用户名: 密码: 验证码:
复式钢管混凝土柱在轴压和水平荷载作用下的力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,复式钢管混凝土柱因其除继承了普通钢管混凝土承载力高,塑性、韧性好的优点外,还具有更好的耐火安全性,优越的抗震性能,且能有效避免厚壁钢管的使用,在国内外逐渐兴起,无论是在桥梁结构中的桥墩,海洋平台的支承还是在高层建筑中的大直径柱中,都有所采用,是发展前景较好的一种新型结构形式。国内外已有学者对此类构件的受力性能和承载力开展了相关的研究工作,取得了一定的成果,但是缺乏深入、细致的研究和受力机理的理论解释,更缺少对此类构件在水平荷载作用下力学性能的深入研究。本文运用统一强度理论对内圆外圆和内圆外方实复式钢管混凝土柱的轴心受压力学性能进行了理论分析,给出了较为合理的受力和破坏机理的理论解释,得到了该两种截面形式的实复式钢管混凝土柱轴压极限承载力的统一解。并以大型通用有限元软件ANSYS为平台,对在单调水平荷载作用下的内圆外方实复式钢管混凝土柱进行了弹塑性分析,得到了其荷载一位移曲线,分析和考察了轴压比、内钢管屈服强度、外钢管屈服强度和混凝土强度等因素对曲线的影响规律,并在单调加载的基础上,对其施加低周反复水平荷载,进一步考察了其滞回性能.所得到的结论如下:
     1.运用统一强度理论对内圆外圆和内圆外方实复式钢管混凝土柱的轴心受压力学性能进行了理论分析,得出了其轴压极限承载力的统一解,将理论计算结果与试验结果相比较,吻合较好。表明运用统一强度理论,考虑内、外钢管对内层混凝土的双重约束作用以及钢管因环向受拉导致纵向应力降低的影响来分析实复式钢管混凝土柱的轴心受力和破坏机理是合理的。同时证明,通过引入混凝土强度折减系数和等效约束折减系数将内圆外方实复式钢管混凝土柱,按照面积相等的原则等效为内圆外圆实复式钢管混凝土柱,进而得出其轴压极限承载力的方法是可行的。所得到的轴压极限承载力的统一解,具有广泛的适用性,既适用于拉压相同的低强度钢材,也适用于拉压不同的高强度钢材;中间主应力对极限承载力有较大影响,极限承载力随着强度参数b的增大而增大。
     2.钢管,尤其是内钢管对于实复式钢管混凝土柱轴压极限承载力的增益作用,主要体现在其对混凝土的套箍作用,并非体现在其自身的强度贡献;对于内钢管屈服强度低于外钢管的实复式钢管混凝土柱,其轴压极限承载力与具有相同含钢率的普通钢管混凝土柱相比提高并不明显,而对于内钢管屈服强度高于外钢管的实复式钢管混凝土柱,相对具有相同含钢率的普通钢管混凝土柱优越性能明显,不但提高了极限承载力还可以有效避免使用厚壁钢管导致的加工制作上的困难。
     3.内圆外方实复式钢管混凝土柱在单调水平荷载作用下的荷载—位移曲线图形稳定性较好,在加载后期基本保持水平或出现微弱下降段,表现出了良好的塑性和延性,表明内圆外方实复式钢管混凝土柱具有良好的抗震性能。其应力基本呈反对称分布,且由柱两端向中间逐渐减小。构件的水平承载力在加载后期出现下降,主要是由于随着水平位移的增加,混凝土裂缝不断开展,自身模量降低,进而导致构件整体刚度退化引起的。构件的破坏源自于柱底部核心混凝土的压碎和钢管的屈服。
     4.轴压比、内钢管屈服强度、外钢管屈服强度和混凝土强度等都是影响其极限承载力和延性的因素。改变这些参数,不但会影响荷载-位移曲线的数值,还会改变曲线的形状。
     5.构件在低周反复水平荷载作用下的滞回曲线图形饱满,没有出现明显的捏缩现象,进一步表明内圆外方实复式钢管混凝土柱具有良好的耗能能力和塑性变形性能。构件的骨架曲线与单调加载时的荷载-位移曲线相似。
In the past few years, the multibarrel tube-confined concrete columns have been applied at the bridges, the flat roofs of ocean and the high-rise construction. They have good development foreground, because they not only inherit the advantages such as the higher bearing capacity, the better plasticity and ductility, from the normal concrete filled steel tubular columns, but also have better fire performance and seismic performance, and can avoid adopting the thick steel tubes in the big columns. The correlative study on stress performance and bearing capacity has been carried out by scholars both in overseas and at home. But it is still lack of embedded academic analysis. Based on the Unified Strength Theory(UST), the two kinds of section forms of solid multibarrel tube-confined concrete columns(CHS inner and CHS outer)and(CHS inner and SHS outer) are derived in this paper. The stress mechanism and the failure mechanism of the columns under axial compressive loads are discussed, and the ultimate load calculation formulas for the above columns are obtained. By using the finite element analysis program ANSYS, the elastic-plastic analysis on the solid multibarrel tube-confined concrete columns(CHS inner and SHS outer) under monotone lateral loads is carried out And the force-displacement curves are obtained. The influence of the axial compression ratio, the yield strength of inner steel tube and outer steel tube, and the concrete strength is studied. And the hysteresis performance under lateral low reversed cyclic loads is studied also. The obtained. conclusions are as follows.
