用户名: 密码: 验证码:
大气波导中电磁波传播及反演关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文就海上大气波导中电磁波传播及反演问题中的有关关键技术开展了系统的研究。重点研究了海面电磁散射模型和大气波导的传播模型,利用学习算法研究了典型大气波导(蒸发波导和表面波导)中的反演问题,对GPS信号的散射特性和传播特性及利用GPS信号反演大气波导进行了研究。论文主要工作如下:
     1.研究了粗糙(海)面电磁散射的小斜率近似方法和修正基尔霍夫近似方法。在极坐标系下推导了小斜率近似方法的散射系数计算公式。基于高斯介质粗糙面和粗糙海面,将得到的数值结果与实验测量数据和基尔霍夫近似方法计算结果进行了对比分析。同时还讨论了入射波频率、风速对海面电磁散射特性的影响。为了研究大入射角电磁散射问题及提取散射场信息,利用修正基尔霍夫近似方法分析了粗糙海面的电磁散射特性。
     2.研究了大气波导传播的抛物方程模型及其常见的窄角抛物方程和宽角抛物方程的推导,给出了抛物方程求解的方法及关键步骤。为验证抛物方程模型的准确性,将其数值模拟结果和实验数据、模理论结果以及AREPS的结果进行了对比。利用改进离散混合傅立叶方法研究了海面粗糙度对大气波导中电磁波传播的影响。
     3.基于抛物方程和麦克斯韦方程组推导了射线传播所满足的程函方程。利用一种便捷的射线追踪方法研究了典型的大气波导环境中(蒸发波导和表面波导)电磁波的超视距传播轨迹。将射线追踪方法的结果与抛物方程的改进离散混合傅立叶方法得到的传播损耗分布图、AREPS的结果进行了比较分析,验证该模型的准确性。讨论了天线位置与能否形成大气波导之间满足的关系。
     4.针对大气波导中传播损耗和折射率剖面与其影响因素之间存在的复杂非线性关系,利用神经网络和最小二乘支持向量机方法分别预测了大气波导环境中的电磁波传播损耗和折射率剖面。对于折射率剖面的反演,为了减少训练样本数量并且能体现一般性,利用拉丁超立方抽样方法对训练折射率参数进行抽样,并对表面波导的反演结果进行了统计分析。
     5.利用截止波长的概念分析了L波段GPS信号发生大气波导传播的可行性。基于修正基尔霍夫近似理论分析了GPS散射信号的极化和散射特性,并讨论了风速和入射角对极化率和双站散射系数的影响。研究了GPS信号大气波导传播的初始场,包括平面波初始场与本文提出的以GPS信号散射场作为初始场。利用抛物方程方法分析了蒸发波导中GPS信号的传播特性,讨论了蒸发波导高度和GPS仰角对其传播特性的影响。最后,利用GPS散射信号反演了蒸发波导折射率剖面。
In this dissertation, the key techniques related to electromagnetic wave propagation and inverse problem in the marine atmospheric duct are systematically investigated. Emphasis is put on studying the electromagnetic scattering model of rough sea surface and the forward propagation model of atmospheric duct, the inverse problem related to the typical atmospheric duct (evaporation duct and surface duct) is examined using the learning algorithm. The GPS signal scattering properties, propagation properties and the inversion of atmospheric duct using GPS are also studied. The main works are as follows:
     Firstly, the rough (sea) surface electromagnetic scattering theory is investigated, which includes the Small Slope Approximation (SSA) and modified Kirchhoff Approximation. The scattering coefficient of rough (sea) surface by the SSA is derived in the polar coordinate. Based on the Gaussian dielectric rough surface and rough sea surface, the numerical results are compared with the experimental data and those by Kirchhoff Approximation. In addition, the effects of incident wave frequency and wind speed on the electromagnetic scattering properties of rough sea surface are also investigated. To study the electromagnetic scattering of large incidence and extract the scattering field information, the electromagnetic scattering from rough sea surface is analyzed using the modified Kirchhoff Approximation.
     Secondly, the parabolic equation for atmospheric duct propagation and the derivation of the common used narrow-angle and wide-angle parabolic equation are investigated, and the key steps in solving parabolic equation are presented. To validate the accuracy of the parabolic equation for atmospheric duct propagation, the numerical simulations are compared with the experimental data, the results of Mode theory and the AREPS model. The Improved Discrete Mixed Fourier Transform (IDMFT) is used to analyze the influence of the sea surface roughness on the electromagnetic wave propagation in atmospheric duct.
     Thirdly, the Eikonal equation satisfied by the ray propagation is derived based on the parabolic equation and Maxwell's equations. A convenient Ray Tracing Approach is used to intuitively simulate the over-the-horizon propagation path in typical ducting environment (evaporation duct and surface duct). The ray tracing results are compared with the propagation loss distribution map of parabolic equation model rigorously solved with IDMFT and the AREPS. The relation between the antenna position and the formation of the atmospheric duct is discussed.
     Fourthly, according to the complex nonlinear relation among the propagation loss, the refractivity profile and its influence factor, the RBF Neural Network (RBFNN) and Least Square Support Vector Machine (LSSVM) are used to predict the propagation loss and refractivity profile in the atmospheric duct, respectively. To reduce the number of sampling and reflect the generality, the Latin hypercube sampling method is adopted to sample refractivity parameter, and the statistical analysis for the inversion results of surface duct are presented.
