用户名: 密码: 验证码:
复极储备相关钾通道在心力衰竭时的变化及相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:心力衰竭(心衰)时恶性室性心律失常和心源性猝死发生率增加,严重影响患者的生活质量甚至危及生命。研究显示心衰时心律失常发生率增加与复极储备障碍或功能丧失关系密切,复极储备主要依赖于快速延迟整流钾电流(IKr)通道和缓慢延迟整流钾电流(IKs)通道离子流在心肌复极过程中相互作用产生的代偿性补充,从而缓冲动作电位时程(APD)过度延长。本课题一方面利用兔腹主动脉缩窄心衰模型,研究心衰时心室肌细胞中KCNH2和KCNQ1基因在mRNA水平表达的变化情况,以及与动作电位(AP)、IKr通道和IKs通道离子流之间的关系,探讨心衰时复极储备改变的特征及机制;另一方面利用转染技术将KCNH2和KCNQ1基因导入细胞,研究二者在mRNA.蛋白及离子通道水平的相互影响,进一步探讨复极储备中离子通道间的相互作用机制。为心衰时恶性室性心律失常及心源性猝死的机制研究提供实验与理论依据。
     研究方法:24只日本大耳白兔随机分为假手术组(Sham)和心衰模型组(HF),每组12只,分别行腹主动脉分离术和腹主动脉缩窄术,术后常规饲养12周,评价一般情况及心脏超声指标,判定HF组模型建立达标情况。Sham组与HF组动物均麻醉取心脏,灌流分离心室肌细胞,提取总RNA用RT-qPCR方法,比较目的基因KCNH2及KCNQ1的mRNA表达量在两组间的差别,应用膜片钳技术辅以钾离子通道阻滞剂多非利特(Dof)和293B药物,检测心衰时心室肌细胞AP,比较复极至50%的动作电位时程(APD50)、复极至90%的动作电位时程(APD90)、动作电位幅值(APA)和静息膜电位(RMP)在各条件下的变化情况,测定心室肌细胞IKr电流和IKs电流在不同条件下的改变。另一方面应用瞬时转染技术,将HEK293细胞随机分为7组,即单独将KCNQ1(Q1组)、野生型WT-KCNH2(WT组)、功能获得型T618I-KCNH2(T618I组)和功能缺失型V535M-KCNH2(V535M组)与空质粒共转染,及将KCNQ1分别与各功能型KCNH2共转染(依次为Q1+WT组、Q1+T618I组和Q1+V535M组)。转染后培养48h,提取细胞总RNA和总蛋白,分别应用RT-qPCR和Western Blot方法检测目的基因在mRNA和蛋白水平的相对表达量,比较各组间的差别,同时应用膜片钳技术检测不同功能型KCNH2对KCNQ1电流的影响。
     研究结果:
     (1)与Sham组相比,HF组兔心室肌细胞KCNH2基因和KCNQ1基因在mRNA水平表达均显著降低(P<0.05)。
     (2)与Sham组相比,HF组兔心室肌细胞AP、APD50和APD90均显著延长(P<0.05),其中HF组给予Dof干预后,AP、APD50和APD90均进一步延长(P<0.05),若加用293B共同干预,则AP、APD50和APD90延长程度与单独给予Dof相比增加更显著(P<0.05)。
     (3)兔心室肌细胞APA和RMP在Sham组、HF组及给予Dof,293B干预的HF组中无明显差异(P>0.05)。
     (4)HF组兔心室肌细胞IKr电流密度与Sham组相比显著降低(P<0.05),给予Dof干预后,两组IKr电流密度均显著下降(P<0.05),且HF组表现更为明显。
     (5) Sham组和HF组中,兔心室肌细胞IKr尾电流(IKr,tail)均随刺激脉冲正移不断增加,但HF组增加幅值低于Sham组。给予Dof干预后,两组的IKr,tail均被抑制,随刺激脉冲电压增加抑制效应增强,且对HF组作用更明显。
     (6)HF组兔心室肌细胞IKs电流密度与Sham组相比显著降低(P<0.05),给予Dof干预后IKs电流密度显著回升(P<0.05),但未恢复至正常水平。
     (7)不同功能型KCNH2与KCNQ1共转染均可使KCNQ1在mRNA水平的相对表达量显著升高(P<0.05),Q1+V535M组升高最显著,Q1+WT组次之,Q1+T618I组升高程度最小。共转染KCNQ1可使不同功能型KCNH2在mRNA水平表达均出现升高,仅野生型升高程度有统计学意义(P<0.05)。
     (8)不同功能型KCNH2与KCNQ1共转染均可使KCNQ1在蛋白水平表达升高(P<0.05),其中Q1+T618I组作用最显著,Q1+WT组作用次之,Q1+V535M组作用最弱。共转染KCNQ1可使不同功能型KCNH2在蛋白水平表达均升高,但差异无统计学意义(P>0.05)。
     (9)野生型WT-KCNH2与KCNQ1共转染能够使KCNQ1峰电流密度从152.8±7.5pA/pF增加至209.3±9.1pA/pF(P<0.05),功能获得型突变T618I-KCNH2与KCNQ1共转染使KCNQ1峰电流密度升高相对较弱,仅升高至169.2±6.7pA/pF(P<0.05),功能丧失型突变V535M-KCNH2与KCNQ1共转染使KCNQ1峰电流密度升高最为明显,KCNQ1峰电流密度可升高达253.5±13.6pA/pF (P<0.05)
     结论:
     (1)在mRNA水平,心衰能够使心室肌细胞KCNH2和KCNQ1表达均降低。
     (2)心衰时心室肌细胞APD延长,IKr和IKs电流密度降低,复极贮备功能障碍。抑制IKr电流APD延长增加不大,若同时抑制IKr和IKs两种电流,则APD延长显著加重。
     (3) KCNH2与KCNQ1均能使彼此在mRNA水平的表达升高,且KCNQ1升高程度与KCNH2的功能呈负相关。
     (4)相似地,KCNH2与KCNQ1均能使彼此在蛋白水平的表达升高,且KCNQ1升高程度与KCNH2的功能呈负相关。
     (5) KCNH2能够使KCNQ1峰电流密度增加,且升高程度与KCNH2的功能呈负相关。
Background and Aim:The incidence of malignant ventricular arrhythmia and sudden cardiac death increases in heart failure which impairs the quality of the patients'life and even threatens their lives. Recent studies have shown that the increased incidence of heart arrhythmia in heart failure is closely related to the dysfunction of repolarization reserve, in which rapidly activating delayed rectifier potassium current (IKr) and slowly activating delayed rectifier potassium current (IKr) play most important roles in mitigating excessive extension of action potential duration (APD). On one hand, via rabbit heart failure model established by abdominal aorta coarctation, we investigated not only the mRNA expression of KCNH2and KCNQ1in ventricular myocytes in HF, but also the relationship among action potential (AP),IKr channel and IKs channel, in order to research the mechanism of repolarization reserve change in rabbit heart failure model. On the other hand, to research the mechanisms of the interaction between the two important channels in repolarization reserve, we transfected KCNH2and KCNQ1into HEK293cells and investigated the expression of mRNA and protein of these two genes and the KCNQ1current changes. This study provides experimental and theoretical evidences for the mechanism of malignant ventricular arrhythmia and sudden cardiac death in heart failure.