     1.The two kinds of section forms of solid multibarrel tube-confined concrete columns(CHS inner and CHS outer)and(CHS inner and SHS outer) under axial compressive loads are derived based on the Unified Strength Theory(UST) in this paper. And the ultimate load calculation formulas for the above solid multibarrel tube-confined concrete columns are obtained. In the formulas, the double restriction effect and the decrease of longitudinal stress because of the hoop tensile tension are considered. The theoretical results calculated with the UST are found in good agreement with the experimental results, and it shows that the UST is reasonable for the theory analysis of the solid multibarrel tube-confined concrete columns. By introducing the reduction coefficient of concrete strength and the equivalent restriction reduction coefficient, the cross section with CHS inner and SHS outer is turned to that of CHS inner and CHS outer according to the equal area. Through the comparing study between theoretical results and the experimental results, it is proved that the equivalent principium is feasible. The obtained ultimate load calculation formulas are suitable for most steel whether the tension-compression strength is equal or not The influence of intermediate principal stress on the ultimate load is also studied. The ultimate load increases with the increase of coefficient b.
     2.The advancement of ultimate axial compressive load is not mostly resulted in the tubes' intension contribution, but in the confinement effect that the steel tubes, especially the inner steel tubes gives to the concrete. When the yield strength of inner steel tube less than that of outer steel tube, the ultimate axial compressive load of the solid multibarrel tube-confined concrete columns is increased little than that of the corresponding normal concrete filled steel tubular columns, when the yield strength of inner steel tube greater than that of outer steel tube, the ultimate axial compressive load of the solid multibarrel tube-confined concrete columns is much more greater than that of the corresponding normal concrete filled steel tubular columns.
     3.The force-displacement curves of the solid multibarrel tube-confined concrete columns(CHS inner and SHS outer) under monotone lateral loads. are found having good stabilization and keeping level or only appearing faint decline during anaphase of loading, which indicate that the columns possess well plasticity and ductility. The stress assumes dissymmetry distributing and gradually decreases from the end of the lolumns to the middle. The horizontal bearing capacity declines during anaphase of loading, mostly because of the rigidity degeneration resulted in the concrete crack's incessant expansion with the increase of horizontal displacement The breach of columns is derived from the crushability of the core concrete at the bottom of columns and the yield of steel tubes.
     4.The parameters such as the axial compression ratio, the yield strength of inner steel tube and outer steel tube, and the concrete strength , have an important effect on the ultimate bearing capacity and ductility. When these parameters changed, not only the numerical value of force-displacement curves are affected, but also the shape will be transformed.
     5.The hysteretic curves of the columns under lateral low reversed cyclic toads are plump and there is no obvious pinch, and this shows that the solid multibarrel tube-confined concrete columns(CHS inner and SHS outer)possess well capacity of energy dissipation and well deformation property of plasticity The skeleton curves are found similar to the force-displacement curves under monotone loading.
