用户名: 密码: 验证码:
复杂机械产品性能驱动设计方法及其典型应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着以大型装备为代表的现代机械产品的复杂性日益增加,其设计开发过程向着智能化、快速化和集成化等方向发展,对产品设计理论与方法提出了新的期望与要求,因此设计领域需要有更先进的现代设计理论与方法体系来统帅产品的整个设计过程,并在全局上指导设计高质高效地进行。为此,本文在对相关领域的国内外学术研究现状及软件企业产品进行全面综述的基础上,开展了以性能驱动为特征的复杂机械产品现代设计理论的研究与探索,主要包括以下几个方面:
     1.提出了性能驱动设计方法的总体架构,分析了复杂机械产品的功能、性能和质量等设计三要素,论述了性能在现代产品设计流程中的核心地位,并分别从需求、特征和参数三个层面开展了多角度研究,阐述了性能指标体系架构及其对应的性能模型等概念及其基本组成,从而完善了性能驱动设计方法的基础理论体系研究。
     2.结合QFD和数字样机等理论方法,提出了以功能需求引导的、功构映射为主体的横向设计过程与以性能需求驱动的、性能仿真为核心的纵向分析过程相结合的性能驱动设计方法的基本流程,细化了性能驱动设计方法的总体架构。
     3.定义了性能驱动设计流程的基本元素——性能分析构件,系统分析了相关的基本流程和模块。结合QFD技术,提出了性能质量屋的组成和基本流程,及其在计算过程中存在的问题;深入研究了性能分析模块中的性能模型的建立、性能分析的实施以及设计方案的决策等基本环节,并构建了性能分析矩阵和方案选择矩阵等关键决策工具,以辅助参数级和方案级的设计权衡与决策,从而完善了性能驱动设计方法的框架和流程。
     4.针对性能驱动设计流程中信息的不确定性、耦合性及其在转换过程中的特点,研究了性能驱动设计过程的关键使能技术,主要包括:基于QFD、粗糙集和灰关联分析技术的性能指标重要度的确定方法,以充分考虑客户的主观感受和专家的经验;MDO算法中多子系统二级协调策略、数字实验和敏感性分析等技术相结合的备选设计方案定义方法,以实现产品整体性能最优;粗糙集与灰关联分析技术相结合的最终设计方案决策方法,用来同时考虑定量和定性指标的影响;基于特征映射机理的“性能特征—结构特征—工艺特征”顺序映射机制,从而提高加工的效率和精度。
     在上述研究的基础上,本文以水电机组为典型的复杂机械产品,对其整机性能进行了分析定义,构建了机组关键部件——推力轴承的性能驱动设计基本流程,实现了性能驱动设计方法在水电机组及其关键部件产品设计中的应用,从而验证性能驱动设计流程及其使能技术的可行性和实用性。同时,结合齿轮倒角加工性能计算分析问题,从性能特征映射的角度进一步验证了性能驱动设计方法的技术可行性。
With the increase in complexity of modern mechanical product as represented by large-scale equipment, the design and development process is developing to intelligentized, high-efficiency and integrated, which put forward the new requirement and hopeness to the theory and method of product design. Therefore, more advanced modern design theory and method will be required to drive the wholl design process, and guide high-quality and high-efficiency design process as a whole. The research status at home and abroad and the product of software company has comprehensive reviewed for the correlative domains with this research, and carry out the research and exploration on the method of performance driving design for complex mechanical product. The key research contents were determined as follows through the present problems and future development trends.
     1. The general architecture of performance driving design method was put forward, and design elements, such as function, performance and quality, of complex mechanical product was analyzed respectively. And then, the core position of performance in the modern product design flow was discussed, and the definition of performance was studied from three aspects, such as requirement, feature and parameter. Finally, the index system and performance model was expounded in detail.
     2. Based on the technology of QFD and digital prototyping, the basic flow of performance driving design method was proposed. It is composed with the transverse design process which is driven by function requirement and focuses on function structural mapping, and the longitudinal analysis process which is driven by performance requirement makes performance simulation as the core. This flow describes the general architecture of performance driving design method in detail.
     3. The performance analysis component is used as the basic element of the performance driving design method flow was defined. The related basic flow and module was analysis systematically, and the elementary steps were studied intensively, such as establishment of the performance model, construction of analysis matrix, scheme determination, and so on. The key decision-making aided tools were proposed, such as performance analysis matrix and scheme selection matrix, which perfect the frame and flow of performance driving design method.
