用户名: 密码: 验证码:
松嫩平原四种禾本科植物耐盐碱生理生态机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐碱胁迫已经成为世界性的环境问题,是限制中国乃至世界农业发展的重要因素。盐碱胁迫对植物的影响是多方面的,植物对盐碱胁迫所做出的适应性响应亦复杂多变,不同的植物种类可能会有完全不同的适应机制。因此,有必要总结和比较不同植物种类对盐碱胁迫的胁变反应和适应性调节机制。其中,禾本科植物是目前研究比较集中的种类,许多极端抗盐碱盐生植物也皆出自于此。为了总结和比较禾本科植物对耐盐碱胁迫的适应性调节机制,本文选择了典型的禾本科作物小麦(Triticum aestivum)和抗盐碱禾本科牧草:羊草(Leymus chinensis)、赖草(Leymus secalinus)和狗尾草(Setaria viridis)为试验材料,依据中国东北盐碱化草原盐碱化土壤既含中性盐又含碱性盐的特性,用中性盐NaCl、Na_2SO_4和碱性盐NaHCO_3、Na_2CO_3并以1:1的摩尔比分别混合模拟盐胁迫(30,60,90,120和150mM,摩尔比1:1的NaCl和Na2SO4)和碱胁迫(30,60,90,120和150mM,摩尔比1:1的NaHCO_3和Na_2CO_3),并以此对这四种禾本科植物进行胁迫处理。通过测定萌发率、相对生长率RGR、含水量、光合参数、离子和溶质含量,分析渗透调节、离子平衡策略,进一步探讨盐碱胁迫对四种禾本科植物的胁迫效应以及它们对盐碱两种胁迫的适应机制。
     在盐胁迫下,低水势是抑制种子萌发的一个决定性的因素。结果表明同等盐度的碱胁迫(高pH)对小麦萌发的抑制作用大于盐胁迫。未萌发的种子可能是处在休眠状态来摆脱恶劣的环境影响。碱胁迫(高pH)对种子萌发的影响可能是极其复杂的,在低pH值时,小麦种子的萌发没有被抑制,但是在高盐度时产生抑制。低强度碱胁迫下,萌发的种子似乎可以通过代谢活动降低外界pH。在高碱浓度下,高pH可能造成种子内部结构被分解和破坏,甚至导致种子死亡。这可能是一个复杂的反应过程,值得我们深入研究。
     盐碱胁迫下小麦、羊草、赖草、和狗尾草四种禾本科植物的生长速率和水分利用效率都随着盐度的上升而降低。其中,碱胁迫的下降幅度要远远大于盐胁迫,即在相同的处理液浓度下,碱胁迫对植物的伤害要大于盐胁迫。碱胁迫对植物的伤害甚于盐胁迫的原因可能与两种胁迫的作用机制有关,盐胁迫主要是渗透胁迫及离子毒害,而碱胁迫除包括这两种胁迫作用外,还包括高pH胁迫。土壤中的高pH可以直接造成Ca~(2+)和Mg~(2+)离子的沉淀,破坏植物对营养物质的吸收,进而造成根周围的营养失衡。
     盐碱胁迫除了明显地抑制生长外,也明显地影响植物光合碳同化。四种植物的光合能力在低、中浓度的盐胁迫和低浓度的碱胁迫下变化不大;随着盐浓度的增加光合参数急剧下降,碱胁迫下光合参数下降趋势更加明显。这些结果表明碱胁迫的高pH能够强烈地抑制植物光合作用。碱胁迫可能通过破坏光合器官和影响气孔导度来限制光合作用,这可能与细胞中积累过多的Na~+,而产生毒害有关。叶绿素荧光实验也可以证明这一点,高pH胁迫造成大量的Na~+进入植物细胞内,进而造成光抑制,阻碍光能的吸收并引起PSⅡ最大光化学效率反应器活性下降,而且盐碱胁迫严重地阻碍受损伤的PSⅡ反应中心的自我修复。
     根茎叶中Na~+含量均随着胁迫强度的增加而增加,而K+含量则呈明显的下降趋势。在碱胁迫下,Na~+和K~+含量的变化要明显地大于盐胁迫,即碱胁迫促进了根系对Na~+的吸收和转运,而抑制K~+离子吸收和转运,最终导致植物体内离子失衡和pH不稳定。Ca~(2+)、Mg~(2+)和Fe~(2+)对两种胁迫的反应与以往报道有所不同,均随胁迫强度的增加而增加,这可能是植物对碱胁迫的一种胁变反应,可能是特定的适应性反应,值得深入研究。虽然Ca~(2+)、Mg~(2+)和Fe~(2+)含量在碱胁迫下增加,但是它们对渗透调节的影响不大,主要是因为它们在离子含量中占的比例很低。
     研究材料小麦、羊草、赖草和狗尾草这四种禾本科植物在盐胁迫下均大量积累有机酸,均以苹果酸和柠檬酸为主要成分;均通过积累有机酸来平衡大量的Na~+,来弥补无机阴离子的缺失,维护细胞内离子平衡和pH稳定。综合分析表明,有机酸在茎叶中的积累不是一个简单的被动响应,而是在碱胁迫下的一个积极的代谢调控结果。由此提出:在碱胁迫下有机酸的代谢调控可能涉及到一个或多个已知的基础代谢途径。如果有机酸的响应可以被清楚地解释,植物抗盐碱的关键基因就会很容易识别和克隆出来。关于有机酸的研究可能是未来盐碱胁迫研究的一个主要的方向或分支。
Arable land has been tightly coupled with the socio-economic development and the rapid growth of the world's population, but it has been severely affected by soil salinity. The arable land is affected by salt throughout the world; plants growth and productivity are severely affected by soil salinity. The detrimental effects of high salinity on plants can be observed at the whole-plant level as the death of plants and/or decrease in productivity. The effects of saline and alkaline stress on plants were multiple pathways, so the ability of plants to tolerate stress is determined by multiple biochemical pathways. Different plant species may have completely different stresses adaptation mechanisms, it is necessary to summarize and compare the responses and adaptive adjustment mechanisms of saline-alkaline stress in different plant species. Gramineae plants are the type which have been more concentrated studied, it includes many saline stress tolerate types. In order to summarize and compare the adaptive adjustment mechanisms of saline-alkaline stress in gramineae plants, we chose four different gramineae plants they were Triticum aestivum Linn, Leymus chinensis, Leymus secalinus and Setaria viridis. Based on the saline soils of grasslands in northeast China, the natural salinity stress in natural saline soils is very complex. Two neutral salts were mixed at a 1:1 molar ratio of NaCl: Na2SO4 and applied to the saline stress group. Similarly, two alkaline salts were mixed at a 1:1 molar ratio of NaHCO3 to Na2CO3 and applied to the alkaline stress group. There were five concentrations for the saline and alkaline stresses: 30, 60, 90, 120 and 150 mM. To further explore the saline-alkaline stress adaptation mechanisms of gramineae plants(four species)by measuring the germination rate, relative growth rate, water content, photosynthesis parameters, ionic balance and organic acids.
