用户名: 密码: 验证码:
仿复眼六角形孔径掩埋式变折型曲面微透镜阵列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物复眼具有体积小、重量轻、视场角大、时间分辨率高等突出优点,微透镜阵列能充分发挥现代光学元器件向微型化、轻量化、阵列化、集成化和智能化方向发展的重要作用,将新型微透镜阵列研究与模仿生物复眼相结合,是微透镜阵列应用研究的热点之一,更是仿生学的重要研究课题。目前,国内外对仿复眼微透镜阵列的研究已经取得了阶段性成果,但在排列方式、材质、热稳定性、抗老化、抗机械应力或更完整地模仿生物复眼光学结构等方面仍有不同的局限。
     本文在对复眼光学结构分析的基础上,建立了一种复眼光学结构模型,进而提出并设计了一种采用光刻离子交换法制作的新型六角形孔径仿复眼曲面微透镜阵列,这种微透镜阵列具有孔径为六角形、填充率高、掩埋式、折射率呈三维梯度变化、基片为曲面、玻璃材质、微透镜元为一次性制作的“复合透镜”的特点,对已有仿复眼微透镜阵列存在的局限有一定突破。
     研究了对称的六角形开孔式Tl +- Na +离子扩散理论,利用扩散动力学分析了离子扩散区域相遇形成六角形边界问题,对在玻璃中形成折射率呈三维梯度变化的六角形孔径微透镜和具有凸透镜功能的开孔表面凸起进行了光学特性、成像特性分析,用矩阵光学的方法讨论了六角形孔径曲面微透镜阵列的光学特性。采用光刻离子交换法制作了仿复眼六角形孔径曲面型微透镜阵列,对其中的曝光掩模板的设计、基片制作、光刻、开孔蚀刻、离子交换等关键工艺进行了研究。在对玻璃材料的扩散特性测试的基础上,研究了中心距较大的六角形和圆形(为六角形内切圆)两种开孔的同温离子扩散特性,进而采用优化的方案,在曲率半径为250mm、直径为25mm的球面玻璃基片上成功制作了有2052个有效微透镜元的仿复眼六角形孔径曲面微透镜阵列。最后对制作的六角形孔径曲面微透镜阵列的形貌、曝光引起的开孔形变、多重成像、焦距、F数、球差、光斑、折射率分布等进行了观察、测试和分析,得到了如下结果:
     (1)采用光刻离子交换工艺,可一次性制作与复眼屈光器结构类似的六角形孔径曲面微透镜阵列;
     (2)当开孔设计为周期性六角形排列时,采用光刻离子交换工艺可以制作出边界为六角形的高填充率仿复眼微透镜阵列,但中心距相对较小的六角形开孔(相对于圆形开孔)是最佳的;
     (3)开孔式离子扩散的平均扩散速率、扩散系数因开孔形状、扩散方向不同而呈现不同的变化规律;
     (4)光刻离子交换法制作曲率半径较大(约为基片直径的20倍)的曲面微透镜阵列时,可以采用平面型曝光模板,图形形变率可忽略;
     (5)采用光刻离子交换工艺制作的曲面微透镜阵列多重成像质量、光学对称均匀性良好。焦距、F数自中心至边缘逐渐变小,数值孔径自中心向边缘逐渐变大,成像畸变较小,球差较为明显,聚焦性能较好,扫描光斑尺寸达4.92μm。
     此外,论文还提出了复眼时间分辨率、平面型掩模板对球面型基片曝光的形变率概念,并进行了分析;设计了一种简便的近似测量微透镜球差的方法。
Compound eyes have some excellent features such as small size, light weight, big field angle of view and high time resolution. At the same time, microlens arrays play important roles in the development of modern optical systems advancing to micromation, lightweight, arraying, integrating and intelligentizing. To combine the novel microlens arrays and the simulation of compound eyes is one of the hot topics about microlens arrays and bionics. At the present time, phasic results have been obtained on microlens arrays simulated compound eyes, but it is limited in arrangement, material, thermal stability, corrosion resistance, anti-aging, responding to external stress or simulating whole optical functions of compound eyes.