     4. According to the uncertainty, coupling and the transforming characteristics of performance driving design process, a series of key enabling technology was studied deeply. Firstly, the method of performance index weight determination based on the technology of QFD, rough set, and gray relation analysis, in order to pay attention to the subjective feeling of customs and the experience of experts. Secondly, the method of design alternatives definition combined with two coordinated strategies of multiple subsystems in MDO, digital experiment and sensitivity analysis technology so as to achieve the whole optimization of product performance was set up. Thirdly, final design scheme method composed of rough set and gray relation analysis was found, in order to consider quantitative index and qualitative index simultaneously. Finally, a feature mapping mechanism from performance feature, structural feature to process feature based on feature mapping theory was carried out to improve machining efficiency and accuracy.
     As a typical application example, the overall performance of bulb-tubular hydraulic generator which typically represents complex mechanical product has been conceptually proposed after analyzing its basic structural characteristics. The basic performance driving design flow of thrust bearing which is the key part in the hydraulic generator was firstly constructed, in order to realize the practical application of the method in hydraulic generator and its key parts design. It is successfully verification that the method of performance driving design in complex mechanical product development own practicability and technical feasibility. Furthermore, according to the problem of gear chamfering manufacturing performance calculation and analysis, the technical feasibility of this method was further verified from performance feature mapping.
引文
[1]中国科学技术协会主编.机械工程学科发展报告(机械制造)[M].北京:中国科学技术出版社,2009.
    [2]闻邦椿.产品全功能与全性能的综合设计[M].北京:机械工业出版社,2008.
    [3]谢友柏.现代设计理论和方法的研究[J].机械工程学报,2004,40(4):1-9.
    [4] Llewelyn A L. Review of CAD/CAM [J]. Computer-Aided Design, 1989, 21(5):297-308.
    [5]熊光楞,郭斌,陈晓波等.协同仿真与虚拟样机技术[M].北京:清华大学出版社,2004.
    [6] Hamid R P. Concurrent Design of Products, Manufacturing, Processes andSystems [M]. Australia, Amsterdam: Gordon and Breach Science Publishers,1998.
    [7]苏春.数字化设计与制造[M],北京:机械工业出版社, 2006.
    [8] Jami J Shah, Susan Finger, Stephen Lu. ED2030: Strategic Plan for EngineeringDesign: Final Report [R]. NSF Workshop on Engineering Design in Year 2030,March 26-29th, 2004.
    [9]谢友柏.现代设计理论中的若干基本概念[J].机械工程学报, 2007, 43(11):7-16.
    [10] Clark K B. The Interaction of Design Hierarchies and Market Concepts inTechnological Evolution [J]. Research Policy, 1985, 14(5): 235-251.
    [11]Mike Hobday. Product Complexity, Innovation and Industrial Organization [J].Research Policy, 1998, (26):689-710.
    [12]Hansen K L, Rush H. Hotspots in Complex Product System: Emerging Issue inInnovation Management [J]. Technovation, 1998, (18):555-561.
    [13] Andrew Davies, Tim Brady. Policies for a Complex Product System [J]. Futures,1997, 30(4):293-304.
    [14]karl T U, Steven D E. Product Design and Development [M]. Boston:McGraw-Hill International Editions, 2000.
    [15]Stefano Brusoni, Andrea Prencipe, Keith Pavitt. Knowledge Specialization andthe Boundaries of the Firms [M]. CoPS Publication, 2000.
    [16]李伯虎,柴旭东.复杂产品虚拟样机工程[J],计算机集成制造系统,2002,8(9): 678-683.
    [17]李伯虎,柴旭东,熊光楞等.复杂产品虚拟样机工程的研究与初步实践[J],系统仿真学报,2002, 14(3): 336-342.
    [18]蔡兰,冠子明,刘会霞.机械工程概论[M].武汉:武汉理工大学出版社,2006.
    [19]George E, Dieter. Engineering Design 3rd Edition [M]. Boston: McGraw-HillInternational Editions, 2000.
    [20] Maher M L, Poon J, Boulanger S. Formalising Design Exploration asCo-evolution: a Combined Gene Approach [M]. In: Gero J S and Sudweeks Feds.Advances in Formal Design Methods for CAD, London: Chapman and Hall,1996.
    [21]Poon J, Maher M L. Co-evolution and Emergence in Design [J]. ArtificialIntelligence in Engineering, 1997, 11(3): 319-327.