     Germination is one of the most critical periods in the life cycle of plants, but it can be affected by abiotic stresses. Under saline-alkaline stress, low water potential is a decisive factor to inhibit the seed germination. The results indicated that alkaline stress more significantly affected seed germination than saline stress. Non-germinated seeds in dormancy to avoid adverse environment. Perhaps alkaline stress (high pH value) on seed germination could be extremely complex, and the low pH value didn’t inhibit the germination of wheat seeds, on the contrary to the high salinity. Under low-intensity alkaline stress, the germinated seeds can decline pH value by metabolic activities. The high pH stress may decompose the seed structure, eventually leading to seed death, may be it is a complex reaction process, and be worth studying in-depth. Under saline-alkaline stress, the relative growth rate and water use efficiency of four gramineae plants decreased with increasing salinity, and the decrease for alkaline stress is much greater than for saline stress at the same concentration. Salt stress is mainly osmotic stress and ion toxicity, the harmful of alkaline-stress on plants is greater than saline-stress, the main reason may be alkaline-stress includes high-pH stress. The high pH in soil can be direct cause Ca2+ and Mg2+ precipitated, destroy plant absorb nutrients and then cause nutritional imbalances around the root in the plants.
     Except saline and alkaline stress obviously inhibited the growth of plants, we also discovered that the saline-alkaline stress is significantly affects on photosynthetic carbon assimilation in plant. Photosynthetic capacity of four plants had changed little under low and moderate concentrations of saline stress or low concentrations of alkaline stress; but photosynthetic parameters declined rapidly with increasing salinity, the extent of reduction under alkaline stress was significantly greater than under saline stress. These results appeared to confirm that the high pH value of alkali-stress can be a strong inhibition of plant photosynthesis. Alkaline stress can restrict photosynthesis processes by damaging the photosynthetic apparatus and stomatal conductance in plants; this may be related to excessive accumulation of Na~+ in cells, and then causing poison. The Chlorophyll fluorescence experiments can also prove this point, high-pH stress caused a large number of Na~+ influx into plant cells, causing photoinhibition and impede the absorption of light energy and cause the activity of the maximal photochemical efficiency of PSⅡreactor decreased. And the saline-alkaline stress severely hampered self-repair of the injury of PSⅡreaction center.
     The results indicated that the contents of Na~+ in plants increased with increasing stress intensity, and the contents of K+ decreased rapidly. The Na~+ increase and K+ decrease under alkaline stress were greater than under salt stress with increasing stress intensity. This showed that the high pH value of alkaline stress may interfere with the absorption of Na~+ in roots, make the accumulation of intracellular Na~+ to the poison level. Under alkaline stress, the increasing Na~+ may not be the response to osmotic stress, but the response to high pH value. The absorption and transportation of Na~+ in roots are promoted under alkaline stress, but inhibit K~+, and eventually result in ion imbalance and unstable pH in plants. The response to two stresses of Ca~(2+), Mg~(2+) and Fe~(2+) was different from the previous reports, they increased with increasing stress intensity in this experiment, and this may be plants response to alkaline stress in order to avoid stress threat. It may be a specific adaptive response, so it is worth studying in-depth. Although the contents of Ca~(2+), Mg~(2+) and Fe~(2+) increased under alkaline stress, they have little effect on the osmotic adjustment; mainly because of they have a low proportion of the ion contents.
     The four gramineae plants didn’t accumulated organic acids under saline stress, but accumulated substantial organic acids under alkaline stress, malic acids and citric acids are the main components. In order to balance substantial Na~+, compensate the deficit of inorganic anions, and maintain intracellular stable pH, plant enhanced the synthesis of the organic acids (OA) anions, indicating that OA metabolic regulation played a central role in intracellular pH adjustment of plant. The accumulation of organic acids in the stems and leaves not a simple passive response to salt stress, it is a positive result of metabolic regulation under alkaline stress. The metabolic regulation of OA under alkaline stress may involve in one or more basal metabolic pathways. It is easy to identify and clone the key gene of anti-saline and anti-alkaline in plants, if the response of organic acids could be clearly explained. Thus, the research on organic acids may be the main direction or branch of salt-alkaline stress in the future.
引文
[1]Richards J F. Land transformation. In:Turner II, B.L.,et al. (Eds.),The Earth as transformed by human action [M]. New York: Cambridge University Press, 1990:163–178.
    [2]Pawl B. Cities and economic development: from the dawn of history to the present[M].Chicago: Chicago University Press,1998.
    [3]汤怀志,吴克宁,焦雪瑾,等.农用地质量空间统计分析及其在黑龙江省海伦市的应用[J].资源科学,2008(4):598-600.
    [4]张雷,张淑敏.现代城镇化发育的土地资源基础[J].资源科学,2008,30(4):578-700.
    [5]Rengasamy P. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview[J]. Aust. J. Exp. Agric., 2002, 42: 351–361.
    [6]Abrol I P, Yadav J S P, Massoud F I. Salt-affected soils and their management[M].Rome: Food and Agriculture Organization of the United Nations, 1988.
    [7]Szabolcs I. Salt-affected soils[M]. Boca Raton, FL: CRC Press.1989.
    [8]Allakhverdiev S I, Sakamoto A, Nishiyama Y. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp[J].Plant Physiol., 2000, 123: 1047-1056.
    [9]Prasad S M,Zeeshan M. Effect of UV-B and monocrotophos, singly and in combination, on photosynthetic activity and growth of non-heterocystous cyanobacterium Plectonema boryanum[J].Environmental and Experimental Botany, 2004,52(2).