     In this dissertation, based on analysis of optical structure of compound eyes, a model was founded. A method of fabricating a novel microlens array simulated compound eyes by photolithography and ion-exchange techniques is presented and designed. This kind of microlens with hexagonal aperture, high fill factor and gradient refractive index distributed in 3D is buried in a convex glass substrate, and each element of the microlens is a“compound lens”formed in a same process and in same time, which would breake the limitations of current ones in some aspects.
     The dissertation is focused on the diffusion theoretics of symmetrical apertured ion-exchange of Tl+-Na+, analysing the formation of hexagonal borders while the neighboring diffusion regions meet by theory of diffusion kinetics, analysis of optical and imaging characteristics of the microlens with hexagonal aperture and gradient refractive index in 3D and the bulge like a convex lens, and discussing the optical characteristics of the microlens array with hexagonal aperture buried in a convex substrate by method of matrix optics. Then a microlens array with hexagonal aperture and buried in a convex substrate was fabricated by photolithography and ion-exchange techniques including such key steps as design of a photomask, fabrication of the substrate, photolithography, etching apertures and ion-exchange. Firstly, the defusion characteristics of the glass used in the following fabrications was tested. Then, based on the testing results, the author studied the defusion characteristics of two samples with hexagonal and circular aperture, separately (The circle is just an incircle of the hexagon). Followed, a microlens array with hexagonal aperture and 2052 available microlenses was fabricated in a convex substrate with curvature radius of 250mm and diameter of 25mm. Finally, the appearance and cutting section of the microlens array, deformation in photolithography, multiple imaging, focal length, F number, spherical aberration, focused spot and distribution of refractive index is observed, measured and analyzed, then the following results are obtained.
     (1) A microlens array with hexagonal aperture and buried in a convex substrate simulated the dioptric apparatus of a compound eye can be fabricated by photolithography and ion-exchange.
     (2) A microlens array with high fill factor and hexagonal borders between any two neighboring microlenses can be made by photolithography and ion-exchange techniques if the designed apertures are arranged in hexagon symmetrically.
     (3) There are different laws in average deffusion rate, deffusion coefficient for different apertured shapes and in different directions.
     (4) A plane photomask can be suitable for a convex substrate when the photolithography and ion-exchange techniques are employed if the radius of curvature is big enough (20 times of the diameter of the substrate) to the size of the substrate. At the same time, the pattern deformations can be ignored too.
     (5) The microlens array fabricated by photolithography and ion-exchange techniques is every good in quality of multiple imaging, optical symmetry and uniformity. From center of the microlens array to the edge, the focal length and F number decrease a little gradually, but the NA increases. The spherical aberration of the microlens array is conspicuous and it can focus a laser beam into a spot of 4.92μm.
     Furthermore, some comcepts such as time resolution and deformation rate, a simple and convenient method of testing spherical aberration of microlens array are presented and discussed in the dissertation.
引文
[1]倪海曙.视觉与仿生学.上海:知识出版社,1985.1:32-94.
    [2]徐琰,颜树华,周春雷,张军.昆虫复眼的仿生研究进展.光学技术,2006,32 (Suppl.):10-12.
    [3]邸思,徐洪奎,杜如虚.人造复眼成像系统研究的新进展.光学与光电技术, 2008, 6(4):93-96.
    [4]吴卫国,吴梅英.昆虫视觉的研究及其应用.昆虫知识, 1997, 34(3):179-183.
    [5]匡丽娟,翟金会,阮玉,宋镜明,胡勇.复眼透镜阵列应用于均匀照明系统的特性研究.光学与光电技术, 2005, 3(6):29-31.
    [6]周平,陆巍,林宇翔,郑臻荣,李海峰,顾培夫.复眼透镜提高液晶投影照明系统的能量利用率.光学学报, 2004, 24(5):587-591.
    [7]王永松,郝群,宋勇,黄涛.基于昆虫复眼技术的全视场运动目标监测系统.光学技术, 2006, 32(suppl.):158-161.