     Methods:Twenty-four rabbits were divided randomly into sham operation (Sham) and heart failure (HF) groups, twelve in each. Abdominal aortic coarctation was performed in group HF. After surgery, each rabbit was raised for twelve weeks. And general physical conditions, signs and various indicators of heart function under cardiac ultrasound were evaluated. Then hearts were removed from alive rabbits, and ventricular myocytes were isolated by enzymatic method. Total cellular RNA was extracted, and RT-qPCR was performed to compare the differences of KCNH2and KCNQ1between HF and Sham groups in the level of mRNA. Action potential (AP),IKr and IKs were recorded by whole-cell patch clamp technique with or without drugs dofetilide (Dof) and293B. Action potential duration at50%repolarization (APD50), action potential duration at90%repolarization (APD90), action potential amplitude (APA) and resting membrane potential (RMP) were all compared in different conditions. According to the transient transfection of different genes, HEK293cells were divided into seven groups:KCNQ1(Ql), WT-KCNH2(WT), T618I-KCNH2(gain of function mutation, T618I), V535M-KCNH2(loss of function mutation, V535M), and co-transfection KCNQ1with WT-KCNH2(Q1+WT), T618I-KCNH2(Q1+T618I), and V535M-KCNH2(Q1+V535M) groups. After gene transfection, HEK293cells were incubated for48hours. Then total RNA and protein were extracted, detected by RT-qPCR and Western blot, respectively. KCNQ1current changes induced by different functional KCNH2were recording by whole-cell patch clamp technique.
     Results:
     (1) Compared with group Sham, mRNA expressions of KCNH2and KCNQ1in ventricular myocytes of the rabbits with HF were decreased (P<0.05).
     (2) APD50and APD90were prolonged significantly in ventricular myocytes in group HF (P<0.05). The prolongation of APD50and APD90in HF group with both Dof and293B were more significant than those of using only Dof or without any drug (P<0.05).
     (3) APA and RMP in groups Sham or HF, with or without Dof and293B, had no significant differences (P>0.05).
     (4) Compared with group Sham, the density of IKr current was reduced in group HF (P<0.05). These effects were aggravated when Dof was used (P<0.05).
     (5) In groups Sham and HF, the density of IKr tail current (IKr,tail) increased along with the increment of test potentials,IKr,tail in group HF was lower than that in group Sham at the same test potential. And IKr,tail was inhibited by using Dof in both groups.
     (6) Compared with group Sham, the density of IKs current was reduced in group HF (P<0.05). And the effect was significantly diminished when Dof was used (P<0.05), but still lower than Sham.
     (7) The relative mRNA expression of KCNQ1in groups with co-transfection of different functional KCNH2was significantly increased than that in group Q1(P<0.05). Among three groups with co-transfection of KCNQ1and KCNH2, the relative mRNA expression of KCNQ1was highest in group Q1+V535M and lowest in group Q1+T618I. The relative mRNA expression of different functional KCNH2was increased with co-transfection of KCNQ1.
     (8) Compared with Q1, the relative protein expression of KCNQ1was increased when KCNQ1was co-transfected with different functional KCNH2(P<0.05). Among co-transfection groups, the relative protein expression of KCNQ1was higher in Q1+V535M group and lower in Q1+T618I than Q1+WT. Co-transfection of KCNQ1increased the relative protein expression of different functional KCNH2.
     (9) With co-transfenction of WT-KCNH2increased the KCNQ1current densities from152.8±7.5pA/pF to209.3±9.1pA/pF (P<0.05). Compared with group Q1, the KCNQ1current density in group Q1+T618I was slightly increased to169.2±6.7pA/pF (P<0.05), and the KCNQ1current density in group Q1+V535M was much more increased and up to253.5±13.6pA/pF (P<0.05).
     Conclusion:
     (1) Heart failure reduced the relative mRNA expression of KCNH2and KCNQ1.
     (2) APD was prolonged and the densities of IKr and IKs current were lower in ventricular myocytes of rabbits with heart failure, which impaired the repolarization reserve. The manifestations were getting worse by inhibiting IKr and IKs.
     (3) KCNQ1and KCNH2in three functional forms increased the relative mRNA expression of each other.
     (4) Analogously, different functional KCNH2and KCNQ1also increased the relative protein expression of each other.
     (5) KCNH2significantly increased KCNQ1current density, and the KCNQ1current density in group Q1+V535M was increased most among three co-transfection groups.
引文
1. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res,2004,95(8): 754-763.