    [10]L?uchli A, Lüttge U, Salinity in the soil environment.–In: Tanji, K.K.(ed.):Salinity: Environment-Plants-Molecules[J].Kluwer Academic Publ. Boston.2002: 21-23.
    [11]FAO Land and Plant Nutrition Management Service [EB/OL]. [2008-04-06]. http://www.fao.org/ag/agl/agll/spush.
    [12]宇振荣,王建武.中国土地盐碱化及其防治对策研究[J].农村生态环境,1997,13(3):1-5.
    [13]张士功,邱建军,张华.我国盐渍土资源及其综合治理[J].中国农业资源与区划,2000(1):52-56.
    [14]罗明,龙花楼.土地退化研究综述[J].生态环境,2005,2(4):287-293.
    [15]郑慧莹,李建东.松嫩平原的草地植被及其利用保护[M].北京:科学出版社,1993:1-195.
    [16]李建东,郑慧莹.松嫩平原盐碱化草地治理及其生物生态机制[M].北京:科学出版社,1997:1-271.
    [17]郑慧莹,李建东.松嫩平原盐生植物与盐碱化草地的恢复[M].北京:科学出版社,1999:1-100.
    [18]李秀军,李取生,王志春,等.松嫩平原西部盐碱地特点及合理利用研究[J].农业现代化研究,2002, 23(5):361-400.
    [19]Rui GUO, Lianxuan SHI, Yunfei YANG. Germination, growth, osmotic adjustment and ionic balance of wheat in response to saline and alkaline stresses[J]. Soil Science and Plant Nutrition, 2009, 55(5):667-679.
    [20]Shi D C, L J Yin. Difference between saline(NaCl) and alkaline (Na2CO3) stresses on Puccinellia tenuiflora (Griseb.)[J].Scribn et Merr. plants. Acta Bot Sin., 1993,3:144–149.
    [21]Shi D C, D Wang. Effects of various salt–alkaline mixed stresses on Aneurolepidium chinense (Trin.)[J].Kitag. Plant Soil, 2005, 271: 15–26.
    [22]Shi D C, Y Sheng. Effect of various salt–alkalinene mixed stress conditions on sunflower seedlings and analysis of their stress factors [J]. Environ Exp Bot., 2005, 54: 8–21.
    [23]石德成,殷丽娟.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J].植物学报,1993,35(2): 144-149.
    [24]石德成,盛艳敏,赵可夫.复杂盐碱条件对向日葵胁迫作用主导因素的实验确定[J].植物学报,1998,40(12):1136-1142.
    [25]颜宏,石德成,尹尚军等.盐碱胁迫对羊草体内N及几种有机代谢产积累的影响[J].东北师范大学学报:自然科学版,2000b,32(3): 47-52.
    [26]石德成,李玉明,杨国会,等.盐碱混合生态条件的人工模拟及其对羊草胁迫作用因素分析[J].生态学报,2002a,22(8):1317-1326.
    [27]石德成,盛艳敏,赵可夫.复杂盐碱条件对向日葵胁迫作用主导因素的实验确定[J].作物学报,2002b,28(4):461-467.
    [28]尹尚军,石德成,颜宏.碱胁迫下星星草的主要胁变反应[J].草业学报,2003,12(4):51-57.
    [29]周蝉,张卓,杨允菲.实验羊草种群幼苗对不同梯度盐碱胁迫的生理响应[J].东北师范大学学报:自然科学版,2003,35(4):l2-l7.
    [30]Apse M P, Aharon G S, Snedden W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis[J]. Science, 1999, 285:1256–1258.
    [31]Aslam M, Qureshi R H, Ahmed N. A rapid screening technique for salt tolerance in rice (Oryza sativa L.)[J]. Plant Soil, 1993, 150: 99–107.
    [32]Bartels D, Sunkar R. Drought and salt tolerance in plants[J]. CRC Crit. Rev. Plant Sci., 2005, 24: 23–58.
    [33]Flowers T J, Troke P F, Yeo A R. The mechanism of salt tolerance in halophytes[J].Annu. Rev. Plant Physiol., 1977, 28: 89–121.
    [34]USDA-ARS. Research Databases. Bibliography on Salt Tolerance. George E. Brown Jr. Salinity Lab. US Dep. Agric., Agric. Res. Serv.Riverside, [EB/OL]. [2008-05-06]. http://www.ars. usda. Gov / Services / docs. htm ?docid=8908.
    [35]Munns R. Genes and salt tolerance: bringing them together[J]. New Phytol., 2005, 167: 645–663.
    [36]Garthwaite A J, von Bothmer R, Colmer T D. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl? into the shoots[J].Exp.Bot., 2005,56:2365–2378.
    [37]Flowers T J, Troke P F, Yeo A R. The mechanism of salt tolerance in halophytes[J].Annu. Rev. Plant Physiol., 1977, 28: 89–121.
    [38]Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annu. Rev. Plant Physiol., 1980, 31: 149–190.
    [39]Rains D W. Salt transport by plants in relation to salinity[J]. Annu. Rev. Plant Physiol., 1972, 23: 367–388.
    [40]Hasegawa P M, Bressan R A, Zhu J-K, et al. Plant cellular and molecular responses to high salinity[J].Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, 51: 463–499.
    [41]Zhu J-K. Salt and drought signal transduction in plants[J]. Annu. Rev. Plant Biol., 2002, 53: 247–273.
    [42]Ehret D L, Plant A L. Salt tolerance in crop plants. In: Dhaliwal, G.S., Arora, R. (Eds.), Environmental Stress in Crop Plants[J]. New Delhi, India: Commonwealth Publishers, 1999, 69–120.
    [43]Iyengar E R R, Reddy M P. Photosynthesis in highly salt-tolerant plants[M]//Pesserkali, M. (Ed.), Handbook of photosynthesis. Marshal Dekar, Baten Rose, USA, 1996, 897–909.
    [44]Botella M A, Quesada M A, Kononowicz A K, et al. Characterization and in-situ localization of a salt-induced tomato peroxidase messenger-RNA[J]. Plant Mol. Biol., 1994, 25: 105–114.
    [45]Walbot V, Cullis C A. Rapid genomic change in higher plants[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1985, 6:367–396.
