用户名: 密码: 验证码:
神经生长因子对陈旧性心梗兔非梗死区心肌细胞及交感神经作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的从整体和细胞水平研究了NGF及p75NTR在心梗后对交感神经及心肌细胞电生理的作用,以揭示心梗后室性心律失常的发生机制。
     第一部分神经生长因子对陈旧性心梗兔交感神经分布及室颤阈值的影响
     方法
     日本大耳兔按体重随机分为四组,每组10只:陈旧性心梗(HMI)组、给予NGF刺激p75NTR作为p75NTR激活组、给予p75NTR受体单克隆抗体抑制p75NTR作为p75NTR抑制组、假手术(sham)组。实验组兔结扎冠状动脉左回旋支。10w后测各组兔的室颤阈值(VFT)。用免疫组织化学技术标记,检测S-100蛋白阳性和TH阳性的神经纤维的分布及其密度。
     结果
     HMI组的VFT与Sham组比较显著降低;p75 NTR激活组的VFT与HMI组和Sham组比较明显降低;p75 NTR抑制组VFT与p75 NTR激活组相比有显著性差异。HMI组的神经纤维密度与Sham组比较增加明显;p75 NTR激活组的神经纤维密度较Sham组和HMI组显著增加。
     结论
     1.陈旧性心梗兔VFT降低,交感神经纤维密度增加。
     2.NGF可能通过与p75NTR结合后促进心梗后交感神经增生,降低VFT,增加发生恶性心律失常的风险。
     3. p75NTR抑制剂可部分逆转NGF的上述作用,提高陈旧性心梗兔的VFT,抑制非梗死区交感神经增生。
     第二部分神经生长因子对陈旧性心梗兔心肌细胞动作电位时程和复极电流的影响
     方法
     日本大耳兔按体重随机分为3组:HMI组,HMI+NGF组,Sham组。8w后,从非梗死区的心肌壁分离出心肌细胞,并应用全细胞膜片钳技术检测这些细胞的动作电位和Ito、ICa,L、IKr、及IKs等电流的情况。
     结果
     HMI组和HMI+NGF组的APD与对照组比较显著延长。HMI+NGF组及HMI组的Ito电流密度明显降低,HMI+NGF组激活曲线右移,失活后通道恢复减慢。HMI+NGF组ICa,L电流较HMI组及Sham组明显增大。HMI+NGF的ICa,L半激活电压左移,通道失活后恢复加速。HMI+NGF组IKr,tail电流密度降低显著,稳态失活曲线向负电位移动,失活后恢复时间常数延长。HMI+NGF组心肌细胞的IKs,tail幅值明显变小,电流在各个电位下均显著降低,且随着电位增加电流密度降低幅度相对更大,NGF使通道失活曲线向更负的方向移动,从而加速通道失活,NGF使灭活时间常数降低。
     结论
     1.陈旧性心梗兔模型非梗死区心肌细胞的APD延长,NGF使APD延长更加明显,而APA和RMP基本不变。
     2.NGF使陈旧性心梗兔非梗死区心肌细胞的Ito明显降低,其门控机制可能与激活曲线右移,通道开放减少,关闭态失活增加有关。
     3.NGF使陈旧性心梗兔非梗死区心肌细胞钙通道的失活减慢,恢复加快,进而导致ICa,L电流增大。
     4. NGF可降低陈旧性心梗兔非梗死区心肌细胞的IKr,tail电流,主要通过加速通道失活,减慢通道恢复所致。
     5.NGF使陈旧性心梗兔非梗死区心肌细胞的IKs.tail降低,机制可能为加快通道失活和灭活动力学所致。
Sympathetic hyperinnervation in healed-infarction is an important factor for triggering ventricular arrhythmias by binding to p75NTR, which is thought to be due to sudden cardiac death during the post-infarction period. We examined the effect of NGF and p75NTR on the action potential in cardiomyocytes.
     The first part Effects of Nerve Growth Factor on the Ventricular Fibrillation Threshold and the Distribution of Sympathetic Nerve in a Rabbit Model of Healed Myocardial Infarction
     Methods:Forty rabbits were divided into four groups as HMI group, p75 NTR activation group, p75 NTR inhibition group and the sham group. Rabbits with occlusion of the left circumflex coronary artery were prepared and allowed to recover for ten weeks. The VFTs in rabbit heart with HMI and sham group were studied. The distribution and densities of S-100 protein and tyrosine hydroxylase(TH) in ventricle were detected with immunohistochemical technique.
     Results:The VFT of p75 NTR activation group were lower significantly than those of HMI and sham groups. Comparing with those in sham and HMI groups, the distribution of sympathetic nerve fibers in p75 NTR activation group increased significantly (P<0.05). The distributions of nerve fibers in p75 NTR inhibition group were significantly reduced than those of p75 NTR activation and HMI groups.