     Fifthly, the concept of cut-off wavelength is used to analyze the feasibility of GPS signal propagation in the atmospheric duct. The polarization and scattering properties of GPS scattering signal are discussed using the modified Kirchhoff Approximation, and the influence of wind speed and incident angle on the polarizability and bistatic scattering coefficient are investigated. In addition, the initial field of GPS, such as the initial field of plane wave and the GPS scattering field proposed in this work are investigated. The parabolic equation model is used to analyze the GPS signal propagation properties in the evaporation duct, and the influence of evaporation duct height and the elevation angle of GPS on the propagation properties are discussed in detail. Finally, the evaporation duct refractive index profile is inverted by the GPS scattering signal.
引文
[1]熊皓编.电磁波与空间环境.北京:电子工业出版社, 2004.
    [2]胡晓华,费建芳,张翔,等.气象条件对大气波导的影响.气象科学, 2007, 27(3): 349 -354.
    [3] Patterson W. Ducting Climatology Summary. SPAWAR Sys. Cent., San Diego, Calif., 1992.
    [4]蔺发军,刘成国,成思,等.海上大气波导的统计分析.电波科学学报, 2005, 20(1): 64-68.
    [5]姚展予,赵柏林,李万彪,等.大气波导特征分析及其对电磁波传播的影响.气象学报, 2000, 58(5): 606-616.
    [6]戎华,曲晓飞,高东华.大气波导对电子系统作战性能的影响.现代雷达, 2005, 27(2): 15- 18.
    [7] Sirkova I. A clear-air propagation prediction system: evaporation duct application Bulgarian Journal of Physics, 1998, 25(1): 181-187.
    [8] Sirkova I. and Mikhalev M. Parabolic-equation-based study of ducting effects on microwave propagation. Microwave and Optical Technology Letters, 2004, 42(5): 390-394.
    [9] Hitney H. V., Richter J. H., Pappert R. A., et al. Tropospheric radio propagation assessment. Proceedings of the IEEE, 1985, 73(2): 265-283.
    [10] Ko H. W., Sari J. W. and Skura J. P. Anomalous microwave propagation through atmospheric ducts. Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 1983, 4(1): 12-26.
    [11] Atkinson B. W. and Zhu M. Coastal effects on radar propagation in atmospheric ducting condicions. Meteorol. Appl, 2006, 13:53-62.
    [12] Craig K. H. and Levy M. F. Parabolic equation modelling of the effects of multipath and ducting on radar systems. IEE Proceedings, Part F: Radar and Signal Processing, 1991, 138(2): 153-162.
    [13] Brookner E., Ferraro E. and Ouderkirk G. D. Radar performance during propagation fades in the mid-Atlantic region. IEEE Transactions on Antennas and Propagation, 1998, 46(7):1056- 1063.
    [14] Zhao X. L., Huang J. Y. and Gong S. H. Modeling on multi-eigenpath channel in marine atmospheric duct. Radio science, 2009, 44(1): 1-5.
    [15]康士峰,葛德彪,罗贤云,等.抛物型波方程方法研究复杂环境对雷达和通信传播的影响.电子学报, 2000, 28(6): 68-71.
    [16]赵小龙.电磁波在大气波导环境中的传播特性及其应用研究[D].西安电子科技大学博士论文, 2008.
    [17] Nghiem S. V., Li F. K. and Neumann G. The dependence of ocean backscatter at Ku-band on oceanic and atmospheric parameters. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 581-600.
    [18] Ishimaru A. Wave Propagation and Scattering in Random Media. New York: Academic Press, 1978.
    [19] Ulaby F. T., Moore R. K. and Fung A. K. Microwave Remote Sensing. London: Addison Wesley Publishing, 1982.
    [20] Tsang L., Kong J. A. and Shin R. T. Theory of Microwave Remote Sensing. New York: John Wiley&Son, 1985.
    [21] Wentz F. J. Measurement of oceanic wind vector using satellite microwave radiometers. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 960-972.
    [22] Reilly J. P. and Dockery G. D. Influence of evaporation ducts on radar sea return. IEE Proc. Radar and Signal Processing, 1990, 137(F-2):80-88.
    [23] Beckmann P. and Spizzichino A. The Scattering of Electro- magnetic Wave from Rough Surface. New York: Pergammon, 1963.
    [24] Thorsos E. I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. The Journal of the Acoustical Society of America, 1988, 83(1): 78-92.
    [25] Rice S. O. Reflection of electromagnetic wave from slightly rough surfaces. Comm. Pure Appl. Math, 1951, 4(2): 351-378.
    [26] Thorsos E. I. and Jackson D. R. The Validity of the Perturbation Approximation for Surface Scattering Using a Gaussian Roughness Spectrum. The Journal of the Acoustical Society of America, 1989, 86(1): 261-277.
    [27] Fung A. K. and Lee K. K. A semi-empirical sea-spectrum model for scattering coefficient estimation. IEEE Journal of Oceanic Engineering, 1982, 7(4): 166-176.
    [28] Khenchaf A. Bistatic scattering and depolarization by randomly rough surfaces: Application to the natural rough surfaces in X-band. Waves in Random Media, 2001, 11(2): 61-89.