    [8]高爱华,朱传贵.仿复眼成像的实验模拟研究.西北大学学报(自然科学版), 1998, 28(2):117-120.
    [9]高爱华,朱传贵.多孔径光学仿复眼图像采集原理-.西北大学学报(自然科学版), 1997, 27(4):283-286.
    [10]周晨波.复眼棱镜非接触光刻系统的设计.应用光学, 1988, 5:1-5.
    [11]李敏,徐立中,石爱业,黄凤辰.受昆虫复眼系统启发的图像重构算法.智能系统学报, 2009, 4(2):180-187.
    [12]芦丽明,王国峰,张科,李言俊.蝇复眼在导弹上的应用研究.红外技术,2001,23(5):9-10.
    [13]芦丽明.蝇复眼在导弹上的应用研究:[博士论文].西安:西北工业大学,2002.
    [14]王国峰.蝇视觉系统在红外成像制导中的应用研究:[博士论文].西安:西北工业大学, 2003.
    [15]李娜娜.重叠型复眼光学系统的研究: [博士论文].长春:长春理工大, 2010.
    [16] M. F. Land. Compound eyes: old and new optical mechanisms. Nature, 1980,287(23):681-686.
    [17]吴高竹.列阵复眼光探测系统研究:[硕士论文].长春:长春理工大学,2010
    [18] Michael T. Gale,Jorn Pedersen,Helmut Schutz.Active alignment of replicated microlens arrays on a charge-coupled device imager.Optical Engineering,1997,36 (5):1510-1517.
    [19] Yi-Pai Huang, Han-Ping David Shieh, and Shin-Tson Wu.Applications of multidirectional asymmetrical microlens-array light-control films on reflective liquid-crystal displays for image quality enhancement.APPLIED OPTICS, 2004, 43(18): 3656-3663.
    [20]赖建军,柯才军,陈四海,易新建.微透镜阵列的制作及其与图像传感器的集成.半导体光电, 2004,25(3):381-385.
    [21]曹炬,陶文兵,田金文.运用多个光学成像探测器估算目标距离.仪表技术与传感器, 2004, 3:50-52.
    [22]柯才军,易新建,赖建军.CCD图像传感器的微透镜阵列设计与实验研究.激光技术, 2004, 28(2):186-189.
    [23] Chunning Huang ? Lei Li ? Allen Y. Yi.Design and fabrication of a micro Alvarez lens array with a variable focal length.Microsyst Technol ,2009,15:559-563.
    [24] Ying Huang, Ran Liu, Jianjun Lai, Xin-jian Yi a.Design and fabrication of a negative microlens array.Optics & Laser Technology,2008,40 :1047-1050.
    [25] Ph Nussbaumy, R Volkely, H P Herzigy, M Eisnerz and S Haselbeckz.Design, fabrication and testing of microlens arrays for sensors and microsystems.Pure Appl. Opt., 1997, 6:617 -636.
    [26] Rogerio Jun MIZUNO, Toshio KATO,Y asuhiko AOKIa nd Kenichi IGA.An Optical Network Unit (ONU) Chip Based on Stacked Planar Optics.Jpn. J. Appl. Phys., 1998, 37:3723-3726.
    [27] A. Y. Yi and L. Li.Design and fabrication of a microlens array by use of a slow tool servo.OPTICS LETTERS, 2005, 30(13):1707-1709.
    [28] Mao-Kuo Wei , Hoang-Yan Lin, Jiun-Haw Lee, Kuan-Yu Chen, Yu-HsuanHo,Ciao-Ci Lin, Chia-Fang Wu, Hung-Yi Lin, Jen-Hui Tsai, Tung-Chuan Wu.Efficiency improvement and spectral shift of an organic light-emitting device with a square-based microlens array.Optics Communications, 2008, 281:5625– 5632.
    [29] Shun-ichi KAMEMARU, Shigeru YAMAGUCH and Jun-ichi YANO.Fabrication of a Biological Visual Perception System Using a Microlens Array in a Hybrid Pattern Recognition System.Jpn. J. Appl. Phys., 1992, 31:1682-1688.