    [46]Bohnert H J, Nelson D E, Jensen R G.. Adaptations to environmental stresses[J].Plant Cell,1995,7:1099–1111.
    [47]赵可夫,李法曾,樊守金,等.中国的盐生植物[J].植物学通报,1999,16(3):1-12.
    [48]Aslam M, Qureshi R H, Ahmed N. A rapid screening technique for salt tolerance in rice (Oryza sativa L.)[J]. Plant Soil, 1993, 150: 99–107.
    [49]Cramer G R. Response of abscisic acidmutants of Arabidopsis to salinity[J]. Funct. Plant Biol., 2002, 29:561–567.
    [50]Aslam Z, Jeschke W D, Barrett-Lennard E G, et al. Effects of external NaCl on the growth of Atriplex amnicola and the ion relations and carbohydrate status of the leaves[J].Plant Cell Environ.,1986, 9: 571–580.
    [51]Colmer T D, Munns R, Flowers T J. Improving salt tolerance of wheat and barley: future prospects[J]. Aust. Exp.Agric., 2005, 45:1425–1443.
    [52]Kapulnik Y, Tueber L R, Phillips D A. Lucerne (Medicago sativa L.) selected for vigor in a nonsaline environment maintained growth under salt stress[J]. Aust. J. Agric. Res., 1989, 40:1253–1259.
    [53]Munns R, Tester M. Mechanisms of salinity tolerance[J].Annu. Rev. Plant Biol., 2008, 59: 651–681.
    [54]Khan M A. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta[J].Pakistan.Aquat. Bot., 2001, 70: 259–268.
    [55]Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes[J]. Plant Physiology, 1991, 95: 628-635.
    [56]L?uchli A. Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions[M].In Salinity Tolerance in Plants: Strategies for Crop Improvement, ed. RC Staples, New York: Wiley, 1984, 171–187.
    [57]L.A.de1 Rio, F Sevilla, L M Sandalio, et al. Nutritional effect and expression of superoxide dismutases: induction and gene expression; diagnostics; prospective protection against oxygen toxicity[J].Free Radical Res.Commun,1991,12-13: 819-828.
    [58]Cherian S,Reddy, et al. Studies on salt tolerance in Avicennia marina (Forstk.) Vierh.: effect of NaCl salinity on growth, ion accumulation and enzyme activity[J]. Plant Physiol., 1999, 4: 266–270.
    [59]Takemura T, Hanagata, et al.Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza[J]. Aquat. Bot., 2000, 68:15–28.
    [60]Cramer G R. Response of abscisic acid mutants of Arabidopsis to salinity[J].Funct.Plant Biol., 2002, 29:561–567.
    [61]Fricke W, Peters W S. The biophysics of leaf growth in salt-stressed barley. A study at the cell level[J]. Plant Physiol., 2002, 129: 374–388.
    [62]Passioura J B, Munns R. Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate[J].Plant Physiol., 2000, 27: 941–948.
    [63]Yeo A R, Lee K S, Izard P, et al. Short- and long-term effects of salinity on leaf growth in rice (Oryza sativa L.)[J]. Exp.Bot., 1991, 42: 881–889.
    [64]Cramer G R,Bowman D C. Short-term leaf elongation kinetics of maize in response to salinity are independent of the root[J]. Physiol Plant. 1991, 95: 965-967.
    [65]Fricke W, Akhiyarova G, Veselov D, et al. Rapid and tissue-specific changes in ABA and in growth rate response to salinity in barley leaves[J]. Exp. Bot., 2004, 55: 1115–1123.
    [66]Fricke W, Akhiyarova G, Wei W, et al. The short-term growth response to salt of the developing barleyleaf[J].Exp. Bot.,2006, 57:1079–1095.
    [67]Davies W J, Kudoyarova G, Hartung W. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought[J].Plant Growth Regul.,2005, 24: 285–295.
    [68]Termaat A, Passioura J B, Munns R. Shoot turgor does not limit shoot growth of NaCl-affected wheat and barley[J].Plant Physiol.,1985, 77: 869–872.
    [69]James R A, Rivelli A R, Munns R, et al. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat[J]. Funct. Plant Biol., 2002, 29: 1393–1403.
    [70]M. Ashraf. Relationships between leaf gas exchange characteristics and growth of differently adapted populations of Blue panicgrass (Panicum antidotale Retz.)under salinity or waterlogging[J].Plant Science, 2003, 165(1): 69-75.
    [71]A R Sena Gomes, T T Kozlowski. Growth responses and adaptations of Fraxinus pennsylvanica seedlings to ?ooding[J].Plant Physiol., 1980, 66: 267-271.
    [72]M A Topa, J M Cheeseman. Effects of root hypoxia and a low P supply on relative growth, carbon dioxide exchange rates and carbon partitioning in Pinus serotina seedlings[J].Physiol.Plant,1992, 86:136-144.
    [73]Carter D R, Cheeseman J M. The effect of external NaCl on thylakoid stacking in lettuce plants[J].Plant Cell Environ,1993, 16: 215–223.
    [74]Cheeseman J M. Mechanisms of salinity tolerance in plants[J]. Plant Physiology, 1988, 87: 547–550.
    [75]Chow W S, Quian L, Goodchild D J, et al. Photosynthetic acclimation of Alocasia macrorrhiza(L.)[J].Don to growth irradiance: structure, function, and composition of chloroplasts. In Ecology of Photosynthesis in Sun and Shade (J.R. Evans, S. von Caemmerer W.W. Adams III), CSIRO Australia, 1988, 107–122.
    [76]Melis A. Light regulation of photosynthetic membrane structure, organization, and function[J]. Journal of Cellular Biochemistry, 1984, 24: 271–285.
    [77]Cramer G R, Bowman D C. Kinetics of maize leaf elongation. I. Increased yield threshold limits short-term, steady-state elongation rates after exposure to salinity[J].Exp. Bot.,1991,42:1417–1426.
    [78]Fricke W, Akhiyarova G, Veselov D, et al. Rapid and tissue-specific changes in ABA and in growth rate response to salinity in barley leaves[J]. Exp. Bot., 2004, 55: 1115–1123.
    [79]Munns R, Guo J, Passioura J B, et al. Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley[J]. Aust. Plant Physiol, 2000, 27: 949–957.