    [29]郭立新,王运华,吴振森.修正双尺度模型在非高斯海面散射中的应用.电波科学学报, 2007, 22(2): 212-218.
    [30] McDaniel S. T. Microwave backscatter from non-gaussian seas. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 52-58.
    [31] Bahar E. and Lee B. S. Radar scatter cross sections for two-dimensional random rough surfaces-full wave solutions and comparisons with experiments. Waves Random Media, 1996, 6(1): 1-23.
    [32] Wu T. D., Chen S., Shi J., et al. A transition model for the reflection coefficient in surface scattering. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 2040-2050.
    [33] Fung A. K. and Chen K. S. An update on the IEM surface backscattering model. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2): 75-77.
    [34] Voronovich A. G. Wave Scattering from Rough Surfaces. Berlin: Springer-Verlag, 1994.
    [35] Thorsos E. I. and Broschat S. L. An Investigation of the Small Slope Approximation for Scattering from Rough Surfaces: Part I-Theory. J. Acoust. Soc. Am., 1995, 97(4): 2082-2093.
    [36] Broschat L. and Thorsos E. I. An investigation of the small slope approximation for scattering from a rough surface: part II- numerical studies. J. Acoust. Soc. Am., 1997, 101(5): 2615-2625.
    [37] Voronovich A. G. Small Slope Approximation for Electromagnetic Wave Scattering at a Rough Interface of Two Dielectric Half-spaces. Waves in Random Media, 1994, 4(3): 337- 367.
    [38] Akbarpour R. and Webster A. R. Ray-tracing and parabolic equation methods in the modeling of a tropospheric microwave link. IEEE Transactions on Antennas and Propagation, 2005, 53(11): 3785-3791.
    [39] Barrios A. E. A terrain parabolic equation model for propagation in the troposphere. IEEE Transactions on Antennas and Propagation, 1994, 42(1): 90-98.
    [40] Dockery G. D. Modeling electromagnetic wave propagation in the troposphere using the parabolic equation. IEEE Transactions on Antennas and Propagation, 1988, 36(10): 1464- 1470.
    [41] Barrios A. E. Parabolic equation modeling in horizontally inhomogeneous environments. IEEE Transactions on Antennas and Propagation, 1992, 40(7): 791-797.
    [42] Levy M. F. Horizontal parabolic equation solution of radiowave propagation problems on large domains. IEEE Transactions on Antennas and Propagation, 1995, 43(2): 137-144.
    [43] Kuttler J. R. and Dockery G. D. Theoretical description of the parabolic approximation/ Fourier split-step method of representing electromagnetic propagation in the troposphere. Radio science, 1991, 26(2): 381-393.
    [44] Levy M. F. Parabolic equation methods for electromagnetic wave propagation. London: IEE Press, 2000.
    [45] Sirkova I. and Mikhalev M. Parabolic wave equation method applied to the tropospheric ducting propagation problem: A survey. Electromagnetics, 2006, 26(2): 155-173.
    [46] Thomson A. D. and Quach T. D. Application of parabolic equation methods to HF propagation in an arctic environment. IEEE Transactions on Antennas and Propagation, 2005, 53(1): 412-419.
    [47] Kuttler J. R. Differences between the narrow-angle and wide-angle propagators in the split-step Fourier solution of the parabolic wave equation. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1131-1140.
    [48] Hitney H. V. Hybrid ray optics and parabolic equation methods for radar propagation modeling. International Conference - Radar 92, October 12, 1992 - October 13, 1992, 1992: 58-61.
    [49] Kerr D. E. Propagation of Short Radio Waves. London: IEE Electromagnetic Waves Series, Peter Peregrinus, 1987.
    [50] Barclay L. W. Propagation of radiowaves. London: The Institution of Electrical Engineers, 2003.
    [51] Sevgi L. and Felsen L. B. A new algorithm for ground wave propagation based on a hybrid ray-mode approach. International Journal of Numerical Modelling: Electronic Networks,Devices and Fields, 1998, 11(2): 87-103.
    [52] Marcus S. A model to calculate EM fields in tropospheric duct environments at frequencies through SHF. Radio science, 1982, 17(5): 895-901.
    [53] Ji Z., Li B. H., Wang H. X., et al. Efficient ray-tracing methods for propagation prediction for indoor wireless communications. IEEE Antennas and Propagation Magazine, 2001, 43(2): 41-49.
    [54]赵正予,宋杨,吕君.大气声波超视距传播的射线追踪.武汉大学学报(理学版), 2008, 54(3): 375-378.
    [55]柳文,焦培南,王世凯,等.电离层短波三维射线追踪及其应用研究.电波科学学报, 2008, 23(1): 41-49.
    [56] Leontovich M. A. and Fock V. A. Solution of the problem of propagation of electromagnetic waves along the earth’s surface by method of parabolic equations. J. Phys. USSR, 1946, 10(1): 13-23.
    [57] Hardin R. H. and Tappert F. D. Applications of split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. SIAM Rew, 1973, 15:423.
    [58] Dockery D. G. and Kuttler J. R. Improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation. IEEE Transactions on Antennas and Propagation, 1996, 44(12): 1592-1599.