    [30] Ata Akatay, Caglar Ataman, and Hakan Urey.High-resolution beam steering using microlens arrays.OPTICS LETTERS, 2006, 31(19):2861-2863.
    [31] H. Chase, M. A. Handschy, M. J. O’Callaghan, and F. W. Supon.Improvement of spatial light modulator optical input-output performance using microlens arrays.OPTICS LETTERS, 1995, 20(12):1444-1446.
    [32] K. M. Mahoney and A. M. Wei.Modified femtosecond pulse shaper using microlens arrays.OPTICS LETTER, 1996, 21(11):812-814.
    [33] Masahiro Agu, Atsushi Akiba, Teruhisa Mochizuki, and Shun-ichi Kamemaru. Multimatched filtering using a microlens array for an optical-neural pattern recognition system.APPLIED OPTICS, 1990, 29(28):4087-4091.
    [34] Kenjiro HAMANAKA and Takashi KiSHIMOTO.Multiple Imaging and Multiple Fourier Transformation Using Microlens Arrays. JAPANESJEO URNAOLF APPLIEDP HYSICS, 1990, 29(7):1277-1280.
    [35] F. B. McCORMICK, F. A. P. TOOLEY, T. J. CLOONAN,J. M. SASIAN, H. S. HINTON.-Optical interconnections using microlens arrays.Optical and Quantum Electronics,1992,24:465-477.
    [36] Hyunki Kim, BoKyung Cha, JunHyungBae, ChanKyuKim, GyuseongCho. Optical simulation of new pixelated-scintillator detectors coupled with micro-lens array by ray-trace method. Nuclear Instrumentsand Methodsin Physics Research A610, 2009, 10:317-320.
    [37] Y. Lin, M.H. Hong, G.X. Chena, C.S. Lim,Z.B. Wang, L.S. Tan, L.P. Shi, T.C. Chong.Patterning of phase change films with microlens arrays.Journal of Alloys andCompounds,2008,449:253-257.
    [38] M. Ares, S. Royo, and J. Caum.Shack–Hartmann sensor based on a cylindrical microlens array.OPTICS LETTERS,2007,32(7):769-771.
    [39]蔡华,徐莹,刘清君,李燕,王丽江,王平,杨国光.基于微透镜阵列的多通道光寻址电位传感器研究.传感技术学报,2007,20(1):59-63.
    [40]郝劲波,忽满利,李林森,林巧文.基于微透镜阵列的实时三维物体识别.光子学报,2007,36(11):2008-2012.
    [41]谢俊国,周永明,于丙涛.基于微透镜阵列实现全真立体显示技术的研究.中国体视学与图像分析,2008,13(1):42-46.
    [42]胡卫军,蔡华,李毅,李蓉,王平,杨国光.基于微透镜阵列的重金属离子阵列传感器研究.浙江大学学报(工学版),2008,42(3):517-521.
    [43]张新宇,易新建,赵兴荣,麦志洪,何苗,微透镜阵列用于线列红外探测器的研究.红外与毫米波学报,1998,17(2):840-845.
    [44]郑臻荣,刘旭,李海峰,顾培夫,徐安喜,张燕萍,唐晋发.液晶投影显示系统中的透镜阵列方式.激光与红外,1999,29(3):177-180.
    [45] Bong-Kee Lee, Kyung Je Cha, Tai Hun Kwon. Fabrication of polymer micro-nano-hybrid lens array by microstructured anodic aluminum oxide (AAO) mold. Microelectronic Engineering, 2009, 86:857-860.
    [46] Liang Dong, Abhishek K. Agarwal, David J. Beebe & Hongrui Jiang.Adaptive liquid microlenses activated by stimuliresponsive hydrogels, NATURE, 2006, 442(3): 551-554.
    [47] Ruey Fang Shyu, Hsiharng Yang, Wen-Ren Tsai,Jhy-Cherng Tsai. Micro-ball lens array fabrication in photoresist using PTFE hydrophobic effect. Microsyst Technol, 2007, 13:1601–1606.