     Conclusions:The VFT decreased and the densities of sympathetic nerve increased in the noninfarcted myocardium in a rabbit model of healed Myocardial Infarction. NGF is essential for enhanced sympathetic hyperinnervation and decreased VFT that may be mediated by binding to p75NTR in a rabbit model of healed Myocardial Infarction. These changes were partly reversed by p75 NTR inhibition.
     The second part Effects of Nerve Growth Factor on the Action Potential Duration and Repolarizing Currents in a Rabbit Model of Healed Myocardial Infarction
     Methods:Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (HMI group). During ligation surgery of the left coronary artery, a polyethylene pipe was placed near the left stellate ganglion in the subcutis of the neck for the purpose of administering NGF 400 U/day for eight weeks (HMI+NGF group). Cardiomyocytes were isolated from regions of the noninfarcted left ventricular wall and the action potentials and ion currents in these cells were recorded using whole-cell patch clamps.
     Results:The lengthening of the APD was more notable after NGF infusion than that of the HMI and control cardiomyocytes. Current amplitudes of Ito in HMI+NGF cardiomyocytes were markedly smaller than that in HMI and control cardiomyocytes. Current calcium amplitudes (ICa, L) in HMI+NGF cardiomyocytes were significantly increased than other groups. Current amplitudes of IKr in the HMI cardiomyocytes with NGF treatment were smaller than those of the HMI and control cardiomyocytes. Compared with the HMI group, the current amplitudes of IKs from NGF treated HMI cardiomyocytes were significantly smaller.
     Conclusion:After infusion of NGF, APD in a rabbit model of healed Myocardial Infarction would be prolonged. This due to that Ito,IKr and IKs were decreased, and that Ica, L were significantly increased.
引文
[1]Jardine DL, Charles CJ, ForresterMD, et al. A neural mechanism for sudden death after myocardial infarction [J]. Clin Auton Res,2003,13(5):339-341.
    [2]Aimond F, Alvarez JL, Rauzier JM, et al. Ionic basis of ventricular arrhythmias in remodeled rat heart during long-term myocardial infarction [J]. Cardiovasc Res 1999,42:402-415.
    [3]St John Sutton M, Lee D, Rouleau J. L, et al. Left ventricular remodeling and ventricular arrhythmias after myocardial infarction [J]. Circulation 2003, 107:2577-2582.
    [4]Cao J M, Fishbein M C, Han J B,et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia [J]. Circulation,2000, 101(16):1960-1969.
    [5]Korsching S, Thoenen H. Nerve growth factor supply for sensory neurons: site of origin and competition with the sympathetic nervous system. Neurosci. Lett 1985,54:201-205.
    [6]Glebova NO, Ginty DD. Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J. Neurosci 2004,24:743-751.
    [7]Zhou S, Jung BC, Tan AY, et al. Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death. Heart Rhythm 2008,5:131-139.
    [8]Zhou S, Paz O, Cao JM, et al. Differential beta-adrenoceptor expression induced by nerve growth factor infusion into the canine right and left stellate ganglia. Heart Rhythm 2005,2:1347-1355.
    [9]Swissa M, Zhou S, Gonzalez-Gomez I, et al. Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol 2004,43:858-864.
    [10]Zhou S, Cao JM, Tebb ZD, et al. Modulation of QT interval by cardiac sympathetic nerve sprouting and the mechanisms of ventricular arrhythmia in a canine model of sudden cardiac death. J Cardiovasc Electrophysiol 2001,12:1068-1073.
    [11]Huang B, Qin D, El-Sherif N, et al. Spatial alteration of Kv channels expression and K+ currents in post-MI remodeled rat heart [J]. Cardiovasc Res,2001 Nov,52(2):246-254.
    [12]Wohaib H, Abdi J, Timothy D, et al. Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats [J]. Brain Res,2006,1124:142-154.
    [13]Zhou S, Chen LS, Miyauchi Y, et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs [J]. Circ Res,2004,95(1):76-83.
    [14]Zhou S, Cao JM, Swissa M, et al. Low-affinity NGF receptor p75NTR immonoreactivity in the myocardium with sympathetic hyperinnervation [J]. J Cardiovasc Elect rophysiol,2004,15:430-437.
    [15]Cao JM, Chen LS, KenKnight BH, et al. Nerve sprouting and sudden cardiac death[J]. Circ Res,2000,86:816-821.
    [16]Yang B, Slonimsky JD, Birren SJ. A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor [J]. Nat Neurosci,2002,5(6):539-545.
    [17]Slonimsky JD, Mattaliano MD, Moon JI, et al. Role for calcium/calmodulin-dependent protein kinase Ⅱin the p75-mediated regulation of sympathetic cholinergic transmission[J]. Proc Natl Acad Sci U S A,2006,103(8):2915-2919.