    [59] Kuttler J. R. and Janaswamy R. Improved Fourier transform methods for solving the parabolic wave equation. Radio science, 2002, 37(2): 51-511.
    [60] Holm P. D. Wide-angle shift-map PE for a piecewise linear terrain-A finite-difference approach. IEEE Transactions on Antennas and Propagation, 2007, 55(10): 2773-2789.
    [61] Lee D., Botseas G. and Papadakis J. S. Finite-difference solution to the parabolic wave equation. Journal of the Acoustical Society of America, 1981, 70(3): 795-800.
    [62] Lee D. and McDaniel S. T. Ocean acoustic propagation by finite difference methods. Comput. Math. Applic., 1987, 14(5): 305-423.
    [63] Isaakidis S. A. and Xenos T. D. Parabolic equation solution of tropospheric wave propagation using FEM. Progress in electromagnetic research (PIER), 2004, 49:257-271.
    [64] Janaswamy R. Curvilinear coordinate-based split-step parabolic equation method for propagation predictions over terrain. IEEE Transactions on Antennas and Propagation, 1998, 46(7): 1089-1097.
    [65] Donohue D. J. and Kuttler J. R. Modeling radar propagation over terrain. Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 1997, 18(2): 279-279.
    [66] Levy M. F. Parabolic equation modelling of propagation over irregular terrain. Electronics Letters, 1990, 26(15): 1153-1155.
    [67] McArthur R. J. Propagation modelling over irregular terrain using the split-step parabolic equation method. International Conference - Radar 92, October 12, 1992 - October 13, 1992, 1992:54-57.
    [68] Dockery G. D. Development and use of electromagnetic parabolic equation propagation models for U.S. Navy applications. Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 1998, 19(3): 283-292.
    [69] Donohue D. J. and Kuttler J. R. Propagation modeling over terrain using the parabolic wave equation. IEEE Transactions on Antennas and Propagation, 2000, 48(2): 260-277.
    [70] Levent S. Complex electromagnetic problems and numerical simulation approachhes. Wiley-IEEE Press, 2003.
    [71] Zelley C. A. and Constantinou C. C. Three-dimensional parabolic equation applied to VHF/UHF propagation over irregular terrain. IEEE Transactions on Antennas and Propagation, 1999, 47(10): 1586-1596.
    [72] Janaswamy R. Path loss predictions in the presence of buildings on flat terrain: A 3-D vector parabolic equation approach. IEEE Transactions on Antennas and Propagation, 2003, 51(8): 1716-1728.
    [73] Awadallah R. I. S., Gehman J. Z., Kuttler J. R., et al. Modeling radar propagation in three-dimensional environments. Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 2004, 25(2): 101-110.
    [74] Awadallah R. I. S., Gehman J. Z., Kuttler J. R., et al. Effects of lateral terrain variations on tropospheric radar propagation. IEEE Transactions on Antennas and Propagation, 2005, 53(1): 420-434.
    [75] Spencer T. A., Walker R. A. and Hawkes R. M. Inverse diffraction parabolic equation localization system (IDPELS). Journal of Global positioning systems, 2005, 4(1-2): 245-257.
    [76] Oraizi H. and Hosseinzadeh S. Radio-wave-propagation modeling in the presence of multiple knife edges by the bidirectional parabolic-equation method. IEEE Transactions on Vehicular Technology, 2007, 56(3): 1033-1040.
    [77]孙方,王红光,康士峰,等.大气波导环境下的射线追踪算法.电波科学学报, 2008, 23(1): 179-184.
    [78]胡绘斌,毛钧杰,柴舜连.大气折射率剖面在宽角抛物方程中的应用.微波学报, 2006, 22(1): 5-8.
    [79]胡绘斌,毛钧杰,柴舜连.宽角抛物方程的格林函数及其应用.电子学报, 2006, 34(3): 517-520.
    [80]胡绘斌,柴舜连,毛钧杰.基于三维抛物方程方法的城市微小区电波传播预测模型.自然科学进展, 2006, 16(8): 1021-1027.
    [81]胡绘斌.预测复杂环境下电波传播特性的算法研究[D].国防科技大学博士论文, 2006.
    [82]郭建炎,王剑莹,龙云亮.森林中电波传播的抛物方程法.电波科学学报, 2007, 22(6): 1042-1046.
    [83]郭建炎,王剑莹,龙云亮,等.基于抛物方程法的部分森林覆盖山区电波传播分析.电波科学学报, 2008, 30(6): 47-52.
    [84]郭建炎,王剑莹,龙云亮.基于抛物方程法的粗糙海面电波传播分析.通信学报, 2009,30(6): 47-52.
    [85]郭建炎.复杂环境电波传播的抛物方程法研究[D].中山大学博士论文, 2008.
    [86] Baumgartner Jr G. B., Hitney H. V. and Pappert R. A. Duct propagation modelling for the integrated-refractive-effects prediction system (IREPS). IEE Proceedings, Part F: Communications, Radar and Signal Processing, 1983, 130(7): 630-642.
    [87] Patterson W. L., Hattan C. P., Hitney H. V., et al. Engineer’s refractive effects prediction system(EREPS) version 3.0. 1994.