    2. Cobb LA, Fahrenbruch CE, Olsufka M, et al. Changing incidence of out-of-hospital ventricular fibrillation,1980-2000. JAMA,2002,288(23):3008-3013.
    3. Alberte C, Zipes DP. Use of nonantiarrhythmic drugs for prevention of sudden cardiac death. J Cardiovasc Electrophysiol,2003,14(9 Suppl):S87-S95.
    4. Zipes DP. Less heart is more. Circulation,2003,107(20):2531-2532.
    5. Furukawa T, Bassett AL, Furukawa N, et al. The ionic mechanism of reperfusion-induced early afterdepolarizations in feline left ventricular hypertrophy. J Clin Invest,1993,91(4): 1521-1531.
    6. Harada M, Tsuji Y, Ishiguro YS.et al. Rate-dependent shortening of action potential duration increases ventricular vulnerability in failing rabbit heart. Am J Physiol Heart Circ Physiol,2011,300(2):H565-H573.
    7. van Dam RT, Durrer D. Excitability and electrical activity of human myocardial strips from the left atrial appendage in cases of rheumatic mitral stenosis. Circ Res,1961,9(3): 509-514.
    8. Trautwein W, Kassebaum DG, Nelsol RM, et al. Electrophysiological study of human heart muscle. Circ Res,1962,10:306-312.
    9. Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res,1999,42(2):270-283.
    10. Akar FG, Rosenbaum DS. Transmural electrophysiological heteroge-neities underlying arrhythmogenesis in heart failure. Circ Res,2003,93(7):638-645.
    11. Antzelevitch C, Sicouri S, Litovsky SH, et al. Heterogeneity within the ventricular wall Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ Res. 1991,69(6):1427-1449.
    12. Fedida D, Giles WR. Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol,1991,442(1):191-209.
    13. Volders PG, Sipido KR, Carmeliet E, et al. Repolarizing K+currents Itol and IKs are larger in the right than the left canine ventricular midmyocardium. Circulation,1999,99(2): 206-210.
    14. Rozanski GJ, Xu Z, Whitney RT, et al. Electrophysiology of rabbit ventricular myocytes following sustained rapid ventricular pacing. J Mol Cell Cardiol,1997,29(2):721-732.
    15. Mukherjee R, Hewett KW, Spinale FG. Myocyte electrophysiological properties following the development of supraventricular tachycardia-induced cardiomyopathy. J Mol Cell Cardiol,1995,27(6):1333-1348.
    16. Kaab S, Nuss HB, Chiamvimonvat N, et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res, 1996,78(2):262-273.
    17. Beuckelmann DJ, Nabauer M, Erdmann E. Alterations of K+currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res,1993,73(2): 379-385.
    18. Nabauer M, Beuckelmann DJ, Erdmann E. Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circ Res,1993,73(2): 386-394.
    19. Wettwer E, Amos GJ, Posival H, et al. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res,1994,75(3):473-482.
    20. Li GR, Lau CP, Ducharme A, et al. Transmural action potential and. ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Heart Circ Physiol,2002, 283(3):H1031-H1041.
    21. Kaab S, Dixon J, Duc J, et al. Molecular basis of transient outward potassium current downregulation in human heart failure:a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation,1998,98(14):1383-1393.
    22. Koumi S, Backer CL, Arentzen CE. Characterization of inwardly rectifying K+channel in human cardiac myocytes. Alterations in channel behavior in myocytes isolated from patients with idiopathic dilated cardiomyopathy. Circulation,1995,92(2):164-174.
    23. Tsuji Y, Opthof T, Kamiya K, et al. Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res,2000,48(2):300-309.
    24. Han W, Chartier D, Li D, et al. Ionic remodeling of cardiac Purkinje cells by congestive heart failure. Circulation,2001,104(17):2095-2100.
    25. Pu J, Boyden PA. Alterations of Na+currents in myocytes from epicardial border zone of the infarcted heart. A possible ionic mechanism for reduced excitability and postrepolarization refractoriness. Circ Res,1997,81(1):110-119.
    26. Undrovinas Al, Maltsev VA, Kyle JW, et al. Gating of the late Na channel in normal and failing human myocardium. J Mol Cell Cardiol,2002,34(11):1477-1489.
    27. Weiss JN, Chen PS, Qu Z, et al. Ventricular fibrillation:how do we stop the waves from breaking? Circ Res,2000,87(12):1103-1107.
    28. Gwathmey JK, Copelas L, MacKinnon R, et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res,1987,61(1):70-76.
    29. Beuckelmann DJ, Nabauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation,1992,85(3): 1046-1055.
    30. Durrer D, Van L, Buller J. Epicardial and intramural excitation in chronic myocardial infarction. Am Heart J,1964,68(6):765-776.
    31. Josephson ME, Horowitz LN, Farshidi A. Continuous local electrical activity. A mechanism of recurrent ventricular tachycardia. Circulation,1978,57(4):659-665.
    32. Saumarez RC, Chojnowska L, Derksen R, et al. Sudden death in noncoronary heart disease is associated with delayed paced ventricular activation. Circulation,2003,107(20): 2595-2600.
    33. Saumarez RC, Slade AK, Grace AA, et al. The significance of paced electrogram fractionation in hypertrophic cardiomyopathy. A prospective study. Circulation,1995, 91(11):2762-2768
    34. Meyer M, Schillinger W, Pieske B, et al. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation,1995,92(4):778-784.
    35. Ueda N, Zipes DP, Wu J. Prior ischemia enhances arrhythmogenicity in isolated canine ventricular wedge model of long QT 3. Cardiovasc Res,2004,63(1):69-76.
    36. Doggrell SA, Brown L. D-Sotalol:death by the SWORD or deserving of further consideration for clinical use? Expert Opin Investig Drugs,2000,9(7):1625-1634.
    37. Naccarelli GV, Wolbrette DL, Patel HM, et al. Amiodarone:clinical trials. Curr Opin Cardiol,2000,15(1):64-72.
    38. Roden DM. Taking the "idio" out of "idiosyncratic":predicting torsades de pointes. Pacing Clin Electrophysiol,1998,21(5):1029-1034.