    [48]张新宇,汤庆乐,张智,裴先登.非梯度折射率型面阵平面微透镜.微细加工技术,2001,2:76-80.
    [49]张新宇,汤庆乐,张智,裴先登.非梯度折射率型面阵平面微透镜.微细加工技术,2001,2:76-80.
    [50]刘德森.变折射率介质理论及其技术实践.重庆:西南师范大学2005.11:51-294.
    [51] Su Xu, Yeong-Jyh Lin, and Shin-Tson Wu.Dielectric liquid microlens with well-shaped electrode.OPTICS EXPRESS, 2009, 17(13):10499-10505.
    [52] Gohji Nakagawa, Kazunori Miura, Masao Makiuchi, and Mitsuhiro Yano.Highly efficient coupling between LD array and optical fiber array using Si microlens array.IEEE PHOTONICS TECHNOLOGY LETTERS, 1993:1041-1135.
    [53]李同海,胡宝文,焦国华,王丽莉,李育林.按需滴定法制备掺杂型聚合物微透镜阵列.光电工程,2006,33(9):48-51.
    [54]姚军,高福华,高峰,杜惊雷,郭永康,杜春雷,曾红军,丘传凯.酶蚀明胶法制作折射微透镜阵列.激光技术,2001,25(4):272-275.
    [55] Lin Che-Ping, Yang Hsiharng and Chao Ching-Kong.A new microlens array fabrication method using UV proximity printing. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2003, 13:748-757.
    [56] HOttevaere, R Cox, H P Herzig, TMiyashita, K Naessens, MTaghizadeh, R Volkel, H JWoo and H Thienpont.Comparing glass and plastic refractive microlenses fabricated with different technologies.JOURNAL OF OPTICS A PURE AND APPLIED OPTICS, 2006, 8:S407-S429.
    [57]朱传贵.自聚焦平面微透镜阵列及其光学特性研究:[硕士论文].西安:中国科学院西安光学精密机械研究所,1992.
    [58]刘德森,高应俊,覃亚丽等.大数值孔径自聚焦平面微透镜阵列研究.高速摄影与光子学,1990, 19(3):209.
    [59] F. Hudelist, R. Buczynski, A.J.Waddie, M.R.Taghizadeh.Design and fabrication of nano-structured gradient index microlenses.OPTICS EXPRESS, 2009, 17(5): 3255-3263.
    [60]刘德森,高应俊,朱传贵,宋光年,高凤,姚胜利,闫国安.自聚焦平面微透镜阵列的制作及其基本特性.高技术通讯,1996,4:35-39.
    [61]高应俊,覃亚丽.两种离子交换型变折射率微透镜.光学学报,1990,10(1):60.
    [62] Gao Y, Qing Y. Technical Digest of the Second Microoptical Confereace. The EighthTopical Meeting on Gradient-Index Optical Imaging System, Tokyo, Japan,1989,E5.
    [63] Stewart Getal. Analysis of planar optical waveguide fabrication by ion exchange in glass. IEEEJ, Quantum Electron, 1981, 17:529-535.
    [64] Gao Yingjun, Mike Hutleya and Liu Desen. Fabrication of Diffraction-limited Full Aperture Microlens Array by Melting Photoresist. High Technology Letters, 1997, 3(1):5-9.
    [65]高应俊,刘德森,阎国安,姚胜利,高凤.高质量光刻胶微小透镜阵列的制作.光子学报,1996,25(10):909-913.
    [66] Mohammed Ashraf, Cherry Gupta, Franck Chollet, Stuart Victor Springham, Rajdeep Singh Rawa. Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder. Optics and Lasers in Engineering, 2008, 46:711-720.
    [67] Feidhlim T. O’Neill, John T. Sheridan. Photoresist reflow method of microlens production Part I-Background and experiments. Optik, 2002, 113(9):391-404.
    [68]赵悦,赖建军,史锡婷,易新建,张坤.软刻蚀复制技术制作聚合物微透镜阵列,半导体光电,2005,26:111-114.