    [88] Dockery G. D., Awadallah R. I. S., Freund D. E., et al. An overview of recent advances for the TEMPER radar propagation model. IEEE 2007 Radar Conference, April 17, 2007 - April 20, 2007, 2007:896-905.
    [89] Barrios A. E. and Patterson W. L. Advanced Propagation Model (APM) Ver. 1.3.1 Computer Software Configuration Item (CSCI) Documents. Space and Naval Warfare Systems Command, San Diego, CA., 2002.
    [90] Barrios A. E., Patterson W. and Spraque R. A. Advanced Propagation Model (APM) Version 2.1.04 Computer Software Configuration Item (CSCI) Documents. Space and Naval Warfare Systems Command, San Diego, CA., 2007.
    [91] Barrios A. E. Considerations in the development of the advanced propagation model (APM) for U.S. Navy applications. Radar Conference, 2003, 77-82.
    [92] User's Manual(UM) for Advanced Refractive Effects Prediction system. Document Version 3.6, Dec.2006. Prepared by: Space and Naval Warfare Systems Center, San Diego Atmospheric Propagation Branch San Diego, CA. Available on: http://areps.spawar.navy.mil.
    [93]高倩.澳开发可预测大气波导现象的软件系统.飞航导弹, 1999, 12: 59.
    [94] Siddle D. R., Warrington E. M. and Gunashekar S. D. Signal strength variations at 2 GHz for three sea paths in the British Channel Islands: Observations and statistical analysis. Radio science, 2007, 42(4): 1-15.
    [95] Gunashekar S. D., Warrington E. M., Siddle D. R., et al. Signal strength variations at 2 GHz for three sea paths in the British Channel Islands: Detailed discussion and propagation modeling. Radio science, 2007, 42(4): 1-13.
    [96] Rowland J. R. and Babin S. M. Fine-scale measurements of microwave refractivity profiles with helicopter and low-cost rocket probes. Solar Cells, 1987, 8(4): 413-417.
    [97] Hodur R. M. The naval research laboratory’s coupled ocean/atmosphere mesoscale prediction system (COAMPS). Monthly Weather Rev., 1996, 125(7): 1414-1430.
    [98] Willitsford A. and Philbrick C. R. Lidar description of the evaporative duct in ocean environments. Remote Sensing of the Coastal Oceanic Environment, July 31, 2005 - August 1, 2005, 2005:1-8.
    [99] Krolik J. L. and Tabrikian J. Tropospheric refractivity estimation using radar clutter from the sea surface. Proceedings of the 1997 Battlespace Atmospherics Conference, 1998, 635-642.
    [100] Lowry A. R., Rocken C., Sokolovskiy S. V., et al. Vertical profiling of atmosphericrefractivity from ground-based GPS. Radio science, 2002, 37(3): 1041-1059.
    [101] Gerstoft P., Gingras D. F., Rogers L. T., et al. Estimation of radio refractivity structure using matched field array processing. IEEE Transactions on Antennas and Propagation, 2000, 48(3): 345-356.
    [102] Rogers L. T., Hattan C. P. and Stapleton J. K. Estimating evaporation duct heights from radar sea echo. Radio science, 2000, 35(4): 955-966.
    [103] Gerstoft P., Rogers L. T., Krolik J. L., et al. Inversion for refractivity parameters from radar sea clutter. Radio science, 2003, 38(3): 1-22.
    [104] Gerstoft P., Rogers L. T., Hodgkiss W. S., et al. Refractivity estimation using multiple elevation angles. IEEE Journal of Oceanic Engineering, 2003, 28(3): 513-525.
    [105] Barrios A. Estimation of surface-based duct parameters from surface clutter using a ray trace approach. Radio science, 2004, 39(6): 1-15.
    [106] Yardim C., Gerstoft P. and Hodgkiss W. S. Estimation of radio refractivity from radar clutter using Bayesian Monte Carlo analysis. IEEE Transactions on Antennas and Propagation, 2006, 54(4): 1318-1327.
    [107] Vasudevan S., Anderson R. H., Kraut S., et al. Recursive Bayesian electromagnetic refractivity estimation from radar sea clutter. Radio science, 2007, 42:1-19.
    [108] Yardim C., Gerstoft P. and Hodgkiss W. S. Statistical maritime radar duct estimation using a hybrid genetic algorithms–Markov chain Monte Carlo method. Radio science, 2007, 42:1-13.
    [109] Yardim C., Gerstoft P. and Hodgkiss W. S. Tracking refractivity from clutter using Kalman and particle filters. IEEE Transactions on Antennas and Propagation, 2008, 56(4): 1058-1070.
    [110] Douvenot R., Fabbro V., Gerstoft P., et al. A duct mapping method using least squares support vector machines. Radio science, 2008, 43:1-12.
    [111]刘成国.蒸发波导环境特性和传播特性及其应用研究[D].西安电子科技大学博士论文, 2003.
    [112]焦林,张永刚.大气波导条件下雷达电磁盲区的研究.西安电子科技大学学报, 2004, 31(5): 989-994.
    [113]焦林,张永刚.大气波导条件下雷达电磁盲区的预报研究.西安电子科技大学学报, 2007, 34(6): 989-994.
    [114]赵小龙,黄际英,王海华.蒸发波导环境中的雷达探测性能分析.电波科学学报, 2006, 21(6): 891-894.