    [80]Passioura J B, Munns R. Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate[J]. Aust. J. Plant Physiol., 2000, 27: 941–948.
    [81]Paul M J, Foyer C H. Sink regulation of photosynthesis[J].Exp. Bot., 2001, 52: 1383–1400.
    [82]李杰,陈丽华,朱延明.植物抗渗透胁迫基因工程研究进展[J].生物工程进展,1997, 17: 31-36.
    [83]Munns R. Comparative physiology of salt and water stress[J]. Plant Cell Environ., 2002, 25: 239–250.
    [84]Munns R, James R A, L?uchli A. Approaches to increasing the salt tolerance of wheat and other cereals[J]. J. Exp. Bot., 2006, 57: 1025–1043.
    [85]Tester M, Davenport R J. Na+ transport and Na+ tolerance in higher plants[J]. Ann.Bot., 2003, 91: 503–527.
    [86]White P J, Broadley M R. Chloride in soils and its uptake and movement within the plant: A review[J].Ann.Bot., 2001, 88: 967–988.
    [87]Amtmann A, Sanders D. Mechanisms of Na+ uptake by plant cells[J]. Adv. Bot. Res, 1999, 29: 75–112.
    [88]Horie T, Costa A, Kim T H, et al. Rice OsHKT2;1 transporter mediates large Na+ in?ux component into K+-starved roots for growth[J]. EMBOJ, 2007, 26: 300–314.
    [89]Demidchik V, Davenport R J, Tester M. Nonselective cation channels[J]. Annu. Rev.Plant Biol., 2002, 53: 67–107.
    [90]Pardo J M, Cubero B, Leidi E O, et al. Alkali cation exchangers: roles in cellular homeostasis and stresstolerance[J].J. Exp. Bot., 2006, 57:1181–1199.
    [91]Orlowski J, Grinstein S. Emerging roles of alkali cation/proton exchangers in organellar homeostasis[J].Current Opinion in Cell Biology, 2007, 19(4): 483-492.
    [92]Misak N Z, Maghrawy H B, MEl-Naggar I, et al. On the behaviour of hydrous ceria as an ion exchanger: Alkali cation selectivity[J].Solid State Ionics, 1989, 37(1): 1-9.
    [93]Mark A. Keane. Role of the alkali metal co-cation in the ion exchange of Y zeolites: I. Alkali metal and nickel ion-exchange equilibria[J]. Microporous Materials, 1994, 3(1-2):93-108.
    [94]Klara P, Hana S. Yarrowia lipolytica possesses two plasma membrane alkali metal cation/H+ antiporters with different functions in cell physiology[J]. FEBS Letters, 2006, 580(8): 1971-1976.
    [95]Mennen H, Jacoby B, Marschner H. Is sodium proton antiport ubiquitous in plant cells?[J]. Plant Physiol., 1990, 137: 180–183.
    [96]Cheeseman J M. Pump-leak sodium ?uxes in low salt corn roots[J]. Membr. Biol., 1982, 70: 157–164.
    [97]Qing D J, Lu H F, Li N, et al.Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress [J]. Plant Cell Physiol, 2009, 50(4): 889 - 903.
    [98]Cuin T A, Miller A J, Laurie S A, et al. Potassium activities in cell compartments of salt-grown barley leaves[J]. J. Exp. Bot., 2003, 54: 657–661.
    [99]Davenport R J, James R A, Zakrisson-Plogander A, et al. Control of sodium transport in durum wheat[J]. Plant Physiol., 2005, 137: 807–818.
    [100]Davenport R J, Munoz-Mayor A, Jha D, et al. The Na+ transporter At HKT1 controls xylem retrieval of Na+ in Arabidopsis[J]. Plant Cell Environ., 2007, 30: 497–507.
    [101]Khan, M A, Ungar, et al.Effects of salinity on growth, ion content, and osmotic relations in Halopyrum mocoronatum (L.) [J]. Stapf. J. Plant Nutr., 1999, 22: 191–204.
    [102]Khan, M A, Ungar, et al.Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum [J]. Commun. Soil Sci. Plant Anal. 2000a, 31: 2763–2774.
    [103]Khan M A. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta[J].Pakistan.Aquat.Bot.,2001, 70: 259–268.
    [104]Gadallah M A A. Effects of proline and glycinebetaine on Vicia faba response to salt stress[J].Biol.Plant,1999, 42: 249–257.
    [105]郑文菊,江小蕾,侯扶江,等.几种盐地生牧草的管泡状结构与盐生环境的关系[J].草业科学,1997,14(6): 92-121.
    [106]赵可夫,冯立田.中国盐生植物资源[M].科学出版社,2001:20-21.
    [107]邱念伟,陈敏.伽蓝菜和碱蓬耐旱耐盐机理的比较研究[J].山东科学,2001,14(1):5.
    [108]孔令安,郭洪海,董晓霞.盐胁迫下杂交酸模超微结构的研究[J].草业学报,2000,9(2): 53–57.
    [109]刘爱峰,赵檀方,段友臣.盐胁迫对大麦叶片细胞超微结构影响的研究[J].大麦科学,2000,(3):20-22.
    [110]郑文菊,张承烈.盐生和中生环境中宁枸杞叶显微和超微结构的研究[J].草业科学,1998,7(3): 72-76.
    [111]郑文菊,贾敬芬.小麦耐盐系愈伤组织细胞的超微结构观察[J].西北植物学报,1999,19(1):1-6.
    [112]郑文菊,巨天珍.几种盐地生牧草的管泡状结构与盐生环境的关系[J].草业科学,1997,14(6):9-11.
    [113]朱兴运,王锁民,阎顺国,等.碱茅属植物抗盐性与抗盐机制的研究进展[J].草业科学,1994,11(3):9-15.
    [114]齐冰洁,易津.赖草属牧草种子及幼苗耐盐性生理基础的研究[J].干旱区资源与环境,2001(增刊),15(5):41-46.
    [115]徐恒刚,张萍,李临杭,等.对牧草耐盐性测定方法及其评价指标的探讨[J].中国草地,1997,(5):52-54, 64.
    [116]翁森红,聂素梅,徐恒刚,等.禾本科牧草K+/Na+与其耐盐性的关系[J].四川草原,1998,(2): 22-23.