    [1]Aimond F, Alvarez JL, Rauzier JM, et al. Ionic basis of ventricular arrhythmias in remodeled rat heart during long-term myocardial infarction. Cardiovasc Res 1999;42:402-415.
    [2]St John Sutton M., Lee D., Rouleau J. L., et al, Left ventricular remodeling and ventricular arrhythmias after myocardial infarction. Circulation 2003; 107:2577-2582.
    [3]Korsching S, Thoenen H. Nerve growth factor supply for sensory neurons: site of origin and competition with the sympathetic nervous system. Neurosci. Lett 1985;54:201-205.
    [4]Glebova NO, Ginty DD. Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J. Neurosci 2004;24:743-751.
    [5]Zhou S, Jung BC, Tan AY, et al. Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death. Heart Rhythm 2008;5:131-139.
    [6]Zhou S, Paz O, Cao JM, et al. Differential beta-adrenoceptor expression induced by nerve growth factor infusion into the canine right and left stellate ganglia. Heart Rhythm 2005;2:1347-1355.
    [7]Swissa M, Zhou S, Gonzalez-Gomez I, et al. Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol 2004;43:858-864.
    [8]Zhou S, Cao JM, Tebb ZD, et al. Modulation of QT interval by cardiac sympathetic nerve sprouting and the mechanisms of ventricular arrhythmia in a canine model of sudden cardiac death. J Cardiovasc Electrophysiol 2001;12:1068-1073.
    [9]Li Y, Niu HY, Liu N, et al. Effect of imidapril on the effective refractory period and sodium current of ventricular noninfarction zone in healed myocardial infarction. Yao Xue Xue Bao 2005;40:654-658.
    [10]Pascale P, Schlaepfer J, Oddo M, et al.Ventricular arrhythmia in coronary artery disease:limits of a risk stratification strategy based on the ejection fraction alone and impact of infarct localization. Europace 2009;11:1639-1646.
    [11]Billman GE. Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death:effect of endurance exercise training. Am J Physiol Heart Circ Physiol 2009;297:H1171-H193.
    [12]Huang S, Patterson E, Yu X, et al. Proteasome inhibition 1 h following ischemia protects GRK2 and prevents malignant ventricular tachyarrhythmias and SCD in a model of myocardial infarction. Am J Physiol Heart Circ Physiol 2008;294:H1298-H1303.
    [13]Swissa M, Zhou S, Gonzalez-Gomez I, et al. Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol 2004;43:858-864.
    [14]Ducceschi V, Di Micco G, Sarubbi B, et al, Iacono A. Ionic mechanisms of ischemia-related ventricular arrhythmias. Clin Cardiol 1996; 19:325-331.
    [15]Cao JM, Chen LS, KenKnight BH, et al. Nerve sprouting and sudden cardiac death[J]. Circ Res,2000,86:816-821.
    [16]Zhou S, Chen LS, Miyauchi Y, et al Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs[J]. Circ Res,2004,95(1):76-83.
    [17]Wohaib H, Abdi J, Timothy D, et al. Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats [J]. Brain Res,2006; 1124:142-154.
    [18]Zhou S, Cao JM, Swissa M, et al. Low-affinity NGF receptor p75NTR immonoreactivity in the myocardium with sympathetic hyperinnervation [J]. J Cardiovasc Elect rophysiol,2004,15:430-437.
    [19]Maczewski M, Maczewska J, Duda M. Hypercholesterolaemia exacerbates ventricular remodelling after myocardial infarction in the rat:role of angiotensin Ⅱ type 1 receptors. Br J Pharmacol 2008; 154:1640-1648.
    [20]Perrier E, Kerfant BG, Lalevee N, et al. Mineralocorticoid receptor antagonism prevents the electrical remodeling that precedes cellular hypertrophy after myocardial infarction. Circulation 2004; 110:776-783.
    [21]Gomez AM, Benitah JP, Henzel D, et al. Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle. Am J Physiol 1997; 272:H1078-H1086.
    [22]Merot J, Probst V, Debailleul M, et al. Electropharmacological characterization of cardiac repolarization in German shepherd dogs with an inherited syndrome of sudden death; abnormal response to potassium channel blockers. J Am Coll Cardiol 2000; 36(3):939-947.
    [23]Sanguinetti MC, Jurkiewicz NK, Scott A, et al. Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes. Mechanism of action. Circ Res 1991; 68:77-84.
    [24]Jiang M, Cabo C, Yao J, et al. Delayed rectifier K currents have reduced amplitudes and altered kinetics in myocytes from infarcted canine ventricle. Cardiovasc Res 2000;48:34-43.
    [25]Roden DM. Repolarization reserve:a moving target. Circulation 2008; 118:981-982.
    [26]郭继鸿,复极储备[J],临床心电学杂志.2010;19(4):299-312.