    [115]黄小毛,张永刚,王华,等.蒸发波导中电磁波异常传播特征研究及其应用.电子与信息学报, 2006, 28(8): 1508-1512.
    [116]黄小毛,张永刚,王华,等.大气波导对雷达异常探测影响的评估与试验分析.电子学报, 2006, 34(4): 722-725.
    [117]黄小毛,张永刚,王华,等.蒸发波导环境下雷达超视距性能评估方法.电子科技大学学报, 2007, 36(1): 36-39.
    [118]赵小龙,黄际英.大气波导中多径信道的参数研究.西安电子科技大学学报, 2008, 35(2):314-318.
    [119]左雷,察豪,田斌,等.海上蒸发波导PJ模型在我国海区的适应性初步研究.电子学报, 2009, 37(5): 1100 -1103.
    [120]成印河,赵振维,何宜军,等.大气波导过程数值模拟研究.电波科学学报, 2009, 24(2): 259-264.
    [121]刘爱国,察豪,刘峰.基于雷达海杂波的大气折射率剖面估计技术.电波科学学报, 2007, 22(5): 867-871.
    [122]韩杰.基于海杂波反演近海面大气折射率剖面研究[D].电子科学研究院硕士学位论文, 2008.
    [123]王波,吴振森,赵振维,等.基于蚁群算法的雷达海杂波反演蒸发波导研究.电波科学学报, 2009, 24(4): 598-604.
    [124]盛峥,黄思训,赵小峰.雷达回波资料反演海洋波导中观测值权重的确定.物理学报, 2009, 58(9): 6627-6632.
    [125]杨超,郭立新.高斯介质粗糙面电磁散射的小斜率近似方法.电波科学学报, 2009, 24(1): 77-82.
    [126] Johnson J. T. and Zhang M. Theoretical study of the small slope approximation for ocean polarimetric thermal emission. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2305-2316.
    [127] Bourlier C. Azimuthai harmonic coefficients of the microwave backscattering from a non-Gaussian ocean surface with the first-order SSA model. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2600-2611.
    [128] Bourlier C. and Berginc G. Microwave analytical backscattering models from randomly rough anisotropic sea surface—Comparison with experimental data in C and Ku bands. Progress in electromagnetic research (PIER), 2002, 37:31–78.
    [129] Mouche A. A., Chapron B. and Reul N. A simplified asymptotic theory for ocean surface electromagnetic wave scattering. Waves in Random and Complex Media, 2007, 17(3): 321-341.
    [130] Voronovich A. G. and Zavorotny V. U. Theoretical model for scattering of radar signals in Ku - and C-bands from a rough sea surface with breaking waves. Waves in Random Media, 2001, 11(3): 247-269.
    [131] Fung A. K., Zuffada C. and Hsieh C. Y. Incoherent bistatic scattering from the sea surface at L-band. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 1006-1012.
    [132] Guerin C.-A. and Saillard M. On the high-frequency limit of the second-order small-slope approximation. Waves in Random Media, 2003, 13(2): 75-88.
    [133] Yang T. and Broschat S. L. A comparison of scattering model results for two-dimensional randomly rough surfaces. IEEE Transactions on Antennas and Propagation, 1992, 40(12): 1505-1512.
    [134] Macelloni G., Nesti G., Pampaloni P., et al. Experimental validation of surface scattering andemission models. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 459-469.
    [135] Elfouhaily T., Chapron B. and Katsaros K. A unified directional spectrum for long and short wind-driven waves. J.Geophys.Res, 1997, 102(C7): 15781-15796.
    [136] Bourlier C., Saillard J. and Berginc G. Intrinsic infrared radiation of the sea. Progress in electromagnetic research (PIER), 2000, 27:185-335.
    [137] McDaniel S. T. Small-slope predictions of microwave backscatter from the sea surface. Waves in Random Media, 2001, 11(3): 343-360.
    [138]杨超,郭立新.粗糙海面电磁散射的小斜率近似方法.系统工程与电子技术, 2009, 31(8): 1814-1818.
    [139] Ogilvy J. A. Theory of Wave Scattering from Random Rough Surface. Bristol: Institute of physics Publishing, 1991.
    [140] Wang X., Gan Y.-B. and Li L.-W. Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM case. IEEE Antennas and Wireless Propagation Letters, 2003, 2:319-322.
    [141] Ma J., Guo L. and Cheng X. Unification of the Kirchhoff approximation and the method of moment for optical wave scattering from the lossy dielectric Gaussian random rough surface. Chinese Optics Letters, 2009, 7(3): 259-262.
    [142] Ye H. X. and Jin Y. Q. Parameterization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface. IEEE Transactions on Antennas and Propagation, 2005, 53(3): 1234-1237.
    [143] Tsang L., Kong J. A. and Ding K.-H. Scattering of Electromagnetic Waves: Numerical Simulations. New York: John Wiely&Sons.Inc, 2001.
    [144] Li J., Guo L. X. and Zeng H. FDTD investigation on the electromagnetic scattering from a target above a randomly rough sea surface. Waves in Random and Complex Media, 2008, 18(4): 641-650.