    [117]Halliwell B. The toxic effects of oxygen on plant tissues[M]// Oberly, L.W. (Ed.), Superoxide Dismutase, vol. I. CRC Press, Boca Raton, FL, 1982, 89–123.
    [118]Halliwell B. Oxidative damage, lipid peroxidation, and antioxidant protection in chloroplasts[J]. Chem. Phys. Lipids, 1987, 44: 327–340.
    [119]Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine[M]. Oxford: Clarendon Press, 1985.
    [120]Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine[M]. Oxford University Press, London.1986.
    [121]Elstner E F. Metabolism of activated oxygen species[M]// Davies, D.D. (Ed.), The Biochemistry of Plants. vol.II, Biochemistry of Metabolism. Academic Press, San Diego, CA, 1987, 252–315.
    [122]Fridovich I. Biological effects of the superoxide radical[J]. Arch.Biochem. Biophys, 1986, 247: 1–11.
    [123]Wise R R, Naylor A W. Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and endogenous antioxidants[J]. Plant Physiol., 1987, 83: 278–282.
    [124]Imlay J A, Linn S. DNA damage and oxygen radical toxicity[J].Science,1988, 240: 1302–1309.
    [125]Steiger H M, Beck E, Beck R. Oxygen concentration in isolated chloroplasts during photosynthesis [J].Plant Physiol., 1977, 60: 903–906.
    [126]Asada K. Ascorbate peroxidase—a hydrogen peroxide scavenging enzyme in plants[J]. Physiol. Plant, 1992, 85:235–241.
    [127]Asada K, Takahashi M. Production and scavenging of active oxygen radicals in photosynthesis[M]// Kyle, D.J., Osmond, C.B., Arntzen, C.J. (Eds.), Photoinhibition, Elsivier, Amsterdam, 1987, 9:227–288.
    [128]Chang H, Siegel B Z, Siegel S M. Salinity induced changes in isoperoxidase in taro, Colocasia esculenta[J]. Phytochemistry, 1984, 23: 233–235.
    [129]Chen G., Asada K. Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties[J]. Plant Cell Physiol., 1989, 30: 987–998.
    [130]Foyer C H, Lelandais M, Edwards E A, et al. The role of ascorbate in plants, interactions with photosynthesis and regulatory significance[M]// Pell, E., Steffen, K. (Eds.), Active Oxygen/Oxidative Stress and Plant Metabolism. American Society of Plant Physiology, Rockville, MD, 1991, 131–144.
    [131]Foyer C H, Lelandais M., Kunert K J. Photooxidative stress in plants[J]. Physiol. Plant, 1994, 92: 696–717.
    [132]Harper D B, Harvey B M R. Mechanisms of paraquat tolerance in perennial ryegrass II. Role of superoxide dismutase, catalase, and peroxidase[J]. Plant Cell Environ., 1978, 1: 211–215.
    [133]Dhindsa R S, Matowe W. Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation[J]. J.Exp. Bot., 1981, 32:79–91.
    [134]Spychalla J P, Desborough S L. Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers[J].Plant Physiol.,1990, 94:1214–1218.
    [135]Gossett D R, Millhollon E P, Lucas M C. Antioxidan response to NaCl stress in salt tolerant and salt sensitive cultivar of cotton[J]. Crop Sci., 1994, 34: 706–714.
    [136]Hernandez J A, Olmos E, Corpas F J, et al. Salt-induced oxidative stress in chloroplasts of pea plants[J]. Plant Sci., 1995, 105: 151–167.
    [137]Hernandez J A, Campillo A , Jimenez A, et al. Response of antioxidant systems and leaf water relations to NaCl stress in pea plants[J].NewPhytol.,1999,141: 241–251.
    [138]Hernandez J, Jimenez A, Mullineaux P, et al. Tolerance of pea plants (Pisum sativum) to long-term salt stress is associated with induction of antioxidant defences[J]. Plant Cell Environ, 2000, 23: 853–862.
    [139]Hernandez J, Nistal, Dopico B, et al. Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase[J]. Plant Sci., 2002, 163: 507–514.
    [140]Sehmer L, Alaoui-Sosse B, Dizengremel P, Effect of salt stress on growth and on the detoxyfying pathway of pedunculate oak seedlings (Quercus robur L.)[J]. Plant Physiol., 1995, 147:144–151.
    [141]Kennedy B F, De Fillippis L F. Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria[J]. Plant Physiol., 1999, 155:746–754.
    [142]Sreenivasulu N, Grimm B, Wobus U, et al. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of fox-tail millet (Setaria italica)[J]. Physiol. Plant, 2000, 109: 435–442.
    [143]Benavides M P, Marconi P L, Gallego S M, et al. Relationship between antioxidant defence systems and salt tolerance in Solanum tuberosum[J]. Aust. J. Plant Physiol., 2000, 27: 273–278.
    [144]Benhayyim G, Faltin Z, Gepstein S, et al. Isolation and characterization of salt-associated protein in Citrus[J]. Plant Sci., 1993, 88:129–140.
    [145]Lee T M, Liu C H. Correlation of decreases calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCI contents in seawater[J]. Exp. Bot., 1999, 50: 1855–1862.
    [146]Lee D H, Kim Y S, Lee C B. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.)[J].Plant Physiol, 2001, 158: 737–745.
    [147]Mittova V, Tal M, Volokita M, et al. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species[J].Physiol. Plant, 2002,115:393–400.
    [148]Mittova V, Tal M, Volokita M, et al. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii[J]. Plant Cell Environ, 2003, 26: 845–856.
    [149]Comba M E, Benavides M P, Tomaro M L. Effect of salt stress on antioxidant defence system in soybean root nodules[J]. Aust. J. Plant Physiol, 1998, 25: 665–671.
    [150]Carla G. Zilli, Karina B, Balestrasse, Gustavo G., et al. Heme oxygenase up-regulation under salt stress protects nitrogen metabolism in nodules of soybean plants[J]. Environmental and Experimental Botany, 2008, 64(1): 83-89.
    [151]Wang X S, Han. J G. Changes of proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress[J].Agricultural Sciences in China, 2009, 8(4):431-440.
    [152]Gueta-Dahan Y, Yaniv Z, Zilinskas B A, et al. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus[J]. Planta, 1997, 203: 460–469.
    [153]Sugimoto M, Sakamoto W. Putative phospholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stress [J]. Genes Genet. Syst., 1997, 72: 311–316.
    [154]Holland D, Ben-Hayyim G, Faltin Z, et al. Molecular characterization of salt-stress-associated protein in citrus: protein and cDNA sequence homology to mammalian glutathione peroxidase [J]. Plant Mol. Biol., 1993, 21: 923–927.
    [155]Willkens H, Chamnogopol S, Davey M, et al. Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants[J]. EMBO, 1997, 16: 4806–4816.
    [156]Conklin P L, Williams E H, Last R L. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant[J]. Proc. Natl. Acad. Sci. USA, 1996, 93: 9970–9974.
    [157]Orr W C, Sohal R S. The effects of catalase gene over-expression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster[J]. Arch. Biochem. Biophys, 1992, 297:35–41.
    [158]Creissen G., Broadbent P, Stevens R., et al. Manipulation of glutathione metabolism in transgenic plants[J]. Biochem. Soc. Trans, 1996, 24: 465–469.
    [159]Allen R D, Webb R P, Schake S A. Use of transgenic plants to study antioxidant defenses[J]. Free Radic. Biol. Med, 1997, 23: 473–479.
    [160]Noctor G., Foyer C H. Ascorbate and glutathione: keeping active oxygen under control[J]. Annu. Rev. Plant Physiol. Plant Mol.Biol., 1998, 49: 249–279.
    [161] Smirnoff N. Plant resistance to environmental stress[J]. Curr.Opin. Biotechnol, 1998, 9: 214–219.
    [162]Smirnoff N, Cumbes Q J. Hydroxyl radical scavenging activity of compatible solutes[J]. Phyotochemistry, 1989, 28: 1057–1060.
    [163]Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas[J]. Biol. Chem, 1989, 264: 7761-7764.
    [164]M A Longa, L A del Rio, J M Palma. Superoxide dismutases of chestnut leaves, Castanea sativa: characterization and study of their involvement in natural leaf senescence[J]. Physiol. Plant, 1994, 92: 227-232.
    [165]DJ Kliebenstein, RA Monde, RL Last. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization [J]. Plant Physiol, 1998, 118: 637-650.
    [166]C Bowler, M Van Montagu, D Inze. Superoxide dismutases and stress tolerance[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1992, 43: 83-116.
    [167]L Slooten, M Van Montagu, D Inze. Manipulation of oxidative stress tolerance in transgenic plants[M]// K. Lindsey (Ed.), Transgenic Plant Research, Harwood Academic Publishers, Amsterdam, 1998, 241-262.
    [168]Bowler C, Slooten L, Vandenbranden S, et al. Manganese superoxide dismutase can induce cellular damage mediated by oxygen radicals in transgenic plants[J]. EMBO, 1991, 10: 1723–1732.
    [169]Gupta A S, Heinen J L, Holaday A S, et al. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn-superoxide dismutase[J]. Proc. Natl. Acad. Sci. USA , 1993a, 90: 1629–1633.
    [170]Gupta A S, Webb R P, Holaday A S, et al. Overexpression of superoxide dismutase protects plants from oxidative stress: induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants[J]. Plant Physiol, 1993b, 103: 1067–1073.
    [171]Gupta S, Chattopadhyay M K, Chatterjee P, et al. Expression of abscisic acid-responsive element binding protein in salt tolerant indica rice (Oryza sativa L. cv. Pokkali)[J]. Plant Mol. Biol., 1998, 137: 629–637.
    [172]Van Camp W, Capiau K, Van Montagu M, et al. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts[J]. Plant Physiol, 1996, 112: 1703–1714.
    [173]Shikanai T, Takeda T, Yamauchi H, et al. Inhibition of asorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts[J]. FEBS Lett, 1998, 428: 47–51.
    [174]Roxas V P, Lodhi S A, Garrett D K, et al. Stress tolerance in transgenic tobacco seedlings that over- express glutathione S-transferase/glutathione peroxidase[J]. Plant Cell Physiol., 2000, 41:1229–1234.
    [175]Takemura T, Hanagata N, Dubinsky Z, et al. Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza[J]. Trees-Struct. Funct, 2002, 16: 94–99.
    [176]陈一舞,邵桂花,常汝镇.盐胁迫下大豆子叶细胞器超氧化物歧化酶的影响[J].作物学报,1997(2):214-219.
    [177]廖祥儒,朱新产.活性氧代谢和植物抗盐性[J].生命的化学,1996,16(6):19-23.
    [178]刘晓静,柳小妮.多效唑和烯效唑对草地早熟禾一些生化指标及抗性的影响[J].草业学报,2006,15(2):48-53.
    [179]刘建新,胡浩斌,赵国林.多裂骆驼蓬中生物碱类物质对玉米幼苗生长及某些生理特性的影响[J].草业学报,2007,16(2):75-80.
    [180]张新虎,何静,沈惠敏.苍耳提取物对番茄灰酶病菌的抑制作用及抑菌机理初探[J].草业学报,2008,17(6):99-104.
    [181]Huff A. Peroxidase-catalysed oxidation of chlorophyll by hydrogen peroxide[J]. Phytochemistry, 1982, 21(2): 261-265.
    [182]Uphem B L. Photo oxidative reactions in chloroplast thylakiods. Evidence for a fen to type reaction promoted by super oxide orascorbate[J].Photosynthesis Research,1986, 8: 235-247.
    [183]王爱国,罗广华.植物的超氧化物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,26(6):51-57.
    [184]张远冰,刘爱荣,方蓉.外源一氧化氮对镉胁迫下黑麦草生长和抗氧化酶活性的影响[J].草业学报,2008,17(4):57-64.
    [185]王罗霞,赵志光,王锁民.一氧化氮对水分胁迫下小麦叶片活性氧代谢及膜脂过氧化的影响[J].草业学报,2006,15(4):104-108.
    [186]Gao Z H,Xue Y B,Dai J R. cDNA-AFLP analysis reveals that maize resistance to Bipolaris maydis is associated with the induction of multiple defense-related genes [J].Chinese science bulletin, 2001(17).
    [187]汪建飞,沈其荣.有机酸代谢在植物适应养分和铝毒胁迫中的作用[J].应用生态学报,2006,17(11):2210-2216.
    [188]Wang Y,Yang C,Liu G,et al. Development of a cDNA microarray to identify gene expression of Puccinellia tenuiflora under saline–alkali stress[J]. Plant Physiol Biochem, 2007, 45: 567–576.
    [189]Yang C , Chong J , Kim C, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions[J]. Plant Soil, 2007, 294: 263–276.
    [190]Yang C, Jianaer A, Li C, et al. Comparison of the effects of salt-stress and alkali-stress on the photosynthetic production and energy storage of an alkali-resistant halophyte Chloris virgata[J]. Photosynthetica, 2008a, 46: 273–278.
    [191]Yang C, Shi D, Wang D. Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyte Suaeda glauca (Bge.)[J]. Plant Growth Regul, 2008b, 56: 179–190.
    [192]Yang C, Wang P, Li C, et al. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat[J]. Photosynthetica, 2008c, 46: 107–114.
    [193]Yang C, Xu H H, Wang L, et al. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants[J]. Photosynthetica, 2009b, 47 (1): 79-86.
    [194]Yang C, Zhang M, Liu J, et al. Effects of buffer capacity on growth, photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata)[J]. Photosynthetica, 2009a, 47 (1): 55-60.
    [195]Zheng H Y, Li J D. A preliminary study on the formation of saline-alkaline plant communities in the Songnen Plain[J]. Acta phytoecol, 1995(19):1-12.
    [196]Zhu G L, Deng X W, Zuo W N. Determination of free proline in plants[J]. Plant physiol, commun, 1983, 1: 35–37.
    [197]Zhu J K. Regulation of ion homeostasis under salt stress[J]. Curr Opin Cell Biol., 2003, 6: 441–445.
    [198]尹尚军,石德成,颜宏.Na2CO3胁迫下星星草胁变反应部位的差异[J].草业学报, 2001,10(4):101-106.
    [199]Chen W, et al. Cpmparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.)[J]. Ind. Crops Prod. doi:10.1016/j.indcrop,2009.
    [200]杨春武,李长有,尹红娟,等.小冰麦(Triticum aestivum-Agropyron intermedium)对盐胁迫和碱胁迫的生理响应[J].作物学报,2007,33(8):1255-1261.
    [201]Yang C W, Shi D C, Wang D L. Comparative effects of salt and alkali stresses on growth,osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.)[J].Plant Growth Regul, 2008,56: 179-190.
    [202]Yang, C W, et al. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants[J]. Photosynthetica, 2009, 47(1): 19-86.
    [203]杨春武,李长有,张美丽,等.盐、碱胁迫下小冰麦体内的pH及离子平衡[J].应用生态学报, 2008, 19(5): 1000-1005.
    [204]彭志红,彭克勤,胡家金,等.渗透胁迫下植物脯氨酸积累的研究进展[J].中国农学通报,2002,18(4):80-83.
    [205]Kemple A K, Macpherson H T. Liberation of amino acid in perennial rye grass during wilting[J]. Biochemistry, 1954, 58: 46-49.
    [206]Liang Z H, Luo A L. Betaine and betaine synthetical enzyme[J]. Journal of Plant Physiology, 1995, 31: 1-80.
    [207]张立新,李生秀.甜菜碱与植物抗旱/盐性研究进展[J].西北植物学报,2004,24(9):1765-1771.
    [208]Sakamoto A, Murara N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants[J].Plant, Cell and Environment, 2002, 25: 163-171.
    [209]杨春武,贾娜尔·阿汗,石德成,等.复杂盐碱条件对星星草种子萌发的影响[J].草业学报,2006,15(5):45-51.
    [210]廉彭彭.盐胁迫对疣苞滨藜种子萌发和早期幼苗生长的影响[D]:硕士学位论文.乌鲁木齐:新疆农业大学草业与环境科学学院,2008.
    [211]郭彦,杨洪双,赵家斌.混合盐碱对大豆种子萌发的影响[J].种子,2008,27(12):92-94.
    [212]谢德意,王惠萍,王付欣,等.盐胁迫对棉花种子萌发及幼苗生长的影响[J].种子,2000,3(109):10-13.
    [213]郎志红.盐碱胁迫对植物种子萌发和幼苗生长的影响[D]:硕士学位论文.兰州:兰州交通大学环境与市政工程学院,2008.
    [214]王军伟,魏佑营,邱红,等.盐胁迫对不同品种菠菜种子萌发特性的影响[J].山东农业科学,2007(6):48-53.
    [215]许帼英.盐碱胁迫对木地肤种子萌发及幼苗生长的影响[D]:硕士学位论文.乌鲁木齐:新疆农业大学草业与环境科学学院,2008.
    [216]张丽平.盐碱胁迫对黄瓜种子发芽和幼苗生理代谢的影响[D]:硕士学位论文.泰安:山东农业大学园艺科学与工程学院,2008.
    [217]沈禹颖,王锁民,陈亚明.盐胁迫对牧草种子萌发及其恢复的影响[J].草业学报,1999,8(3):54-60.
    [218]石德成,盛艳敏,赵可夫.复杂盐碱条件对向日葵胁迫作用主导因素的实验确定[J].作物学报,2002,28(4):461-467.
    [219]李玉明,石德成,李毅丹,等.混合盐碱胁迫对高粱幼苗的影响[J].杂粮作物, 2002,22(1):41-45.
    [220]麻莹.盐碱混合胁迫作用下抗碱盐生植物羊草的渗透调节及其离子平衡特点[D]:硕士学位论文.长春:东北师范大学生命科学学院,2007.
    [221]卢素锦.盐碱胁迫对同德小花碱茅种子萌发和幼苗生长的影响研究[D]:硕士学位论文.西宁:青海大学畜牧兽医科学院,2008.
    [222]张万钧,王斗天,范海,等.盐生植物种子萌发的特点及其生理基础[J].应用与环境生物学报,2001,7(2):117-121.
    [223]颜宏,赵伟,秦峰梅,等.盐碱胁迫对羊草、地肤种子萌发以及幼苗生长的影响[J].东北师大学报,2006,38(4):117-123.
    [224]Chapin F S, Tieszen L L, Lewis M, et al. Control of tundra plant allocation patterns and growth[M]//An arctic ecosystem. The coastal tundra at Barrow, