim . The rmodynamicas sessmentof Mg deoxidation reaction of liquid iron and equilibriaof[Mg]-[Al]-[O] and [Mg]-[S]-[O][J]. Steel Research. 2000, 71(4): 101-106.
    [28]张建良,阎占辉,等.含镁、碱土金属复合合金的开发与炼钢应用(Ⅰ)[J].铁合金. 2001, 32(4): 1-7.
    [29]阎占辉,张建良,等.含镁、碱士金属复合金的开发与炼钢应用(Ⅱ)[J].铁合金. 2001, 32(5): 7-13.
    [30]王世俊,董元,徐长青,等.钡系合金脱氧基础研究[J].铁合金. 1995(06).
    [31]清华大学稀土铸铁课题组.稀土铁合金和碱土铁合金[M].北京:冶金工业出版社, 1991: 24-28.
    [32]路贵民,刘学山,蒋冬梅,等. Al-Mg合金热力学性质的计算[J].中国有色金属学报. 1999, 9(2): 381-384.
    [33]王博,姜周华,姜茂发.镁铝合金处理GCr15轴承钢夹杂物的变质[J]. 2006, 16(10): 1736-1741.
    [34]李新明,郑少波,郑庆,等.钢的氧化物冶金技术[J].上海金属. 2005(05).
    [35] Kohichi Yamamoto . Effect of Boron on Intra-granular Ferrite Formation in Ti-Oxide Bearing Steels[J]. ISIJ. 1996, 36(1): 80-86.
    [36]余圣甫,雷毅,黄安国,等.氧化物冶金技术及其应用[J].材料导报. 2004(08).
    [37]薛正良,齐江华,赵栋楠,等.基于氧化物冶金技术的管线钢凝固脱氧热力学[J]. 2007, 28(4): 4-6.
    [38]森井廉著,朱果灵译.电弧炉炼钢法[M].北京:冶金工业出版社, 2006.
    [39]李正邦,王玉.合成渣处理对弹簧钢脱氧及夹杂物控制的影响[J].特殊钢. 2000, 21(3): 10-13.
    [40]于平,陈伟庆,冯军,等.高碱度渣精炼对轴承钢夹杂物的影响[J].特殊钢. 2004, 39(7): 20-24.
    [41]倪冰,林媛,邹宗树. 82B钢中氧化物系夹杂物的控制研究[J].工业加热. 2007, 36(6): 41-42.
    [42]李海波,李宏,王新华,等. 20CrMoH钢精炼过程中T[O]和夹杂物的研究[J].钢铁,. 2007, 42(10): 41-45.
    [43]刘学华,茆勇,宋超,等. BOF—LF—CC工艺生产冷镦钢纯净度的研究[J].钢铁. 2005, 40(2): 27-30.
    [44]岳峰,包燕平,崔衡,等. BOF-LF/VD-CC工艺生产高级船板钢纯净度的研究[J].北京科技大学学报. 2007, 29(增刊1): 1-5.
    [45] Karl E. Oberg, Lawrence M. Friedman W M B. The diffusivity and solubility of oxygen in liquid copper and liquid silver from electrochemical measurements[J]. Metallurgical and Materials Transactions B. 1973, 4(1): 61-67.
    [46] Iwase M, Tanida M, Mclean A, et al. Electronically driven transport of oxygen from liquid iron to CO + CO2 gas mixtures through stabilized zirconia[J]. Metallurgical Transactions B. 1981, 12(3): 517-524.
    [47] Hasham Z, Pal U, Chou K C. Deoxidation of molten steel using a short-circuited solid oxide electrochemical cell[J]. Journal of the Electrochemical Society. 1995, 142(2): 469-475.
    [48]胡晓军,肖莉,李福燊,等.一种无污染脱氧方法[J].金属学报. 1999(03).316-319.
    [49]金从进,汪钺强,李泽亚,等.固体电解质脱氧技术的发展[J].宝钢技术. 2001(02). 47-50
    [50]王龙妹,金振坚,高锋,等.用固体氧化物电解质装置对金属溶液进行电解脱氧[J].钢铁研究学报. 2000(06).16-19
    [51] LuXiong-gang,Ding Wei-zhong,Li Fu-shen,et al. Electrochemistry of oxygen ion transport in slag[J]. TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA. 2002, 12(2): 326-329.