    [145] Hitney H. V. and Hitney L. R. Frequency diversity effects of evaporation duct propagation. IEEE Transactions on Antennas and Propagation, 1990, 38(10): 1694-1700.
    [146] Paulus R. A. Parametric Study of Propagation in Evaporation Ducting and Subrefractive Conditions. Space and Naval Warfare Systems Command, San Diego, CA., 2000.
    [147] Paulus R. A. Evaporation duct effects on sea clutter. IEEE Transactions on Antennas and Propagation, 1990, 38(11): 1765-1771.
    [148] Hitney H. and Vieth R. Statistical assessment of evaporation duct propagation. IEEE Transactions on Antennas and Propagation, 1990, 38(6): 794-799.
    [149]戴福山.海洋大气近地层折射指数模式及其在蒸发波导分析上的应用.电波科学学报, 1998, 13(3): 280 -286.
    [150]刘成国,潘中伟.中国低空大气波导的极限频率和穿透角.通信学报, 1998, 19(10): 90-95.
    [151]宋铮,张建华,黄冶编著.天线与电波传播.西安:西安电子科技大学出版社, 2005.
    [152]焦培南,张忠治编著.雷达环境与电波传播特性.北京:电子工业出版社, 2007.
    [153]胡绘斌,柴舜连,毛钧杰.宽角抛物方程在阻抗边界条件下的应用.电波科学学报, 2005, 20(4): 500-504.
    [154]杨超,郭立新,李宏强,等.大气波导中电波传播特性的研究.西安电子科技大学学报, 2009, 36(6):1097-1102.
    [155] Hyaric A. Z. L. Wide-angle nonlocal boundary conditions for the parabolic wave equation. IEEE Transactions on Antennas and Propagation, 2001, 49(6): 916-922.
    [156] Jensen F. B., Kuperman W. A., Porter M. B., et al. Computational Ocean Acoustics. New York: American Institute of Physics, 1994.
    [157]阮炯编著.差分方程和常微分方程.上海:电子工业出版社, 2002.
    [158] Cooley J. W., Lewis P. A. W. and Welch P. D. Fast fourier transform algorithm. programming considerations in the calculation of sine, cosine and laplace transforms. Journal of Sound and Vibration, 1970, 12(3): 315-337.
    [159] Levy M. F. Perfectly matched layer truncation for parabolic wave equation models. Proceedings of the Royal Society of London, Series A 2001, 457: 2609-2624.
    [160] Levy M. F. Transparent boundary conditions for parabolic equation solutions of radiowave propagation problems. IEEE Transactions on Antennas and Propagation, 1997, 45(1): 66-72.
    [161] Kenneth K. D. and Paulus R. A. Rough evaporation duct (RED) experiment. Proc. Conf. Battlespace Atmospheric and Cloud Impacts on Military Operations(BACIMO) Conference, 2000, 1-11.
    [162] Hitney H. V. A practical tropospheric scatter model using the parabolic equation. IEEE Transactions on Antennas and Propagation, 1993, 41(7): 905-909.
    [163] Freund D. E., Woods N. E., Ku H.-C., et al. Forward radar propagation over a rough sea surface: A numerical assessment of the Miller-Brown approximation using a horizontally polarized 3-GHz line source. IEEE Transactions on Antennas and Propagation, 2006, 54(4): 1292-1304.
    [164] Miller A. R., Brown R. M. and Vegh E. New Derivation For The Rough-Surface Reflection Coefficient And For The Distribution Of Sea-Wave Elevations. IEE Proceedings H: Microwaves Optics and Antennas, 1984, 131(2): 114-116.
    [165]郭立新,李宏强,杨超,等.改进DMFT算法研究粗糙海上蒸发波导中的电波传输特性.电波科学学报, 2009, 24(3): 414-421.
    [166] Guillet N., Fabbro V., Bourlier C., et al. Low grazing angle propagation above rough surface by the Parabolic Wave Equation. 2003 IGARSS: Learning From Earth's Shapes and Colours, July 21, 2003 - July 25, 2003:4186-4188.
    [167] Athanasiadou G. E., Nix A. R. and McGeehan J. P. Microcellular ray-tracing propagation model and evaluation of its narrow-band and wide-band predictions. IEEE Journal on Selected Areas in Communications, 2000, 18(3): 322-335.
    [168] Xu F. and Jin Y.-Q. Bidirectional analytic ray tracing for fast computation of compositescattering from electric-large target over a randomly rough surface. IEEE Transactions on Antennas and Propagation, 2009, 57(5): 1495-1505.
    [169] Zhao X. L. and Huang J. Y. Characteristic of EM wave anomalous propagation in marine evaporation duct. International Symposium On Antennas, Propagation and EM theory, 2008.
    [170] Sevgi L. A Ray-shooting visualization matlab package for 2D ground-wave propagation simulations. IEEE Transaction on Antennas and Propagation Magazine, 2004, 46(4): 140-145.
    [171]郭硕宏.电动力学(第二版).北京:高等教育出版社, 2002.
    [172] Born M. and Wolf E. Principles of Optics. Pergamon Press, 1959.
    [173]阮颖铮.复射线理论及其应用.北京:电子工业出版社, 1991.
    [174]葛哲学,孙志强.神经网络与MATLAB R7实现.北京:电子工业出版社, 2007.