    39. Roden DM, Yang T. Protecting the heart against arrhythmias:potassium current physiology and repolarization reserve. Circulation,2005,112(10):1376-1378.
    40. Xiao L, Xiao J, Luo X, et al. Feedback remodeling of cardiac potassium current expression: a novel potential mechanism for control of repolarization reserve. Circulation,2008, 118(10):983-992.
    41. So PP, Hu XD, Backx PH, et al. Blockade of IKs by HMR 1556 increases the reverse rate-dependence of refractoriness prolongation by dofetilide in isolated rabbit ventricles. Br J Pharmacol,2006,148(3):255-263.
    42. Jost N, Papp JG, Varro A.. Slow delayed rectifier potassium current (IKs) and the repolarization reserve. Ann Noninvasive Electrocardiol,2007,12(1):64-78.
    43.郭继鸿.心脏电生理学的新概念:复极储备.临床电生理杂志,2010,19(4):299-312.
    44. Sicouri S, Glass A, Ferreiro M, et al. Transseptal dispersion of repolarization and its role in the development of Torsade de Pointes arrhythmias. J Cardiovasc Electrophysiol,2010, 21(4):441-447.
    45. Aiba T, Tomaselli GF. Electrical remodeling in the failing heart. Curr Opin Cardiol,2010, 25(1):29-36.
    46. Biliczki P, Virag L, lost N, et al. Interaction of different potassium channels in cardiac repolarization in dog ventricular preparations:role of repolarization reserve. Br J Pharmacol,2002,137(3):361-368.
    47. Li Y, Lu ZY, Xiao JM, et al. Effect of imidapril on heterogeneity of slow component of delayed rectifying K+current in rabbit left ventricular hypertrophic myocytes. Acta Pharmacol Sin,2003,24(7):681-686.
    48. Li Y, Xue Q, Ma J, et al. Effects of imidapril on heterogeneity of action potential and calcium current of ventricular myocytes in infarcted rabbits. Acta Pharmacol Sin,2004, 25(11):1458-1463.
    49. Sanguinetti MC, Jiang C, Curran ME, et al. A mechanistic link between an inherited and an acquired cardiac arrhythmia:HERG encodes the IKr potassium channel. Cell,1995,81(2): 299-307.
    50. Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell,1999,97(2):175-187.
    51. Spector PS, Curran ME, Keating MT, et al. Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K+channel. Open-channel block by methanesulfonanilides. Cir Res,1996,78(3):499-503.
    52. Tristani-Firouzi M, Sanguinetti MC. Structural determinants and biophysical properties of HERG and KCNQ1 channel gating. J Mol Cell Cardiol,2003,35(1):27-35.
    53. Kurokawa J, Abriel H, Kass RS. Molecular basis of the delayed rectifier current I(ks) in heart. J Mol Cell Cardiol,2001,33(5):873-882.
    54. Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res,1995,76(3):351-365.
    55. Chen H, Kim LA, Rajan S, et al. Charybdotoxin binding in the I(Ks) pore demonstrates two MinK subunits in each channel complex. Neuron,2003,40(1):15-23.
    56. Iwata H, Kodama I, Suzuki R, et al. Effects of long-term oral administration of amiodarone on the ventricular repolarization of rabbit hearts. Jpn Circ J,1996,60(9):662-672.
    57. Cheng J, Kamiya K, Liu W, et al. Heterogeneous distribution of the two components of delayed rectifier K+current:a potential mechanism of the proarrhythmic effects of methane sulfonanilide class III agents. Cardiovasc Res,1999,43(1):135-147.
    58. Perper JA, Kuller LH, Cooper M. Arteriosclerosis of coronary arteries in sudden, unexpected deaths. Circulation,1975,52(6 Suppl):III27-III33.
    59. Peters NS, Green CR, Poole-Wilson PA, et al. Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation,1993,88(3):864-875.
    60. Biliczki P, Girmatsion Z, Brandes RP, et al. Trafficking-deficient long QT syndrome mutation KCNQ1-T587M confers severe clinical phenotype by impairment of KCNH2 membrane localization:evidence for clinically significant IKr-IKs alpha-subunit interaction. Heart Rhythm,2009,6(12):1792-1801.
    61. Rudy Y. Molecular basis of cardiac action potential repolarization. Ann N Y Acad Sci,2008, 1123(1):113-118.
    62. Jiang M, Cabo C, Yao J, et al. Delayed rectifier K currents have reduced amplitudes and altered kinetics in myocytes from infracted canine ventricle. Cardiovasc Res,2000,48(1): 34-43.
    63. Roden DM. Ionic mechanisms for prolongation of refractoriness and their proarrhythmic and antiarrhythmic correlates. Am J Cardiol,1996,78(4A):12-16.
    64. Busch AE, Suessbrich H, Waldegger S, et al. Inhibition of IKs in guinea pig cardiac myocytes and guinea pig Isk channels by the chromanol 293B. Pflugers Arch,1996,432(6): 1094-1096.
    65. Xiao J, Luo X, Lin H, et al. MicroRNA miR-133 represses HERG K+channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem,2007,282(17): 12363-12367.
    66.李昌繁,江时森.心力衰竭动物模型的研究进展.医学研究生学报,2007,20(5):532-534.
    67. Vermeulen JT, McGuire MA, Opthof T, et al. Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. Cardiovasc Res,1994,28(10): 1547-1554.
    68.赵晓静,崔长琮,张海柱,等.豚鼠慢性充血性心力衰竭及致心肌肥厚模型的研究.医学研究生学报,2003,16(12):891-893.
    69. Stamm C, Friehs I, Cowan DB, et al. Inhibition of tumor necrosis factor-alpha improves postischemic recovery of hypertrophied hearts. Circulation,2001,104(12 Suppl 1): 1350-1355.