    [27]Roden D.M., Lazzara R., Rosen M. et al. Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS. Circulation 1996; 94:1996-2012. Tomaselli G.F., Marban, E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc. Res.1999; 42:270-283.
    [1]Vander Zee CE, Ross GM, Riopelle RJ, et al. Survival of cholinergic forebrain neurons in developing p75NGFR-deficient mice[J]. J Sci,1996,274(5293):1729-1732.
    [2]Bronfman FC, Fainzilber M. Multi-tasking by the p75 neurotrophin receptor:sortilin things out[J]? EMBO Rep,2004,5(9):867-871.
    [3]Hamanoue M, Middleton G, Wyatt S, et al. p75-mediated NF-kappaB activation enhances the survival response of developing sensory neurons to nerve growth factor[J]. Mol Cell Neurosci,1999,14(1):28-40.
    [4]Foehr ED, Lin X, O'Mahony A, et al. NF-kappa B signaling promotes both cell survival and neurite process formation in nerve growth factor-stimulated PC 12 cells[J]. J Neurosci, 2000,20(20):7556-7563.
    [5]Diarra A, Geetha T, Potter P, et al. Signaling of the neurotrophin receptor p75 in relation to Alzheimer's disease[J]. Biochem Biophys Res Commun,2009,390(3):352-356.
    [6]Masoudi R, Ioannou MS, Coughlin MD, et al. Biological activity of nerve growth factor precursor is dependent upon relative levels of its receptors[J]. Biol Chem,2009, 284(27):18424-18433.
    [7]Vilar M, Charalampopoulos I, Kenchappa RS, et al. Ligand-independent signaling by disulfidecrosslinked dimers of the p75 neurotrophin receptor[J]. J Cell Sci,2009,122(Pt 18):3351-3357.
    [8]Feng D, Kim T, Ozkan E, et al. Molecular and structural insight into proNGF engagement of p75NTR and sortilin[J]. J Mol Biol.2010,396(4):967-984.
    [9]Aurikko JP, Ruotolo BT, Grossmann JG, et al. Characterization of symmetric complexes of nerve growth factor and the ectodomain of the pan-neurotrophin receptor, p75NTR[J]. J Biol Chem,2005,280(39):33453-33460.
    [10]Zhou S, Cao JM, Swissa M, et al. Low-affinity nerve growth factor receptor p75NTR immunoreactivity in the myocardium with sympathetic hyperinnervation[J]. J Cardiovasc Electrophysiol,2004,15(4):430-437.
    [11]Beth AH, Parizad B, Camille L, et al. Regulation of cardiac innervation and function via the p75 neurotrophin receptor[J]. Auton Neurosci,2008,140(1-2):40-48.
    [12]Yang B, Slonimsky JD, Birren SJ. A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor[J]. Nat Neurosci,2002,5(6):539-545.
    [13]Slonimsky JD, Mattaliano MD, Moon JI, et al. Role for calcium/calmodulin-dependent protein kinase II in the p75-mediated regulation of sympathetic cholinergic transmission[J]. Proc Natl Acad Sci U S A,2006,103(8):2915-2919.
    [14]Garcia N, Santafe MM, Tomas M, et al. Involvement of brain-derived neurotrophic factor (BDNF) in the functional elimination of synaptic contacts at polyinnervated neuromuscular synapses during development[J]. J Neurosci Res,2010,88(7):1406-1419.
    [15]Roxana P, Donner DB. The sall2 transcription factor is a novel p75NTR binding protein that promotes the development and function of neurons[J]. Ann N Y Acad Sci,2008, 1144:53-55.
    [16]Wang SY, Paula B, Timothy M, et al. p75(NTR) mediates neurotrophin-induced apoptosis of vascular smooth muscle cells[J]. Am J Pathol,2000,157 (4):1247-1258.
    [17]Caporali A, Pani E, Horrevoets AJ, et al. Neurotrophin p75 receptor (p75NTR) promotes endothelial cell apoptosis and inhibits angiogenesis:implications for diabetes-induced impaired neovascularization in ischemic limb muscles[J]. Circ Res,2008,103 (2): e15-e26.
    [18]Xu M, Remillard CV, Sachs BD, et al. P75 neurotrophin receptor regulates agonist-induced pulmonary vasoconstriction[J]. Am J Physiol Heart Circ Physiol,2008, 295(4):H1529-H1538.
    [19]Meloni M, Caporali A, Graiani G, et al. Nerve growth factor promotes cardiac repair following myocardial infarction[J]. Circ Res,2010,106(7):1275-1284.
    [20]Plum LA, Parada LF, Tsoulfas P, et al. Retinoic acid combined with neurotrophin-3 enhances the survival and neurite outgrowth of embryonic sympathetic neurons[J]. Exp Biol Med (Maywood),2001,226(8):766-775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700