    [69]张晓玉,姚汉民,杜春雷,潘丽,邱传凯.AZ9260光刻胶制作连续非球面微透镜阵列的研究.微细加工技术,2003,4:22-26.
    [70] Daniel M. Hartmann, Osman Kibar, and Sadik C. Esener.Characterization of a polymer microlens fabricated by use of the hydrophobic effect.OPTICS LETTERS, 2000, 25(13):975-977.
    [71] Sang Soon Oha, Choon-Gi Choi a, Young-Sung Kim.Fabrication of micro-lens arrays with moth-eye antireflective nanostructures using thermal imprinting process.Microelectronic Engineering, 2010, 87:2328-2331.
    [72] Miao He, Xiaocong Yuan, Jing Bu, and Wai Chye Cheong. Fabrication of concave refractive microlens arrays in solgel glass by a simple proximity-effect-assisted reflow technique. OPTICS LETTERS, 2004, 29(9):1007-1009.
    [73] M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov. Simple reflow technique for fabrication of a microlens array in solgel glass. OPTICS LETTERS, 2003,28(9):731-733.
    [74] Thomas Kreuzberger, Alf Harnisch, Michael Helgert, Lars Erdmann, Robert Brunner. Sol–gel process to cast quartz glass microlens arrays. Microelectronic Engineering, 2009, 86:1173-1175.
    [75] Sen-Yeu Yang, Fang-Sung Cheng, Shu-Wen Xu, Po-Hsun Huang, Tzu-Chien Huang. Fabrication of microlens arrays using UV micro-stamping with soft roller and gas-pressurized platform. Microelectronic Engineering, 2008, 85: 603-609.
    [76] Yongqi Fu, Ngoi Kok Ann Bryan. Novel one-step method of microlens mold array fabrication. Optical Engineering, 2001, 40(7):1433-1434.
    [77]陈祥献.光刻热熔微透镜阵列的电铸成形复制技术研究.仪器仪表学报,1998, 19(1):56-60.
    [78] Madanagopal V. Kunnavakkam,F. M. Houlihan,M. Schlax,J. A. Liddle,P. Kolodner, O. Nalamasu, and J. A. Rogers. Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process. APPLIED PHYSICS LETTERS, 2003, 82(8): 1152-1154.
    [79] Harutaka Mekaru, Tomoyuki Tsuchida, Jun-ichi Uegaki, Manabu Yasui, Michiru Yamashita, Masaharu Takahashi. Micro lens imprinted on Pyrex glass by using amorphous Ni–P alloy mold. Microelectronic Engineering, 2008, 85:873-876.
    [80] Hyun-Shik Lee, Insu Park, Keum Soo Jeon, El-Hnag Lee.Fabrication of micro-lenses for optical interconnection using micro ink-jetting technique.Microelectronic Engineering, 2010,87:1447–1450.
    [81] ZHANG Xinyu,YI Xinjian,HE Miao,ZHAO Xingrong.Large-area Quartz Glass Microlens Array Fabricated by lon Beam Etching for Focal Plane Detectors.红外与毫米波学报,18(2):97-102.
    [82]张新宇,汤庆乐,张智,易新建,裴先登.凹折射微透镜阵列的离子束刻蚀制作.光学学报, 2001,21(4):485-490.
    [83]张新宇,赵兴荣,易新建,何苗.红外焦平面用面阵微透镜的氩离子束刻蚀制作.微细加工技术,1998,4:27-34.
    [84] Teruhiro Shiono and Hisahito Ogawa. Reflection a spherical microlenses for planar optics fabricated by electron-beam lithography. OPTICS LETTERS, 1992, 17(8):565-567.
    [85] H.Y. Lee, D.W. Kim, Y.J. Sung, G.Y. Yeom.Fabrication of SiC micro-lens by plasma etching.Thin Solid Films,2005,475:318-322.
    [86] M. Fritze, M. B. Stern, and P. W. Wyatt. Laser-fabricated glass microlens arrays. OPTICS LETTERS, 1998, 23(2):141-143.
    [87] F. Beinhorn, J. Ihlemann, K. Luther, J. Troe. Micro-lens arrays generated by UV laser irradiation of doped PMMA. Appl. Phys. A, 1999, 68:709-713.
    [88] Sylvain Lazare, John Lopez, Jean-Marie Turlet, Maria Kufner, Stefan Kufner and Pierre Chavel. Microlenses fabricated by ultraviolet excimer laser irradiation of poly (methyl methacrylate) followed by styrene diffusion. APPLIED OPTICS, 1996, 35(22):4471-4475.
    [89] Rui Guo, Shizhou Xiao, Xiaomin Zhai, Jiawen Li1, Andong Xia and Wenhao Huang. Microlens fabrication by means of femtosecond two photon photopolymerization. OPTICS EXPRESS, 2006, 14(2):810-816.
    [90] Chung-Hao TIEN, Yeh-En CHIEN, Yi CHIU and Han-Ping D. SHIEH. Microlens Array Fabricated by Excimer Laser Micromachining with Gray-tone Photolithography. Jpn. J. Appl. Phys., 2003, 42: 1280-1283.
    [91] Z. B. Wang, Wei Guo, A. Pena, D. J. Whitehead, B. S. Luk'yanchuk, Lin. Li.Laser micro/nano fabrication in glass with tunable-focus particle lens array.OPTICS EXPRESS,2008,16(24):19706-19711.
    [92] M.-C. Chou, C.T. Pan, S.C. Shen, M.-F. Chen, K.L. Lin, S.-T. Wu. A novel method to fabricate gapless hexagonal micro-lens array. Sensors and Actuators A,2005, 118:298-306.
    [93]张玉.六角形孔径平面微透镜阵列研究:[硕士论文].重庆:西南大学,2006.
    [94]韩艳玲,刘德森,蒋小平.方形自聚焦透镜元阵列及其成像.光子学报,2007, 36(2):221-223.
    [95] C.T. Pan, C.H. Su. Fabrication of gapless triangular micro-lens array. Sensors and Actuators A, 2007, 134 : 631-640.
    [96] Jauh-Jung Yang, Yunn-Shiuan Liao, Chi-Feng Chen. Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process. Optics Communications, 2007, 270: 433-440.
    [97]宋万生.变曲率复眼透镜系统光学设计讨论.应用光学,1983,4:5-7.
    [98]邸思,杜如虚.单层曲面复眼成像系统的优化设计.光电工程,2010,37(2):27-31.
    [99]张红鑫,卢振武,李凤有,刘华,孙强.基于ZEMAX软件的重叠复眼的模拟与分析.激光技术, 2006, 32(suppl.):124-126.
    [100] Roland Bitterli,Toralf Scharf, Hans-Peter Herzig, Wilfried Noell, Nico de Rooij,Andreas Bich, Sylvain Roth, Kenneth J. Weible, Reinhard Voelkel, Maik, Zimmermann and Michael Schmidt. Fabrication and characterization of linear diffusers based on concave micro lens arrays. OPTICS EXPRESS,2010,18 (13):14251-14261.
    [101]张红鑫,卢振武,王瑞庭,李凤有,刘华,孙强.曲面复眼成像系统的研究.光学精密工程,2006,14(3):346-350
    [102] Oikawa M, et al. 8th Topical Meeting on GRIN Optical Imaging System. Tokyo Japan, 1989, (E3):100.
    [103] Blanka Svecova a, Jarmila Spirkova, Pavla Nekvindova, Martin Mika, Lenka Svecova.Ion exchange as a new tool to evaluate and quantify glass homogeneity.Journal of Non-Crystalline Solids,2010,356:1509-1513.
    [104] K. Iga and S. Misawa. Distributed-index planar microlens and stacked planar optics-a review of progress. APPLIED OPTICS,1986,25(19):3388-3396.
    [105]盛益强,方志良,母国光,张增宝,翁志成.投影电视的均匀照明系统设计.光电子·激光,2004,15(4):316-419.
    [106] Jacques Duparré, Peter Dannberg, Peter Schreiber, Andreas Br?uer, and Andreas Tünnermann. Artificial Apposition Compound Eye Fabricated by Micro-Optics Technology.APPLIED OPTICS,2004, 43(22):4303-4310.
    [107]吴梅英.北京萤火虫复眼的模型小眼设计与光纤追迹.生物物理学报,1994,10(2):269-273.
    [108]吴卫国,王谷岩,冯春华,石树真.北京萤火虫复眼的显微结构及其光学特性.昆虫学报,1982, 25(3):260-263.
    [109]吴梅英,田丽娟,彭连惠.北京萤火虫复眼的光学成像.昆虫学报,1993,36(2):158-160.
    [110]吴梅英.萤火虫复眼光学模型重叠成象的研究与模拟.生物化学与生物物理进展,1994, 21(5):535-539.
    [111]吴梅英.北京萤火虫复眼的梯度折射率光学和光线追迹.科学通报,1994,39(18):1705-1708.
    [112] Daniela Radtke, Jacques Duparr′e, Uwe D. Zeitner and Andreas Tunnermann. Laser lithographic fabrication and characterization of a spherical artificial compound eye.OPTICS EXPRESS, 2007, 15(6):3067-3077.
    [113]周自刚.玻璃光波导功分器理论、技术及其光学特性研究:[博士论文].重庆:西南师范大学,2005.
    [114] Karreman G. and Eisemnan G. . equilibria in glass. Bull of Math. Biophy., 1962, 24: 413-418.
    [115]徐光宪.物质结构.北京:高等教育出版社,1959.
    [116] Huggins M.L and Sun K.H. Calculation of density and optical constants of a glass fromits composition in weight percentage.J. Amer.Cer.Soc,1943,26:4.
    [117] Fantane S, D. Refractivt index and Spectral Models for Gradient-index Materials. Appl. Opt., 1983, 22:432.
    [118] Garfinkel H.M.. Ion-exchange equilibria between glass and molten salts. J. Phys. Chem., 1968, 72(3):4175-4184.
    [119] Rothmund V. and Kornfeld G. .Der Basenaustausch im permutit 1. Z. Anorg Allg. Chem., 1918, 103(4):129-134.
    [120] Ramaswwamy O.R, Strivastava R. Ion-Exchanged Glass Waveguides: A Review. J Lightwave Technology, 1988, 6:984.
    [121] K. Iga. Comment on the expression of a distributed index. Applied Optics, 1982,21(6):988.
    [122]朱传贵,薛鸣球,刘德森,高应俊.自聚焦平面微透镜的折射率分布及其成象性质.激光技术,1992,8:218-224.
    [123] Masahiro Oikawa, Kenichi Iga, Motoyasu Morinaga, Tetsuo Usui, and Takashi Chiba.Distributed-index formation process in a planar microlens.APPLIED OPTICS,1984,23(11):1787-1789.
    [124]朱传贵,刘德森.平面微透镜阵列的多重成像和多重付里叶变换性质.光电子器件与集成技术年会论文集,1994:404-405.
    [125]朱传贵,刘德森,薛鸣球,高应俊.平面微透镜的表面凸起现象分析.光子学报,1992, 21(1):79-84.
    [126] M. Oikawa, H. Nemoto, K. Hamanaka, and E. Okuda. High numerical aperture planar microlens with swelled structure. APPLIED OPTICS, 1990, 29(28): 4077-4080.
    [127]梅锁海,刘德森.自聚焦平面微透镜的成像矩阵.高速摄影与光子学, 1991, 20(3):233-242
    [128]李娜娜,安志勇,张红鑫.渐变折射率介质在重叠复眼光学系统中的应用研究.光学技术,2009,35(4):618-621.
    [129]陶圣,曾理江.结合空间侧抑制的仿生复眼模型.光学技术,2007,32(3):337-340.
    [130]廖廷梯,邹义榕.等折射率面为旋转抛物面的梯度折射率纤维透镜的成像特性.中国激光,1990,17(11):685-689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700