    70. Anversa P, Olivetti G, Melissari M, et al. Morphometric study of myocardial hypertrophy induced by abdominal aortic stenosis. Lab Invest,1979,40(3):341-349.
    71.金凤媚,薛俊,郏艳红,等.半定量RT-PCR技术的研究及应用.天津农业科学,2008,14(1):10-13.
    72.赵文静,徐洁,包秋华,等.实时荧光定量PCR中内参基因的选择.微生物学通报,2010,37(12):1825-1829.
    73.李泱,程芮.离子通道学.湖北:湖北科学技术出版社,2007.304-406.
    74. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods,2001,25(4):402-408.
    75.胡咏梅,李法琦,罗羽慧,等.腹主动脉缩窄大鼠模型制作及临床意义.重庆医科大学学报,2004,29(3):322-324.
    76.钟明,张薇,卜培莉,等.兔舒张性心力衰竭模型的建立.基础医学与临床,2001,21(4):379-382.
    77.王蕾,王海鹏,赵彩明,等.兔舒张性心衰和收缩性心衰模型建立及间质重构的比较. 基础医学与临床,2009,29(12):1244-1248.
    78.蔡毅,何昆仑,闫丽辉,等.新西兰兔腹主动脉缩窄术(肾动脉上)后心肌收缩和舒张功能的变化.中国康复理论与实践,2007,13(3):245-247.
    79.王瑞芳,何昆仑,杨泉,等.压力负荷诱导的大鼠舒张性心力衰竭模型的建立.中华保健医学杂志,2009,11(2):92-95.
    80.闫丽辉,何昆仑,蔡毅,等.新西兰兔腹主动脉缩窄术后心肌收缩和舒张功能的变化.中华老年心脑血管病杂志,2007,9(6):404406.
    81.赵康,周启昌,龙湘党.超声心动图评价兔腹主动脉缩窄模型心功能演变的实验研究.医学临床研究,2010,27(11):2061-2063.
    82.刘彦波,王鹏,欧阳平,等.重组海葵肽类毒素hk2a对慢性充血性心力衰竭新西兰兔左心功能的影响.第一军医大学学报,2004,24(3):269-272.
    83.钟明,张供,张运,等.舒张性心力衰竭动物模型的建立及超声心动图监测.中国医学影像技术,2001,17(2):130-132.
    84.刘洪智,高传玉,雷键,等.实验性心力衰竭大鼠模型的建立及评价.中国老年学杂志,2007,27(18):1760-1763.
    85.臧小彪,张荣峰,张树龙.心力衰竭对心室肌离子通道的影响.中华临床医师杂志(电子版),2011,13(5):3868-3872.
    86. Xu X, Rials SJ, Wu Y, et al. Left ventricular hypertrophy decreases slowly but not rapidly activating delayed rectifier potassium currents of epicardial and endocardial myocytes in rabbits. Circulation,2001,103(11):1585-1590.
    87. Akar FG, Yan GX, Antzelevitch C, et al. Unique topographical distribution of M cells underlies reentrant mechanism of torsade de pointes in the long-QT syndrome. Circulation, 2002,105(10):1247-1253.
    88. Loussouarn G, Park KH, Bellocq C, et al. Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels:a functional homology between voltage-gated and inward rectifier K+ channels. EMBO J,2003,22(20): 5412-5421.
    89. Kurokawa J, Motoike HK, Rao J, et al. Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci U S A,2004,101(46):16374-16378.
    90. Tsuji Y, Zicha S, Qi XY, et al. Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia:discrete arrhythmogenic consequences related to differential delayed-rectifier changes. Circulation,2006,113(3):345-355.
    91. Akar FG, Wu RC, Juang GJ, et al. Molecular mechanisms underlying K+ current downregulation in canine tachycardia-induced heart failure. Am J Physiol Heart Circ Physiol,2005,288(6):H2887-H2896.
    92. Watanabe E, Yasui K, Kamiya K, et al. Upregulation of KCNE1 induces QT interval prolongation in patients with chronic heart failure. Circ J,2007,71(4):471-478.
    93. Rose J, Armoundas AA, Tian Y, et al. Molecular correlates of altered expression of potassium currents in failing rabbit myocardium. Am J Physiol Heart Circ Physiol,2005, 288(5):H2077-H2087.
    94. Yamashita T, Murakawa Y, Hayami N, et al. Short-term effects of rapid pacing on mRNA level of voltage-dependent K(+) channels in rat atrium:electrical remodeling in paroxysmal atrial tachycardia. Circulation,2000,101(16):2007-2014.
    95. Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ Res,1991, 68(6):1729-1741.
    96. Lechat P, Hulot JS, Escolano S, et al. Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trial. Circulation,2001,103(10): 1428-1433.
    97. Pak PH, Nuss HB, Tunin RS, et al. Repolarization abnormalities, arrhythmia and sudden death in canine tachycardia-induced cardiomyopathy. J Am Coll Cardiol,1997,30(2): 576-584.
    98. Bril A, Forest MC, Gout B. Ischemia and reperfusion-induced arrhythmias in rabbits with chronic heart failure. Am J Physiol,1991,261(2 Pt 2):H301-H307.
    99. Kannel WB, Plehn JF, Cupples LA. Cardiac failure and sudden death in the Framingham Study. Am Heart J,1988,115(4):869-875.
    100. Gelband H, Bassett AL. Depressed transmembrane potentials during experimentally induced ventricular failure in cats. Circ Res,1973,32(5):625-634.
    101.Nordin C, Siri F, Aronson RS. Electrophysiologic characteristics of single myocytes isolated from hypertrophied guinea-pig hearts. J Mol Cell Cardiol,1989,21(7):729-739.
    102. Li HG, Jones DL, Yee R, et al. Electrophysiologic substrate associated with pacing-induced heart failure in dogs:potential value of programmed stimulation in predicting sudden death. J Am Coll Cardiol,1992,19(2):444-449.