引文
[1]钟善桐.钢管混凝土结构[M].北京:清华大学出版社,2003.
    [2]韩林海.钢管混凝土结构[M].北京:科学出版社,2004.
    [3]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003.
    [4]钟善桐.钢管混凝士在我国高层建筑中的应用[J].哈尔滨建筑大学学报,1997,30(5):4-8.
    [5]蔡绍怀.钢管混凝土结构的计算与应用[M].北京:中国建筑工业出版社,1989.
    [6]韩林海.钢管混凝土结构的特点及发展[J].工业建筑,1998(10):1-5.
    [7]钟善桐.高层钢管混凝土结构[M].哈尔滨:黑龙江省科学技术出版社,1999.
    [8]韩林海.钢管混凝土结构新进展[J].哈尔滨建筑大学学报增刊(中国钢协钢-混凝土组合结构协会第八次年会论文集),2001,34(9):49-53.
    [9]韩林海.钢管混凝土结构的理论与实践.工程力学增刊,2001,1(10):226-251.
    [10]韩林海.钢管混凝土耐火性能的特点探讨[J].哈尔滨建筑大学学报,1997,(5):58-63.
    [11]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [12]赵均海,顾强,马淑芳.钢管混凝土承载力的研究[J].西北建筑工程学院学报,2001,18(2):1-4.
    [13]赵均海,顾强,马淑芳.基于双剪统一强度理论的轴心受压钢管混凝土承载力的研究[J].工程力学,2002,19(2):32-35.
    [14]王世伟.钢管混凝土结构的特点和研究应用现状[J].工程结构,2003,(10):39-42.
    [15]M.Wakabayashi.Recent Development and Research in Composite and Mixed Building Structures in Japan.Proceedings of the 4th ASCCS International Conference,Kosice,Slovakia,1994:237-242.
    [16]Eurocode 4.Design of composite steel and concrete structures,Partl.1:General rules and rules for building.DD ENV 1994-1-1.British Standards Institution,London W1A2BS,1994.
    [17]DIN 18806.Verbundkonstruktionen,Verbundstdtzen,NABau im Din.Beuth Verlag Gmbh,Berlin 30.1997.
    [18]ACI Committee 318.Building code requirements for reinforced concrete and commentary (ACI318R-95).American Concrete Institute,Detroit,1995.
    [19]AISC.Load and resistance factor design specification for structural steel buildings.American Institute of Steel Construction,Chicago,U.S.A,Sep,1999.
    [20]Load and resistance factor design specification for steel hollow structural sections.American Institute of Steel Construction,Chicago,U.S.A,Oct.,2000.
    [21]Fukumoto.Y.Structural stability design-steel and composite structures.Pergamon,Elsevier Science,1995.
    [22]Wakabayashi M.Recent development and research in composite and mixed building structures in Japan.Proceedings of the 4th ASCCS International Conference,kosice,Slovakia,1994:237-242.
    [23]Architectural Institute of Japan(AIJ).Recommendations for design and construction of concrete filled steel tubular structures,Oct.,1997.
    [24]O'Shea M D,Bridge R Q.Tests on circular thin-walled steel tubes filled with medium and high strength concrete.Department of Civil Engineering Research Report No.R755,the University of Sydney,Sydney,Australia,1997.
    [25]O'Shea M D,Bridge R Q.Tests on circular thin-walled steel tubes filled with very high strength concrete.Department of Civil Ensineering Research Report No.R754,the University of Sydney,Sydney,Australia,1997.
    [26]JCJ01-89,钢管混凝土结构设计与施工规程[S].上海:同济大学出版社,1989.
    [27]中国工程建设标准化协会标准.CECS28:90,钢管凝土结构设计与施工规程[S].北京:中国计划出版社,1992.
    [28]中华人民共和国经济贸易委员会.DL/T 5085-1999,钢-混凝土组合结构设计规程[S].北京:中国电力出版社,1999.
    [29]国家军用标准.GJB4142-2000,战时军港抢修早强型组合结构技术规程[S].解放军总后勤部,2001.
    [30]中国工程建设标准化协会标准.CECS159:2004,矩形钢管混凝土结构技术规程[S].北京:中国计划出版社,2004.
    [31]陶忠,于清.新型组合结构柱-试验、理论与方法[M].北京:科学出版社,2006.
    [32]蔡绍怀,焦占拴.复式钢管混凝土柱的基本性能和承载力计算[J].建筑结构学报,1997,18(6):20-25.
    [33]Wei S,Mau S T,Vipulananadan C,etal.Performance of new sandwich tube under axial loading:Experiment[J].Journal of Structual Engineering,1995,121(12):1806-1814.
    [34]Wei S,Mau S T,Vipulananadan C,etal.Performance of new sandwich tube under loading:Analysis[J].Journal of Structual Engineering,1995,121(12):1815-1821.
    [35]Xiao-Ling Zhao,Raphael H.Grzebieta,Monhamed Elchalakani.Tests of concrete-filled double skin circular hollow sections.Proceedings of the First International Conference on Steel and Composite Structures,Pusan,Korea,2001:283-290.
    [36]Zhao X L,Grzebieta R.Strength and ductility of concrete filled double skin(SHS inner and SHS outer)tubes[J].Thin-Walled Structures,2002,40(2):199-213.
    [37]Lin M L,Tsai K C.Behavior of double-skinned composite steel tubular columns subjected to combined axial and flexural loads.First International Conference on Steel &Composite Structures,Pusan,Korea,2001:1145-1152.
    [38]Zhao X L,Han B,Grzebieta R H.Plastic mechanism analysis of concrete-filled double skin(SHS inner and SHS outer)stub columns[J].Thin-Walled Structures,2002,40(10):815-833.
    [39]Uenaka K,Hayami M,Kitoh H,etal.Experimental study on concrete-filled double tubular steel columns under axial loading[J].Advances in Structure,2003:877-882.
    [40]Elchalakani M,Zhao X L,Grzebieta R.Tests on concrete-filled double-skin(CHS outer and SHS inner)composite short columns under axial compression[J].Thin-Walled Structures,2002,40(5):415-441.
    [41]陶忠,韩林海,黄宏.方中空夹层钢管混凝土偏心受压柱力学性能的研究[J].土木工程学报,2003,36(2):33-40.
    [42]陶忠,韩林海,郑永乾.方中空夹层钢管混凝土纯弯力学性能研究[J].工业建筑,2004,34(1):6-9.
    [43]陶忠,韩林海,黄宏.圆中空夹层钢管混凝土柱力学性能研究[J].土木工程学报,2004,37(10):41-51.
    [44]赵均海,郭红香,魏雪英.圆中空夹层钢管混凝土承载力研究[J].建筑科学与工程学报,2005,22(1):50-54.
    [45]赵均海,魏锦,张兆强.圆中空夹层钢管混凝土柱极限承载力研究[J].建筑技术,2006,37(增刊):175-176.
    [46]尧国皇,韩林海,黄宏.初应力对中空夹层钢管混凝土构件承载力的影响[J].哈尔 滨工业大学学报增刊,2005,37:116-119.
    [47]李永进,杨有福,韩林海.圆中空夹层钢管混凝土柱在长期荷载作用下的力学性能研究[J].哈尔滨工业大学学报增刊,2005,37:1189-192.
    [48]夏桂云,曾庆元,李传习,等.复式空心钢管混凝土柱抗压刚度[J].长安大学学报(自然科学版),2003,23(4):41-45.
    [49]徐汉勇,杨俊杰.圆中空夹层钢管混凝土柱的受箍作用分析[J].浙江工业大学学报,2006,34(1):11-14.
    [50]谢力,陈梦成,张安哥.矩形中空夹层钢管混凝土短柱力学性能的数值分析[J].华东交通大学学报,2005,22(1):4-6.
    [51]黄宏.方中空夹层钢管砼轴压力学性能的理论分析[J].华东交通大学学报,2003,20(2):19-21.
    [52]徐汉勇.八边形中空夹层钢管混凝土轴压短柱力学性能的研究[D].杭州:浙江工业大学,2006.
    [53]王志浩,成戎.复合方钢管混凝土短柱的轴压承载力[J].清华大学学报(自然科学版),2005,45(12):1596-1612.
    [54]Yagishita,Kitoh H,Sugimoto M,etal.Double-skin composite tubular Columns subjected to cyclic horizontal force and constant axial force[J].Proceedings of 6th International Conference on Steel and Concrete Composite Structures,2000:497-503.
    [55]蔡克铨,林育详,林敏郎.中空双钢管混凝土柱与基础结合之试验行为[R].台北:第二届海峡两岸及香港钢结构技术交流会,2001:77-88.
    [515]蔡克铨,林敏郎.双钢管填充混凝土中空桥柱耐震行为(一)[R].台北:财团法人中兴工程顾问社专案研究计划期中报告,2001.
    [57]黄宏,韩林海,陶忠.方中空夹层钢管混凝土柱滞回性能研究[J].建筑结构学报,2006,27(2):64-74.
    [58]张春梅,阴毅,周云,双钢管高强混凝土柱轴压承载力的试验研究[J].广州大学学报(自然科学版),2004,3(1):61-65.
    [59]张春梅,阴毅,周云.影响钢管混凝土柱轴压承载力的因素分析[J].工业建筑,2004,34(10):66-68.
    [60]张春梅,周云,阴毅.钢-混凝土组合柱轴压性能的试验对比研究[J].中山大学学报(自然科学版),2004,43(2):46-49.
    [61]裴万吉.复式钢管混凝土柱力学性能分析[D].西安:长安大学,2005.
    [62]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能[A].清华大学抗震抗爆工程研究室,科学研究报告集[C].北京:清华大学出版社,1981.
    [63]黄晓宇.方钢管混凝土柱抗震性能试验研究[D].天津:天津大学,2004.
    [64]俞茂宏.强度理论新体系[M].西安:西安交通大学出版社,1992.
    [65]俞茂宏,何丽南,宋凌宇.双剪应力强度理论及其推广[J].中国科学(A),1985,28(12):1113-1120.
    [66]韩邦飞,夏建国,赵建明.同种双钢管混凝土轴心受压构件的承载力的研究[J].石家庄铁道学院学报,1995,8(3):75-80.
    [67]赵均海.强度理论及其工程应用[M].北京:科学出版社,2003.
    [68]李小伟,赵均海,朱铁栋,等.方钢管混凝土轴压短柱的力学性能[J].中国公路学报,2006,19(4):77-81.
    [69]KENJI S,HIROYUKI N,SHOSUKE M,etal.Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns[J].Journal of Structural Engineering,2004,130(2):180-188.
    [70]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学,1995.
    [71]张洪武,关振群,李云鹏,等.有限元分析与CAE技术基础[M].北京:清华大学出版社,2004.
    [72]易日.使用ANSYS6.1进行结构力学分析[M].北京:北京大学出版社,2002.
    [73]赵均海,王敏强,魏雪英.高等有限元法[M].武汉:武汉理工大学出版社,2004.
    [74]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1998.
    [75]白云.FORTRAN90程序设计[M].上海:华东理工大学出版社,2003.
    [76]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [77]Neogi.P.k,Sen.J.R.Concrete-Filled Tubular Steel Columns under Eccentric Loading[J].The Structural Engineering,1969,47(5):56-64.
    [78]中华人民共和国国家标准.GB50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [79]中华人民共和国行业标准.JGJ101-96,建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997.
    [80]朱伯龙,懂振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社,1985.
    [81]滕智明,邹离湘.反复荷载下钢筋混凝土构件非线性有限元分析[M].土木工程学报,1996,29(2):19-27.
    [82]朱伯龙.结构抗震试验[M].北京:地震出版社,1989.
    [83]李杰.地震工程学导论[M].北京:地震出版社,1992.
    [84]王松涛,曹资.现代抗震设计方法[M].北京:中国建筑工业出版社,1997.
    [85]沈在康.混凝土结构试验方法新标准应用评讲[M].北京:中国建筑工业出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700