    [52]李福燊,鲁雄刚,等.钢液的固体电解质无污染脱氧[J].金属学报. 2003, 39(3): 287-292.
    [53]梁小伟,孙铭山,鲁雄刚,等.渣金间外加电场无污染脱氧新方法[J].上海大学学报(自然科学版). 2003(04).318-320
    [54]鲁雄刚,梁小伟,袁威,等.渣金间外加电场无污染脱氧方法的研究[J].金属学报. 2005, 41(2): 113-117.
    [55]殷瑞钰.钢的质量现代进展(下篇)特殊钢[M].北京:冶金工业出版社, 1995.
    [56] Xiaofeng Zheng . Particle Removal from Liquid Phase Using Fine Gas Bubbles[J]. ISIJ. 1997, 37(11): 1091-1097.
    [57] Laihua Wang . Prediction of the Optimum Bubble Size for Inclusion Removal from Molten Steel by Flotation[J]. ISIJ. 1996, 36(1): 7-16.
    [58] PnaWei,k-neiehiroUemijra,shinjiKoyama. Cold Model Experiment on Entrpament of lnclusions in Steel by Inert Gas Bubbles[J]. Tetsu-to-Hagnae. 1992, 78(8): 1361.
    [59]国际钢铁协会编,王新华等译.洁净钢-洁净钢生产工艺技术[M].北京:冶金工业出版社, 2006.
    [60] Laihua Wang. A New Approach to Molten Steel Refining Using Fine Gas Bubbles[J]. 1996, 36(1): 17-24.
    [61]詹树华,王建军,仇圣桃,等.底吹气中间包内流动与夹杂物控制[J].安徽工业大学学报(自然科学版). 2006(04): 368-376.
    [62]刘金刚,刘浏,王新华.中间包夹杂物的去除与控制新技术[J].炼钢. 2006(02): 30-42.
    [63]张明华.中间包采用气体净化除去钢中夹杂物的探讨[J].炼钢. 2005(3): 30-32.
    [64]王进,孙维,刘玉兰.中间包钢水过滤净化技术[J].华东冶金学院学报. 2000, 17(4): 288-293.
    [65]陶立群,姜茂发,王德永,薛文辉,姜学锋.连铸中间包底吹氩物理模拟和工业实践[J].钢铁. 2006, 41(5): 32-35.
    [66] Matsuno H, Kikuchi Y, Komatsu M, et al. Development of a New Deoxidation Technique for RH Degassers[J]. Iron and Steelmaker. 1993, 20(7): 35~38.
    [67]蒋国昌.纯净钢及二次精炼[M].上海:上海科技出版社, 1994.
    [68]高海潮,颜根发.钢包电磁搅拌生产洁净钢的几个工艺理论问题[J].钢铁研究. 2000(3): 14-18.
    [69] Miki, Y ,kitaoka, H,bessho N. Inclusion Separation From Molten Steel in Tundish with Rotating Electromagnetic Field[J]. Tetsu-to-Hagane. 1996, 82(6): 498-503.
    [70] Nakanishi K. Japanese State of the Art Continuous Casting Process[J]. ISIJ. 1996, 36(supplement): 14-17.
    [71]韩至成.电磁冶金学[M].北京:冶金工业出版社, 2001.
    [72] A.Igodawa. Control of molten steel flow in continuous casting mold by two static magnetic field imposed on whole width[J]. Materials science and engineering. 1993: 293-297.
    [73]荣升.全幅两段电磁制动钢水流动及弯月面形状的数值模拟[C].中国金属学会连铸分会, 1998.
    [74]王军.连铸工艺中的电磁技术[J].宽厚板. 2000, 6(3): 1821.
    [75]战东平,宋景欣,姜周华,等.连铸结晶器电磁制动的使用效果分析[J].中国冶金. 2006(5): 23-25.
    [76]刘光穆,石绍清,邓康,等.电磁制动对CSP结晶器内夹杂物行为的影响[J].钢铁. 2007, 42(7): 22-25.
    [77]徐曾啓.炉外精炼[M].北京:冶金工业出版社, 1998.
    [78]丁永昌.钢和合金的特种熔炼[M].武汉:中国地质大学出版社, 1989.
    [79]潘秀兰,王艳红,梁慧智.国内外电渣重熔技术的发展与展望[J].鞍钢技术. 2005(2): 5-10.