    103. Janse MJ. Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res,2004,61(2):208-217.
    104. Bryant SM, Shipsey SJ, Hart G. Regional differences in electrical and mechanical properties of myocytes from guinea-pig hearts with mild left ventricular hypertrophy. Cardiovasc Res,1997,35(2):315-323.
    105.Keung EC, Aronson RS. Non-uniform electrophysiological properties and electrotonic interaction in hypertrophied rat myocardium. Circ Res,1981,49(1):150-158.
    106. Yan GX, Rials SJ, Wu Y, et al. Ventricular hypertrophy amplifies transmural repolarization dispersion and induces early afterdepolarization. Am J Physiol Heart Circ Physiol,2001, 281(5):H1968-H1975.
    107. Armoundas AA, Wu R, Juang G, et al. Electrical and structural remodeling of the failing ventricle. Pharmacol Ther,2001,92(2-3):213-230.
    108. Gogelein H, Bruggemann A, Gerlach U, et al. Inhibition of IKs channels by HMR 1556. Naunyn Schmiedebergs Arch Pharmacol,2000,362(6):480-488.
    109. Ramakers C, Vos MA, Doevendans PA, et al. Coordinated down-regulation of KCNQ1 and KCNE1 expression contributes to reduction of I(Ks) in canine hypertrophied hearts. Cardiovasc Res,2003,57(2):486-496.
    110. Sun Y, Quan XQ, Fromme S, et al. A novel mutation in the KCNH2 gene associated with short QT syndrome. J Mol Cell Cardiol,2011,50(3):433-441.
    111. El Harchi A, Melgari D, Zhang YH, et al. Action potential clamp and pharmacology of the variant 1 Short QT Syndrome T618I hERG K+channel. PLoS One,2012,7(12):e52451.
    112. Shao C, Lu Y, Liu M, et al. Electrophysiological study of V535M hERG mutation of LQT2. J Huazhong Univ Sci Technolog Med Sci,2011,31(6):741-748.
    113. Guo J, Wang T, Yang T, et al. Interaction between the cardiac rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels revealed by low K+-induced hERG endocytic degradation. J Biol Chem,2011,286(40):34664-34674.
    114. Ehrlich JR, Pourrier M, Weerapura M, et al. KvLQTl modulates the distribution and biophysical properties of HERG. A novel alpha-subunit interaction between delayed rectifier currents. J Biol Chem,2004,279(2):1233-1241.
    115. Brunner M, Peng X, Liu GX, et al. Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome. J Clin Invest,2008,118(6):2246-2259.
    116. Yue L, Feng J, Li GR, et al. Transient outward and delayed rectifier currents in canine atrium:properties and role of isolation methods. Am J Physiol,1996,270(6 Pt 2): H2157-H2168.
    117. Varro A, Balati B, Iost N, et al. The role of the delayed rectifier component IKs in dog ventricular muscle and Purkinje fibre repolarization. J Physiol,2000,523(1):67-81.
    1. McKelvie RS. Heart failure. Clin Evid (Online),2011, pii:0204.
    2. Kelesidis I, Travin MI. Use of cardiac radionuclide imaging to identify patients at risk for arrhythmic sudden cardiac death. J Nucl Cardiol,2012,19(1):142-152.
    3. Kjekshus J. Arrhythmias and mortality in congestive heart failure. Am J Cardiol,1990, 65(19):421-481.
    4. De Maria R, Gavazzi A, Caroli A, et al. Ventricular arrhythmias in dilated cardiomyopathy as an independent prognostic hallmark. Italian Multicenter Cardiomyopathy Study (SPIC) Group. Am J Cardiol,1992,69(17):1451-1457.
    5. Romeo F, Pelliccia F, Cianfrocca C, et al. Predictors of sudden death in idiopathic dilated cardiomyopathy. Am J Cardiol,1989,63(1):138-140.
    6. Doval HC, Nul DR, Grancelli HO, et al. Nonsustained ventricular tachycardia in severe heart failure. Independent marker of increased mortality due to sudden death. GESICA-GEMA Investigators. Circulation,1996,94(12):3198-3203.
    7. Packer M. Lack of relation between ventricular arrhythmias and sudden death in patients with chronic heart failure. Circulation,1992,85(1 Suppl):150-156.
    8. Teerlink JR, Jalaluddin M, Anderson S, et al. Ambulatory ventricular arrhythmias in patients with heart failure do not specifically predict an increased risk of sudden death. Circulation,2000,101(1):40-46.
    9. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med,2002,346(12): 877-883.
    10. Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res,1998,39(1):60-76.
    11. Vermeulen JT, McGuire MA, Opthof T, et al. Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. Cardiovasc Res,1994,28(10): 1547-1554.
    12. Odemuyiwa O, Malik M, Farrell T, et al. Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am J Cardiol,1991, 68(5):434-439.
    13. Opthof T, Coronel R, Rademaker HM, et al. Changes in sinus node function in a rabbit model of heart failure with ventricular arrhythmias and sudden death. Circulation,2000, 101(25):2975-2980.
    14. Verkerk AO, Wilders R, Coronel R, et al. Ionic remodeling of sinoatrial node cells by heart failure. Circulation,2003,108(6):760-766.
    15. Jose AD, Collignon D. The normal range and determinants of the intrinsic heart rate in man. Cardiovasc Res,1970,4(2):160-167.
    16. Vatner SF, Higgins CB, Braunwald E. Sympathetic and parasympathetic components of reflex tachycardia induced by hypotension in conscious dogs with and without heart failure. Cardiovasc Res,1974,8(2):153-161.
    17. Hasenfuss G, Reinecke H, Studer R, et al. Calcium cycling proteins and force-frequency relationship in heart failure. Basic Res Cardiol,1996,91(Suppl 2):17-22.
    18. Lechat P, Hulot JS, Escolano S, et al. Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trial. Circulation,2001,103(10): 1428-1433.
    19. Chang SL, Chen YC, Yeh YH, et al. Heart failure enhanced pulmonary vein arrhythmogenesis and dysregulated sodium and calcium homeostasis with increased calcium sparks. J Cardiovasc Electrophysiol,2011,22(12):1378-1386.
    20. Pogwizd SM, Bers DM. Na/Ca exchange in heart failure:contractile dysfunction and arrhythmogenesis. Ann N Y Acad Sci,2002,976:454-465.
    21. Pak PH, Nuss HB, Tunin RS, et al. Repolarization abnormalities, arrhythmia and sudden death in canine tachycardia-induced cardiomyopathy. J Am Coll Cardiol,1997,30(2): 576-584.
    22. Stevenson WG, Stevenson LW, Middlekauff HR, et al. Sudden death prevention in patients with advanced ventricular dysfunction. Circulation,1993,88(6):2953-2961.
    23. Bril A, Forest MC, Gout B. Ischemia and reperfusion-induced arrhythmias in rabbits with chronic heart failure. Am J Physiol,1991,261(2 Pt 2):H301-H307.
    24. Kannel WB, Plehn JF, Cupples LA. Cardiac failure and sudden death in the Framingham Study. Am Heart J,1988,115(4):869-875.
    25.刘韬,秦牧,陈阵,等.慢性心力衰竭兔离体心室电整复性变化对室性心律失常的影响.中华心血管病杂志,2012,40(6):467472.
    26. Bryant SM, Shipsey SJ, Hart G. Regional differences in electrical and mechanical properties of myocytes from guinea-pig hearts with mild left ventricular hypertrophy. Cardiovasc Res,1997,35(2):315-323.
    27. Keung EC, Aronson RS. Non-uniform electrophysiological properties'and electrotonic interaction in hypertrophied rat myocardium. Circ Res,1981,49(1):150-158.
    28. Pak PH, Nuss HB, Tunin RS, et al. Repolarization abnormalities, arrhythmia and sudden death in canine tachycardia-induced cardiomyopathy. J Am Coll Cardiol,1997,30(2): 576-584.
    29. Yan GX, Rials SJ, Wu Y, et al. Ventricular hypertrophy amplifies transmural repolarization dispersion and induces early afterdepolarization. Am J Physiol Heart Circ Physiol,2001, 281(5):H1968-H1975.
    30. Li H, Liu Y, Huang H, et al. Activation of p3-adrenergic receptor inhibits ventricular arrhythmia in heart failure through calcium handling. Tohoku J Exp Med,2010,222(3): 167-174.
    31. Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res,1999,42(2):270-283.
    32. Sakakibara Y, Furukawa T, Singer DH, et al. Sodium current in isolated human ventricular myocytes. Am J Physiol,1993,265(4 Pt 2):H1301-H1309.
    33. Ka'ab S, Nuss HB, Chiamvimonvat N, et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res, 1996,78(2):262-273.
    34. Beuckelmann DJ, Nabauer M, Erdmann E. Characteristics of calcium-current in isolated human ventricular myocytes from patients with terminal heart failure. J Mol Cell Cardiol, 1991,23(8):929-937.
    35. Mewes T, Ravens U. L-type calcium currents of human myocytes from ventricle of non-failing and failing hearts and from atrium. J Mol Cell Cardiol,1994,26(10): 1307-1320.
    36. Rasmussen RP, Minobe W, Bristow MR. Calcium antagonist binding sites in failing and nonfailing human ventricular myocardium. Biochem Pharmacol,1990,39(4):691-696.
    37. Mukherjee R, Hewett K.W, Spinale FG. Myocyte electrophysiological properties following the development of supraventricular tachycardia-induced cardiomyopathy. J Mol Cell Cardiol,1995,27(6):1333-1348.
    38. Tsuji Y, Opthof T, Kamiya K, et al. Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res,2000,48(2):300-309.
    39. He J, Conklin MW, Foell JD, et al. Reduction in density of transverse tubules and L-type Ca(2+) channels in canine tachycardia-induced heart failure. Cardiovasc Res,2001,49(2): 298-307.
    40. Chen X, Piacentino V 3rd, Furukawa S, et al. L-type Ca2+channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ Res,2002,91(6):517-524.
    41. Beuckelmann DJ, Nabauer M, Erdmann E. Alterations of K+currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res,1993,73(2): 379-385.
    42. Rozanski GJ, Xu Z, Whitney RT, et al. Electrophysiology of rabbit ventricular myocytes following sustained rapid ventricular pacing. J Mol Cell Cardiol,1997,29(2):721-732.
    43. Li GR, Lau CP, Ducharme A, et al. Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Heart Circ Physiol,2002, 283(3):H1031-H1041.
    44. Ahmmed GU, Dong PH, Song G, et al. Changes in Ca(2+) cycling proteins underlie cardiac action potential prolongation in a pressure-overloaded guinea pig model with cardiac hypertrophy and failure. Circ Res,2000,86(5):558-570.
    45. Winslow RL, Rice J, Jafri S, et al. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II:model studies. Circ Res,1999,84(5):571-586.
    46. Veldkamp MW, van Ginneken AC, Opthof T, et al. Delayed rectifier channels in human ventricular myocytes. Circulation,1995,92(12):3497-3504.
    47. Sugiyama H, Nakamura K, Morita H, et al. Circulating KCNH2 current-activating factor in patients with heart failure and ventricular tachyarrhythmia. PLoS One,2011,6(5):e19897.
    48. Priebe L, Beuckelmann DJ. Simulation study of cellular electric properties in heart failure. Circ Res,1998,82(11):1206-1223.
    49. Gwathmey JK, Copelas L, MacKinnon R, et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res,1987,61(1):70-76.
    50. Beuckelmann DJ, Nabauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation,1992,85(3): 1046-1055.
    51. Sipido KR, Volders PG, Vos MA, et al. Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure:a new target for therapy? Cardiovasc Res,2002,53(4): 782-805.
    52. Yao A, Su Z, Nonaka A, et al. Abnormal myocyte Ca2+homeostasis in rabbits with pacing-induced heart failure. Am J Physiol,1998,275(4 Pt 2):H1441-H1448.