    [175]高隽.人工神经网络原理及仿真研究.北京:机械工业出版社, 2003.
    [176]姜斌,王宏强,付耀文,等.基于LS-SVM的海杂波混沌预测.自然科学进展, 2007, 17(3): 415-420.
    [177] Vapnik V. The nature of statistical learning theory. Berlin:Springer-Verlag, 2000.
    [178]宋志宇,李俊杰.最小二乘支持向量机在大坝变形预测中的应用.水电能源科学, 2006, 24(6): 49-52.
    [179] Ei-Naqa I., Yang Y., Wernick M. N., et al. A support vector machine approach for diction of microcalcifications. IEEE Transactions on Medical Imaging, 2002, 21(12): 1552-1563.
    [180] Sukens J. A. K. and Vandewalle J. Least Squares Support Vector Machine Classifiers. Neural Processing Letters, 1999, 9(3): 293-300.
    [181] Smola A. J. and Scholkpf B. Atutorial on support vector regression. Statistics and Computing, 2004, 14:199-222.
    [182] Sukens J. A. K., Gestel T. V. and Brobanter J. D. Least squares support vector machines. World Scientific Publishers, Singapore, 2002.
    [183]姜谙男,梁冰.基于最小二乘支持向量机的煤层底板突水量预测.煤炭学报, 2005, 30(5): 613-617.
    [184] Chauchard F., Roussel S., Roger J. M., et al. Least-squares support vector machines modelization for time-resolved spectroscopy. Appl.Opt., 2005, 44(33): 7091-7097.
    [185] Lin C. J., Hong S. J. and Lee C. Y. Using least squares support vector machines for adaptive communication channel equalization. International Journal of Applied Science and Engineering, 2005, 3(1): 51-59.
    [186] Dockery G. D. Method of modelling sea surface clutter in complicated propagation environments. IEE Proceedings 1990, 137(F-2):73-79.
    [187]樊琦,高火涛,王高峰.复杂边界电波传播损耗的神经网络估计方法.电波科学学报, 2008, 23(1): 184-188.
    [188] LSSVM toolbox Available: www.esat.kuleuven.ac.be /sista/ lssvmlab/
    [189] Davev K. R. Latin hypercube sampling and pattern search in magnetic field optimization problems. IEEE Transactions on Magnetics, 2008, 44(6): 974-977.
    [190] Yu H., Chung C. Y., Wong K. P., et al. Probabilistic load flow evaluation with hybrid latin hypercube sampling and cholesky decomposition. IEEE Transactions on Power Systems, 2009, 24(2): 661-667.
    [191] Mckay M. D., Conover W. J. and Beckman R. J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 1979, 21(2): 239-245.
    [192] Iman R. L., Helton J. C. and Compbell J. E. An approach to sensitivity analysis of computer models: Part 1-Introduction, input variable selection and preliminary variable assessment. Journal of quality technology, 1981, 13(3): 174-183.
    [193]贾建芳,岳红,王宏.基于LHS方法NF-κB信号转导网络的多参数敏感性分析.应用基础与工程科学学报, 2008, 16(4): 605-615.
    [194] Zuffada C., Fung A., Parker J., et al. Polarization properties of the GPS signal scattered off a wind-driven ocean. IEEE Transactions on Antennas and Propagation, 2004, 52(1): 172-188.
    [195] Garrison J. L., Katzberg S. J. and Hill M. I. Effect of sea roughness on bistatically scattered range coded signals from the Global Positioning System. Geophysical Research Letters, 1998, 25(13): 2257-2260.
    [196] Garrison J. L., Komjathy A., Zavorotny V. U., et al. Wind speed measurement using forward scattered GPS signals. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 50-65.
    [197] Komjathy A., Armatys M., Masters D., et al. Retrieval of ocean surface wind speed and wind direction using reflected GPS signals. Journal of Atmospheric and Oceanic Technology, 2004, 21(3): 515-526.
    [198] Lowe S. T., Zuffada C., Chao Y., et al. 5-cm-precision aircraft ocean altimetry using GPS reflections. Geophysical Research Letters, 2002, 29(10): 1-4.
    [199] Zavorotny V. U. and Voronovich A. G. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 951-964.
    [200] Elfouhaily T., Thompson D. R. and Linstrom L. Delay-Doppler analysis of bistatically reflected signals from the ocean surface: Theory and application. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(3): 560-573.
    [201]胡雄,曾桢,张训械,等.大气GPS掩星观测反演方法.地球物理学报, 2005, 48(4): 768-774.
    [202]王鑫,吕达仁. GPS无线电掩星技术反演大气参数方法对比.地球物理学报, 2007, 50(2): 346-353.
    [203]刘美生.全球定位系统及其应用综述(二)—GPS.中国测试技术, 2006, 32(6): 5-11.
    [204]刘美生.全球定位系统及其应用综述(三)—GPS的应用.中国测试技术, 2007, 33(1): 5-11.
    [205] Ellison W., Balana A., Delbos G., et al. New permittivity measurements of sea water. Radioscience, 1998, 33(3): 639-648.
    [206] Hannah B. Modelling and Simulation of GPS Multipath Propagation. Ph.D. Thesis, The Cooperative Centre for Satellite Systems, Queensland University of Technology, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700