    [80] Yahkot, Y.O. Flow behavior and filtration of steel melt in continuous casting tundish[J]. Ironmaking and Steelmaking. 1992(19): 221-225.
    [81] R.w.Gairing . Operating experience using inclusion filtration technology for continuously cast steels[J]. Iron & steelmaker. 1993, 20(3): 55-58.
    [82]李扬洲,张大德,赵克文,等.高速板坯连铸的钢水净化技术及效果[J].钢铁. 2000, 35(8): 21-25.
    [83]卢艳青,张崇民,戴云朵,等.中间包CaO质陶瓷过滤器滤除夹杂效果的研究[J].冶金能源. 2003, 22(6): 9-11.
    [84]董金生.连铸中间包使用氧化钙质过滤器的冶金效果[C].第五届连铸钢学术会议论文选集, 1995.
    [85]王永胜.钢水过滤器的现状和发展[J].甘肃冶金. 2002(1): 6-10.
    [86] Mitsuo Toshiharu, Takami Toshihiko,ito Toshio. Hydrogen Deoxidation of Molten Iron under Reduced Pressure[J]. Tetsu- to- Hagane. 1965, 51(10): 1860-1863.
    [87]杜挺.真空冶金学[M].北京:冶金工业出版社, 1996.
    [88] KajikawaKoji, YamadaHitohisa. Deoxidation tests of molten iron by top blowing of hydrogen[J]. Current Advances in Materials and Processes. 2005, 18(4): 1021.
    [89] M. N. Dastur, J. Chipman. Equilibrium in the Reaction of Hydrogen with Oxygen in Liquid Iron[J]. J. Metals Trans. 1949, 185: 441-445.
    [90] B. E. Hopkins, H. Jenkins. Production of High-Purity Iron and Iron Alloys on a 25-lb. Scale[J]. J. Iron Steel Inst. 1951, 168: 377-383.
    [91] B. E. Hopkins, H. Jenkins. Stone. Production of High-Purity Iron and Iron Alloys on a 25-lb. Scale[J]. J. Iron Steel Inst. 1952, 170: 243-248.
    [92] V. V. Averin, A. Yu. Polyakov, A. M. Samarin. Activity of Oxygen in Liquid Iron[J]. NaukSSSR, Ser. Met. 1955(3): 90-107.
    [93] T. P. Floridis, J. Chipman. Activity of Oxygen in Liquid Iron Alloys[J]. Trans. Met. 1958, 212: 549-553.
    [94] Sanbongi Koji,omori Yasuo . Measurement of the Equilibrium Constant of Reaction of Hydrogen with Oxygen in Liquid Iron[J]. Tetsu- to- Hagane. 1961, 47(10): 1324-1326.
    [95] HKnüppel. Deoxidation and Vacuum Treatment of teel: I. Thermodynamic and Kinetic Laws[C]. Moscow: 1973.
    [96] M.A.Makarov,A.A.Aleksandrov,vYaDashevskii. Deep decarburization of iron-based melts[J]. Russian Metallurgy. 2007, 2: 91-97.
    [97]陈伟庆.冶金工程实验技术[M].北京:冶金工业出版社, 2004: 260-261.
    [98]魏寿昆.冶金过程热力学[M].上海:上海科技出版社, 1980.
    [99]华一新.冶金过程动力学导论[M].北京:冶金工业出版社, 2004.
    [100]梁连科.车荫昌.杨怀.冶金热力学及动力学[M].沈阳:东北工学院出版社, 1990.
    [101] Mukawa S , Mizukami Y , Komai T . Nitrogen Removal from Molten Steel by Reduction Gases[C].Nagoya , Ja pan: ISIJ, 1990.
    [102] Mizukami Yoshimasa ,Mukawa Susumu ,Saeki Tsuyoshi . The Rate of Nitrogen Removal from Molten Steel by Reductive Gas[J]. Tetsu- to- Hagane. 1988, 74(2): 294-301.
    [103]孙铭山.外场作用下强化钢液脱氮、脱氧的研究[D].上海:上海大学, 2003.
    [104] Rbbird,westewart,Enlightfoot. transport phenomena[J]. Journal Electrochemical Society. 1961, 108(3): 78-79.
    [105]川上正博,前田孝彦,竹中俊英,横山誠二.溶鋼中へのH_2吹込みによる各種製綱反応の[J].鐵と鋼. 2004, 90(6): 422-428.
    [106] Harashima Kazuumi , Mizoguchi Shozo, Kajioka Hiroyuki . Kinetics of Nitrogen Disorption from Low Nitrogen Liquid Iron by Blowing Ar and Reducing Gas Mixture or by Top Injection of Iron Ore Powder under Reduced Pressure[J]. Tetsu- to- Hagane. 1988, 74(3): 441-448.
    [107]曲英.炼钢学原理[M].北京:冶金工业出版社, 1980.
    [108] F奥特斯著,倪瑞明,张圣弼,项长祥译.钢冶金学[M].北京:冶金工业出版社, 1996.
    [109] Y. Fukunaka , K. Tamura , N. Taguchi . Deoxidatlon rate of copper droplet levitated in Ar-H2 gas stream[J]. Metallurgical and Materials Transactions B. 1991, 22(5): 631-639.
    [110] S Ohguchi, D.G.robertson. Kinetic Model for Refining by Submerged Powder Injection[J]. Ironmaking Steelmaking. 1984(11): 41-55.
    [111] C.R.Nanda, G H Geiger. The kinetics of deoxidation of copper and copper alloys by carbon monoxide[J]. Metallurgical and Materials Transactions B. 1971(2): 1101-1106.
    [112] Sain.D.R, Belton.G.R. Interfacial reaction kinetics in the decarburization of liquid iron by carbon dioxide[J]. Metallurgical Transactions B. 1976, 7(2): 235-244.
    [113] R.J.Fruehan , L.J.Martonik . The rate of decarburization of liquid iron by CO2 and H2[J]. Metallurgical and Materials Transactions B. 1974, 5(5): 1027-1032.
    [114] Hua, C. H , Parlee,. On the interfacial kinetics of the reaction of CO2 with liquid iron[J]. Metallurgical Transactions B. 1983, 14(3): 504-506.
    [115] G. R. Belton , R. W. Hunt . How fast can we go? The status of our knowledge of the rates of gas-liquid metal reactions[J]. Metallurgical and Materials Transactions B. 1993, 24(2): 241-258.
    [116]谷口尚司,菊池淳,前田四郎.噴流ガス,溶鉄間の気相内物質移動に関するモデル実験[J].鐵と鋼. 1976, 62(2): 191-200.
    [117] Chitta R. Nanda , Gordon H. Geiger. The kinetics of deoxidation of copper and copper alloys by carbon monoxide[J]. Metallurgical and Materials Transactions B. 1971, 2(4): 1101-1106.
    [118] R. J. Andreini, J. S. Foster, R. B. Phillips. Copper deoxidation kinetics utilizing carbon monoxide[J]. Metallurgical and Materials Transactions B. 1977, 8(4): 633-638.
    [119] Y. Fukunaka , K. Nishikawa , H. S. Sohn . Desulfurization kinetics of molten copper by gas bubbling[J]. Metallurgical and Materials Transactions B. 1991, 22(1): 5-11.
    [120] Sohn, H , Fukunaka, Y , Oishi, T. Desulfurization kinetics of molten copper matte by gas bubbling[C]. San Diego: 2003.
    [121] D.g.c. Robertson, B.b. Staples. Process Engineering of Pyrometallurgy[C]. London: 1974.
    [122] Xigu H. Principles of Steel Metallurgy[M]. Beijin: Metallurgical Industry Press, 1990.
    [123]傅杰.钢冶金过程动力学[M].北京:冶金工业出版社, 2001.
    [124]邹德玲.氮在不锈钢熔体中溶解行为的研究[D].沈阳:东北大学, 2004.
    [125] S. Ban-ya, F. Ishii, Y. Iguchi, T. Nagasaka. Rate of nitrogen desorption from liquid iron-carbon and iron-chromium alloys with argon[J]. Metallurgical and Materials Transactions B. 1988, 19(1): 233-242.
    [126] T.p. Batle , R .d .pehlk . Kinetics of nitrogen absorption/desorption by liquid iron and iron alloys[J]. ironmaking and steelmaking. 1986, 13(4): 176-189.
    [127] R. J. Fruehan, L. J. Martonik . The rate of absorption of nitrogen into liquid iron containing oxygen and sulfur[J]. Metallurgical and Materials Transactions B. 1980, 11(4): 615-621.
    [128] S. Ban-ya , F. Ishii , Y. Iguchi . Rate of nitrogen desorption from liquid iron-carbon and iron-chromium alloys with argon[J]. Metallurgical and Materials Transactions B. 1988, 19(1): 233-242.
    [129] K.sekino, T.nagasaka . Kinetics of the reaction of CH4 gas with liquid iron[J]. Metallurgical and Materials Trans B. 1995, 26: 317-324.
    [130] C. P. Petit,R.J.Fruehan. Influence of chromium and nickel on the dissociation of CO2 on carbonsaturated liquid iron[J]. Metallurgical and Materials Transactions B. 1997: 639-645.
    [131] Sekino .k , Nagasaka.t , Fruehan .r. J . Kinetics of the Reaction of C2H6, CH4–CO2 and CO–CO2–O2 Gases with Liquid Iron[J]. ISIJ Int. 2000, 40(4): 315-321.
    [132] D. R. Sain , G. R. Belton . The influence of sulfur on interfacial reaction kinetics in the decarburization of liquid iron by carbon dioxide[J]. Metallurgical and Materials Transactions B. 1978, 9(4): 403-407.
    [133] R. J. Fruehan, G. R. Belton, F. J. Mannion . Rate of decarburization of Fe-Csat melts by H2O at 1523 and 1873 K[J]. Metallurgical and Materials Transactions B. 1992, 23(1): 45-51.
    [134] T. Nagasaka , R.J.Fruehan . Kinetics of the reaction of H2O gas with liquid iron[J]. Metallurgical and Materials Transactions B. 1994, 25(2): 245-253.
    [135]马成.重轨钢脱氢工艺研究[D].鞍山:鞍山科技大学, 2005.
    [136] Duan Weidao,fukatsu Hideaki ,nakatsukasa Takahiro,et al. Reaction Kinetics of Dehydrogenation from Molten Iron under Inert Gas Atmosphere[J]. Tetsu- to- Hagane. 1996, 82(11): 905-910.
    [137]長隆郎,高田政記,井上道雄.溶鉄の水素吸収速度および溶解酸素の影響[J].鐵と鋼. 1976, 162(10): 1309-1318.
    [138] Mukawa Susumu. Effects of Pressure and Inert Gas Top Blowing on the Rate of Molten Steel Hydrogen Desorption[J]. Tetsu- to- Hagane. 2002, 88(5): 243-248.
    [139] M.nishiwaki , T.nakatsukasa , M.sano. CAMP-ISIJ. 1998(11): 170.
    [140] Kawakami Masahiro, Maeda Takahiko, Takenaka Toshihide. Possibility of Several Steelmaking Reactions by the Injection of H into Molten Steel[J]. Tetsu-to-Hagane. 2004, 90(6): 422-428.
    [141] Qian Fu, Dong Xu, James W. Evans. Laboratory-scale measurements of reaction rates and bubble behavior[J]. Metallurgical and Materials Transactions B. 1998, 29(5): 971-978.
    [142]熊建平,刘曼,金莹.铝熔体高效除氢机理探讨[J].江西科学. 2007, 25(5): 514-518.
    [143]章守华.合金钢[M].北京:冶金工业出版社, 1981: 307-316.
    [144] cogen J Y. Cleanness and fatigue life of bearing steels[J]. CleanSteel. 1986(3): 21.
    [145] Shoji Taniguchi, Atsushi Kikuchi T I. Model Experiment on the Coagulation of Inclusion Particles in Liquid Steel[J]. ISIJ Int. 1996, Vol. 36(Supplement): 117-120.
    [146]陈家祥.钢铁冶金学(炼钢部分)[M].北京:冶金工业出版社, 1999.
    [147]幸伟,倪红卫,张华,等.钢中夹杂物去除技术的发展[J].特殊钢. 2009, 30(2): 34-36.
    [148]于平,陈伟庆,冯军,等.高碱度渣精炼的轴承钢中夹杂物研究[J].钢铁. 2004, 39(7): 20-23.
    [149] U.lindborg Collision Model for the Growth and SeParation of Deoxidation Produets[J]. Tans.AIME. 1968, 242(94-102).
    [150]张邦文.冶金熔体中夹杂物一般动力学的理论研究及其应用[D].上海:上海大学, 2003.
    [151] LvonBogdandy,Wmeyer. Arch Eisenhuettenwes. 1961(32): 451.
    [152] Jun Tanabe , Hideaki Suito . Effect of tellurium on supersaturation in aluminum deoxidized liquid iron[J]. Metallurgical and Materials Transactions B. 1995, 26(1): 95-101.
    [153] N.sano, S.Sumio. Precipitating Deoxidation by Silicon and Manganese : Kinetic study on the deoxidation of steel I[J]. Tetsu- to- Hagane. 1965, 51(1): 19-38.
    [154] Yotetsu-yosai. Handbook of Properties of Molten Steel and Slag[J]. ISIJ, Tokyo,. 1971, 32: 77.
    [155] Schenck.H, Steinmetz.E, Mehta.K.K. EQUILIBRIA AND KINETICS OF THE SEPARATION OF ALUMINA FROM THE IRON-OXYGEN-ALUMINIUM SYSTEM AT 1600℃[J]. ARCH EISENHUTTENWESEN. 1970, 41(2): 131-138.
    [156] R,l ,mccarron, G,r, Belton . The diffusivities of oxygen and sulfur in liquid iron[J]. TRANS MET SOC AIME. 1969, 245(6): 1161-1166.
    [157]韩传基. RH-MFB处理过程脱碳和热补偿温度数学模型研究[D].北京:北京科技大学, 2005.
    [158]张鉴.炉外精炼的理论与实践[M].北京:冶金工业出版社, 1993.
    [159]赵启云,李炳源. RH用氧技术的发展与应用[J].炼钢. 2001, 17(5): 54-58.
    [160]李宏译.炉外精炼[M].北京:冶金工业出版社, 2002.
    [161] Koji Yamaguchi, Toshikazusakuraya, Kazuhisa Hamagami . Development of Hydrogen Gas Injection Method for Promoting Decarburization of Ultra-low Carbon Steel[J]. Kawasaki steel technical report. 1995(32): 33-37.
    [162]刘柏松. RH-MFB脱碳过程模型与工艺优化[D].唐山:河北理工大学, 2005.
    [163] Koji Yamaguchi, Toshikazusakuraya, Kazuhisa Hamagami . Development of hydrogen gas injection method for promoting decarburization of ultra-low carbon steel in RH degasser[J]. Steelmaking Conference Proceedings. 1995(78): 105-109.
    [164]M.Takahashi, H Matsumoto,T.Saito. Mechanism of Decarburization in RH Degasser[J]. ISIJ international. 1995, 35(12): 1452-1458.
    [165]植村健一朗. RH脱ガスによる極低炭素鋼の製造[J].神野製鋼技報. 1991, 41(4): 24-27.
    [166] Z.jun, K.mukai . The Rate of Nitrogen Desorption from Liquid Iron by Blowing Argon Gas under the Condition of Non-inductive Stirring[J]. ISIJ International. 1999, 39(3): 219-288.
    [167] K.harashima, S. Mizoguchi, M Matsuo. Rates of Nitrogen and Carbon Removal from Liquid Iron in Low Content Region under Reduced Pressures[J]. ISIJ international. 1992, 32(1): 111-120.
    [168] T.kitamura, K.miyamoto, R.tsujino. Mathematical Model for Nitrogen Desorption and Decarburization Reaction in Vacuum Degasser[J]. 1996, 36(4): 395-401.
    [169]黄宗泽,朱苗勇,许海虹. RH真空精炼过程的动态模拟[J].材料与冶金学报. 2002, 1(3): 189-194.
    [170] M. Szatkowski , Tsai.m .c . Turbulent Flow and Mixing Phenomena in RH Ladles: Effects of a Clogged Down-Leg Snorkel[J]. Iron and Steelmaker. 1991, 18(4): 65-71.
    [171] Tohru M.Decarburization, denitrogenization and deoxidation of molten iron alloys by hydrogen-argon[J]. Tetsu- to- Hagane. 1985, 71(4): 135.
    [172] Frank S,Death Bruce C,whitmore. METHOD OF DEOXIDIZING METALS[P]. USA, 3304169.
    [173]魏季和,郁能文.钢液RH和RH-KTB精炼过程数学模拟的研究:过程数学模型[J].包头钢铁学报. 2002, 21(3): 431-434.
    [174]许海虹. RH真空精炼过程的数学物理模拟[D].沈阳:东北大学, 2000.
    [175]王正烈,周亚平(修订).物理化学[M].高等教育出版社, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700