    53. Pogwizd SM, Qi M, Yuan W, et al. Upregulation of Na(+)/Ca(2+) exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res,1999,85(11): 1009-1019.
    54. Yoshiyama M, Takeuchi K, Hanatani A, et al. Differences in expression of sarcoplasmic reticulum Ca2+-ATPase and Na+-Ca2+exchanger genes between adjacent and remote noninfarcted myocardium after myocardial infarction. J Mol Cell Cardiol,1997,29(1): 255-264.
    55. Weber CR, Piacentino V 3rd, Houser SR, et al. Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation,2003,108(18):2224-2229
    56. Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor):defective regulation in failing hearts. Cell, 2000,101(4):365-376.
    57. Yano M, Ono K, Ohkusa T, et al. Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca(2+) leak through ryanodine receptor in heart failure. Circulation,2000,102(17):2131-2136.
    58. Baartscheer A, Schumacher CA, van Borren MM, et al. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res,2003,57(4): 1015-1024.
    59. Bers DM, Eisner DA, Valdivia HH. Sarcoplasmic reticulum Ca2+and heart failure:roles of diastolic leak and Ca2+transport. Circ Res,2003,93(6):487-490.
    60. O'Rourke B, Kass DA, Tomaselli GF, et al. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, Ⅰ:experimental studies. Circ Res, 1999,84(5):562-570.
    61. Pogwizd SM, Sipido KR, Verdonck F, et al. Intracellular Na in animal models of hypertrophy and heart failure:contractile function and arrhythmogenesis. Cardiovasc Res, 2003,57(4):887-896.
    62. Meszaros J, Khananshvili D, Hart G. Mechanisms underlying delayed afterdepolarizations in hypertrophied left ventricular myocytes of rats. Am J Physiol Heart Circ Physiol,2001, 281(2):H903-H914.
    63. Verkerk AO, Veldkamp MW, Baartscheer A, et al. Ionic mechanism of delayed afterdepolarizations in ventricular cells isolated from human end-stage failing hearts. Circulation,2001,104(22):2728-2733.
    64. Verkerk AO, Veldkamp MW, Bouman LN, et al. Calcium-activated Cl(-) current contributes to delayed afterdepolarizations in single Purkinje and ventricular myocytes. Circulation,2000,101(22):2639-2644.
    65. Pogwizd SM, Schlotthauer K, Li L, et al. Arrhythmogenesis and contractile dysfunction in heart failure:Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res,2001,88(11):1159-1167.
    66. Baartscheer A, Schumacher CA, Belterman CN, et al. SR calcium handling and calcium after-transients in a rabbit model of heart failure. Cardiovasc Res,2003,58(1):99-108.
    67. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine.as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med,1984,311(13):819-823.
    68.许冬秀,许晓伟,纪翠玲,等.心力衰竭患者133例死亡原因及影响因素分析.中华心血管病杂志,2009,37(10):875-877.
    69. Nuss HB, Kaab S, Kass DA, et al. Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. Am J Physiol,1999,277(1 Pt 2):H80-H91.
    70. Volders PG, Kulcsar A, Vos MA, et al. Similarities between early and delayed afterdepolarizations induced by isoproterenol in canine ventricular myocytes. Cardiovasc Res,1997,34(2):348-359.
    71. Veldkamp MW, Verkerk AO, van Ginneken AC, et al. Norepinephrine induces action potential prolongation and early afterdepolarizations in ventricular myocytes isolated from human end-stage failing hearts. Eur Heart J,2001,22(11):955-963.
    72. de Bakker JM, Coronel R, Tasseron S, et al. Ventricular tachycardia in the infarcted, Langendorff-perfused human heart:role of the arrangement of surviving cardiac fibers. J Am Coll Cardiol,1990,15(7):1594-1607.
    73. de Bakker JM, van Capelle FJ, Janse MJ, et al. Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease:electrophysiologic and anatomic correlation. Circulation,1988,77(3):589-606.
    74. de Bakker JM, van Capelle FJ, Janse MJ, et al. Slow conduction in the infarcted human heart.'Zigzag'course of activation. Circulation,1993,88(3):915-926.
    75. de Bakker JM, van Capelle FJ, Janse MJ, et al. Macroreentry in the infarcted human heart: the mechanism of ventricular tachycardias with a "focal" activation pattern. J Am Coll Cardiol,1991,18(4):1005-1014.
    76. Misier AR, Opthof T, van Hemel NM, et al. Dispersion of'refractoriness'in noninfarcted myocardium of patients with ventricular tachycardia or ventricular fibrillation after myocardial infarction. Circulation,1995,91(10):2566-2572.
    77. Pogwizd SM. Focal mechanisms underlying ventricular tachycardia during prolonged ischemic cardiomyopathy. Circulation,1994,90(3):1441-1458.
    78. Massare J, Berry JM, Luo X, et al. Diminished cardiac fibrosis in heart failure is associated with altered ventricular arrhythmia phenotype. J Cardiovasc Electrophysiol,2010,21(9): 1031-1037.
    79. de Bakker JM, van Capelle FJ, Janse MJ, et al. Fractionated electrograms in dilated cardiomyopathy:origin and relation to abnormal conduction. J Am Coll Cardiol,1996, 27(5):1071-1078.
    80. Kawara T, Derksen R, de Groot JR, et al. Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation,2001,104(25):3069-3075.
    81. Pogwizd SM, McKenzie JP, Cain ME. Mechanisms underlying spontaneous and induced ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy. Circulation, 1998,98(22):2404-2414.
    82. Anderson KP, Walker R, Urie P, et al. Myocardial electrical propagation in patients with idiopathic dilated cardiomyopathy. J Clin Invest,1993,92(1):122-140.
    83. Pogwizd SM. Nonreentrant mechanisms underlying spontaneous ventricular arrhythmias in a model of nonischemic heart failure in rabbits. Circulation,1995,92(4):1034-1048.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700