    [22]肖人彬,刘勇,梅顺齐等.基于多粒度共进化功能推理的机械运动方案设计新方法[J].机械工程学报, 2005, 41(12): 108-117.
    [23]谭建荣,冯毅雄.设计知识建模、演化与应用[M].北京:国防工业出版社,2007.
    [24]谢友柏.现代设计与知识获取[J].中国机械工程,1996,7(6):36-41.
    [25]肖仁彬,陶振武,刘勇.智能设计原理与技术[M],北京:科学出版社,2006
    [26]Pahl G, Beitz W. Engineering Design [M]. London: The Design Council, 1984.
    [27] Richard M Wood, Steven X S Bauer. A Discussion of Knowledge Based Design [J]. AIAA-98-4944.
    [28]邓家褆,韩晓建,曾硝等著.产品概念设计——理论、方法与技京:机械工业出版社,2002.
    [29]吴宝贵.基于仿真分析的复杂机械产品多学科设计优化方法研究[D].大连理工大学,2008.
    [30]单鸿波.现代产品设计理论的相关研究现状综述[J].东北大学学报(自然科学版),2006,32(5):118-124.
    [31]魏喆.性能驱动的复杂机电产品设计理论和方法及其在大型注塑装备中的应用[D].浙江大学,2009.
    [32]檀润华.发明问题解决理论[M].北京:科学出版社,2004.
    [33]Pahl G, Beitz W. Engineering Design: A Systematic Approach [M]. Germany:Springer-Verlag, 1988.
    [34]Pahl G, Beitz W. Engineering Design 2th [M]. London: Springer, 2001.
    [35]Suh N P. The Principles of Design [M]. New York: Oxford University Press,1990.
    [36] Suh N P. Axiomatic Design as a Basis for Universal Design Theory, in UniversalDesign Theory [J], Aachen: Shaker Verlag, 1998:3-24.
    [37]Suh N P. Axiomatic Design: Advances and Applications [M]. New York: OxfordUniversity Press, 2001.
    [38] Altshuller G S. And Suddenly the Inventor Appeared [M]. Technical InnovationCenter, INC., Worcester, 1996.
    [39] Altshuller G S. The Innovation Algorithm, TRIZ, Systematic Innovation andTechnical Creativity [M]. Technical Innovation Center, INC., Worcester, 1999.
    [40] Yoshikawa H. General Design Theory and a CAD System [C]. Proceedings of theIFIP Working Group Working Conference on Man-machine Communication inCAD/CAM, 1980: 35-53.
    [41] Yoshikawa H, Warman E A. Design Theory for CAD [C]. Proceedings of the IFIPWG, Tokyo, Japan, 1-3 October, 1985.
    [42] Yoshikawa H, Gossard D. Intetelligent CAD [C]. Proceedings of the IFIPTC5/WG, Boston, MA, USA, 6-8 October, 1987.
    [43] Yoshikawa H, Holden T. Intetelligent CAD II [C]. Proceedings of the IFIPTC5/WG 5.2 Workshop on Intelligent CAD, 1988. North-Ho Hand, 1990.
    [44]Tomiyama T. General Design Theory and its Extension and Application [J].Universal Design Theory, Shaker Verlag, Aachen. 1998: 25-44.
    [45]Takeda H, Hamada S, Tomiyama T, et al. A Cognitive Approach to the Analysisof Design Process [C]. Proceedings of the ASME International Design Theoryand Methodology Conference, 1990:153-160.
    [46]Grabowski H. Universal Design Theory: Preface [M]. Aachen: Shaker VeringGmbH, 1998.
    [47] Grabowski H, Lossack R S, Ek-Mejbri E F. Towards a Universal Design Theory[J]. Integration of Process Knowledge into Design Support Systems,1999(l):47-56.
    [48] Russell S Peak, Robert E Fulton. Integrating Engineering Design and AnalysisUsing a MuLti-Representation Approach [J]. Engineering with Computers, 1998,14(2):93-114.
    [49] Gregory Mocko, Richard Malak, Christiaan Paredis, et al. A KnowledgeRepository for Behavioral Models in Engineering Design [C]. Proceedings ofDETC'04: Computer and Information Science in Engineering Conference, SaltLake City, Utah, 2004.
    [50]Gero J, Qian L. A Design Support System Using Analogy [C]. Proceedings of theSecond International Conference on AI in Design, Kluwer Academic Publishers,1992.
    [51]Lutz R R. Extending the Product Family Approach to Support Safe Reuse [J].Journal of Systems and Software, 2000, 53(3):207-217.
    [52]Taguchi G, Wu Y. Taguchi Methods: Case Studies from the U.S. and Europe(Quality Engineering, Vol 6) [M]. Michigan: Amer Supplier Inst, 1993.
    [53] Taguchi G, Rafanelli AJ. Taguchi on robust technology development: bringingquality engineering upstream [J]. New York: ASME Press, 1993.
    [54] YOJI A. New Product Development and Quality Assurance-Quality DeploymentSystem [J]. Standardization and Quality Control, 1972, 25(2): 7-14.
    [55]YOJI A. Quality Function Deployment: Integrating Customer Requirements intoProduct Design [M]. London: Massachusetts Production Press, 1990.
    [56]谢友柏.产品的性能特征与现代设计[J].中国机械工程,2000,11(1-2):26-32.
    [57]冯毅雄.产品进化设计方法与配置产品定制生产技术研究[D],浙江大学,2004
    [58]李中凯.产品族可重构设计理论与方法及其在大型空分设备中的应用研究[D].浙江大学,2009.
    [59]马辉.产品设计知识建模与演化关键技术研究[D].浙江大学,2006.
    [60]谭建荣,刘振宇.数字样机关键技术与产品应用[M].北京:机械工业出版社,2007.
    [61]傅云.复杂产品数字样机多性能耦合分析与仿真的若干关键技术研究及其应用[D].浙江大学,2008.
    [62]魏喆,谭建荣,冯毅雄.广义性能驱动的机械产品方案设计方法[J].机械工程学报,2008,44(5):1-10.
    [63]闻邦椿,张国忠,柳洪义.面向产品广义质量的综合设计理论与方法[M].北京:科学出版社,2006
    [64]李小彭.面向产品广义质量的“1+3+X”综合设计法及其应用研究[D].东北大学,2008.
    [65]冯培恩,邱清盈,潘双夏等.机械产品的广义优化设计进程研究[J].中国科学(E),1999,29(4):338-346.
    [66]冯培恩,邱清盈,潘双夏等.机械广义优化设计的理论框架[J].中国机械工程,2000,11(1-2):126-129.
    [67]查建中.智能工程[M].北京:机械工业出版社,1992.
    [68]周济,查建中,肖人彬.智能设计[M].北京:高等教育出版社,1998.
    [69]邸彦强,李伯虎,柴旭东等.多学科虚拟样机协同建模与仿真平台及其关键技术研究[J].计算机集成制造系统,2005,11(7):901-908
    [70] Song Xiao, Li Bohu, Chai Xudong. Research on Key Technologies of Complex Product Virtual Prototype Lifecycle Management (CPVPLM)[J]. SimulationModeling Practice and Theory, 2008, (16):387-398.
    [71]檀润华.创新设计—TRIZ:发明问题解决理论[M].北京:机械工业出版社,2002.
    [72]檀润华,马建红,张换高等.技术进化驱动的产品概念设计宏观过程模型[J].中国机械工程,2003,14(11):959-963.
    [73]研发流程优化-协同产品研发和制造流程(CPPD)[EB/OL].http://www.t-solu tiongroup.com.cn/CP-VTD/flow/20081112-3173385.shtml, 2008.
    [74]精益研发-精益方法学[EB/OL].http://www.peraglobal.com.cn/ch/pera/pera m-20090223-093753.html, 2008.
    [75]DS SIMULIA多学科/多目标/稳健设计优化平台[EB/OL].http://www.sightna.com/ProductCenter2.html, 2008.
    [76]MSC SimEnterprise实现更多更广仿真[EB/OL].http://www.mscsoftware. com.cn/CoreProducts/Detail.asp?xgid=93, 2008.
    [77]LMS Virtual.Lab简介[EB/OL]. http://www.lmschina.com/simulation/lmsvirtuallab, 2008.
    [78]Kalay Y E. Performance-based Design [J]. Automation in Construction, 1999,8(3):395-409.
    [79]Ullman D G.The Mechanical Design Process [M]. New York: McGraw-Hill,2002.
    [80]张根保,何桢,刘英.质量管理与可靠性[M].北京:中国科学技术出版社,2006.
    [81] Miles L D. Techniques of Value Analysis Engineering [M]. New York: Me Graw-Hill, 1972.
    [82]赵有珍,李健,邓家,产品功能结构建模研究[J],计算机应用研究,2003,(11): 32-38.
    [83]Koller R.机械设计方法学[M].北京:科学出版社, 1990.
    [84]Hubka V.工程设计原理[M].北京:机械工业出版社,1989.
    [85]Chakrabarti A, Bligh T P. An Approach to Functional Synthesis of MechanicalDesign Concepts: Theory, Applications, and Emerging Research Issues [J].Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 1996,10(4):313-331.
    [86]Tomiyama T, Umeda Y, Yoshikawa H. A CAD for Functional Design [C]. Annalsof the CIRP, 1993, 42: 143-146.
    [87] Umeda Y, Ishii M, etc. Supporting Conceptual Design Based on theFunction-behavior-state Modular [J]. Artificial Intelligence for EngineeringDesign, Analysis and Manufacturing, 1996, 10(4):275-288.
    [88] Qian L, Gero J S. Function-behavior-structure Path and their Role inAnalogy-based Design [J]. Artificial Intelligence for Engineering Design,Analysis and Manufacturing, 1996, 10(4):289-312.
    [89] Henderson M R, Taylor L E. A Meta-model for Mechanical Products Based Uponthe Mechanical Design Process [J]. Research in Engineering Design, 1993,5:140-160.
    [90] Welch R V, Dixon J R. Conceptual Design of Mechanic [J]. Design Theory andMethodology, 1991, 31:61-68.
    [91]刘刚,朱爱戴,丘大谋等.基于性能驱动的设计过程Petri网模型[J]机床与液压,2002,(5):8-10.
    [92]赵艾青,凌卫青,谢友柏.支持性能驱动设计的产品性能表达[J].计算机辅助设计与图形学学报,2002,14(11):1020-1025.
    [93]凌卫青,耿海鹏.谢友柏.产品性能因素描述架构的建立[J].计算机辅助设计与图形学学报,2003,15(2):144-149.
    [94]戴旭东,谢友柏.产品性能特征建模及以性能特征驱动的产品现代设计模式[J].计算机工程于应用,2003,(3):43-46.
    [95]闫学峰,张连洪.复杂制造装备质量、性能、性能分析及其模型建立[J].型台职业技术学院学报,2009,26(1):34-36.
    [96] Stone R B, Wood K L. Development of a Functional Basis for Design [J]. Journal of Mechanical Design, 2000, 122(4):359-370.
    [97]陈香香.面向功能的概念设计方法与应用[D].河北工业大学,2006
    [98]钟毅芳,陈柏鸿,王周宏著.多学科综合优化设计原理与方法[M].武昌:华中科技大学出版社,2007.
    [99]刘德顺,岳文辉,杜小平.不确定性分析与稳健设计的研究进展[J],中国机械工程,2006,17(17):1834-1841.
    [100]宋慧军,林志航.产品概念设计方案生成模型[J].计算机集成制造系统,2002,8(5):342-346.
    [101]Henderson M R, et al. Graph-base Feature Extraction [D]. Arizona StateUniversity, USA, 1990.
    [102]Pratt M J, Wilson P R. Requirements for the Support of From Feature in a SolidModeling System [R]. Report CAM-1, Arlington, TX, USA, 1995.
    [103]Joahson R H, Dimensioining and To leranc ing-final Report [R]. Report CAM-1,TX, USA, 1984.
    [104]Herbert P J, et al. Feature Recognition with a Truth Maintained Process PlanningSystem [J]. Computer Integrated Manufacturing, 1990, 3(2): 121-132.
    [105]童秉枢.现代CAD技术[M].北京:清华大学出版社,2000:39-47.
    [106]徐新胜,方水良,顾新建.面向定制产品的数控程序设计[J].计算机集成制造系统,2006,12(12):1939-1945.
    [107]刘兴堂,梁炳成,刘力等.复杂系统建模理论、方法与技术[M].北京:科学出版社,2008.
    [108]American Supplier Institute. Quality Function Deployment (Sevice QFD): 3-Dayworkshop [M]. Dearborn, MI: ASI Press, 1994.
    [109]Akao Y. Quality Function Deployment: Integrating Customer Requirements intoProduct Design [M]. Cambridge: Productivity Press, 1990.
    [110]Day R G. Quality Function Deployment: Linking a Company with its Customers[M]. Milwaukee, WI: ASQC Quality Press, 1993.
    [111]李延来.基于粗糙集的产品规划质量屋构建研究[D].西南交通大学,2006.
    [112]李延来,唐加福,姚建明等.质量屋构建的研究进展[J].机械工程学报,2009,45(3):57-70.
    [113]姜亚楠,王和平.基于灵敏度分析的飞行器稳健设计优化方法[J].航空计算技术,2009,39(5):48-51.
    [114]颜力,陈小前,王振国.飞行器多学科设计优化中的灵敏度分析方法研究[J].航空计算技术,2005,35(1):1-5.
    [115]竹振旭,董海军,韩林山等.基于灵敏度分析方法的摆线针轮系统传动精度研究[J].机械科学与技术,2008,27(5):644-648.
    [116]王学军,宫照民,高建等.基于大型旋转机械转子系统设计的灵敏度分析[J].机械制造,2008,46(6):1-3
    [117]邓聚龙.灰理论基础[M].武汉:华中理工大学出版社,2002.
    [118]苗守谦,李国道.粗糙集理论、算法与应用[M].北京:清华大学出版社,2008.
    [119]Azarm S, et al. Optimality and Constrained Derivatives in Two-Level DesignOptimization [J]. Journal of Mechanical Design, 1990, 112(12):563-568.
    [120]Kirsch U. Two-level Optimization of Prestressed Structures [J]. EngineeringStructures, 1997, 19(4):309-31.
    [121]陈柏鸿,刘继红,钟毅芳等.多领域优化设计中耦合因素的一种协调方法[J].机械科学与技术,2000,19(6):872-876.
    [122]陈柏鸿,肖仁彬,刘继红等.复杂产品协同优化设计中耦合因素的研究[J].机械工程学报,2001,37(1):19-23.
    [123]胡寿松,何亚群.粗糙决策理论与应用[M].北京:北京航空航天大学出版社,2006.
    [124]Pawlak Z. Rough Sets [J]. International Journal of Computer and Information Science, 1982, ll(2):341-356.
    [125]肖新平,宋中民,李峰.灰技术基础及其应用[M].北京:科学出版社,2005
    [126]Deng J L. Introduction to grey system theory [J]. Journal of Grey System, 1989,(1):1-24
    [127]刘树林,邱菀花.多属性决策基础理论研究[J].系统工程理论与实践,1998,20(1):38-43
    [128]Zhai L Y, Khoo L P, Zhong Z W. A Rough Set Enhanced Fuzzy Approach to Quality Fuction Development [J]. International Journal of Advanced Manufacturing Technology, 2007, 37(5-6):613-624.
    [129]傅立.灰色系统理论及其应用[M].北京:科学技术文献出版社,1992.
    [130]党耀国,刘思峰,刘斌等.多指标区间数关联决策模型的研究[J].南京航空航天大学学报,2004,36(3):403-406
    [131]贾平.基于粗糙集理论的知识发现方法研究[D].浙江大学,2008.
    [132]赵选民.试验设计方法[M].北京:科学出版社,2006.
    [133]王正伟.流体机械基础[M].北京:清华大学出版社,2006.
    [134]白延年.水电机组设计与计算[M].北京:机械工业出版社,1982.
    [135]于波,肖惠民.水轮机原理与运行[M].北京:中国电力出版社,2008.
    [136]宋文武.水力机械及工程设计[M].重庆:重庆大学出版社,2005
    [137]陶红,姜剑锋.大中型灯泡贯流式水轮机结构简介[J].电站系统工程,2003,19(6):36-37.
    [138]马锐,刘宇华.洪江电站灯泡贯流式水轮发电机的结构设计[J].黑龙江电力,2003,19(2):110-115.
    [139]王君利,玛.弗郎索瓦.尼那灯泡贯流式水轮机选型与结构设计[J].Hydropower,2004.
    [140]武中德,王黎钦,曲大庄等.大型水轮发电机推力轴承热弹流润滑性能分析[J].摩擦学学报,2001,21(2):147-150.
    [141]Kim J, Park S. Simulation of the Shift Force for a Manual Transmission [C]. Proceedings of the Institution of Mechanical Engineers. Part D: Journal of Automobile Engineering, 2002, 217(7):573-582.
    [142]Szadkowski A. Shiftability and Shift Quality Issues in Clutch-transmissionSystem [J]. SAE Transactions, 1991, 100(2):618-628.
    [143]Nyamagoudar, Basavaraj. Chamfering and Deburring External Parallel Axis Gears [J]. Gear Technology, 1996, 13(6):25-31.
    [144]王望予,张建文.汽车设计[M].北京:机械工业出版社,2006.
    [145]李庆扬.非线性方程组的数值法[M].北京:科学出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700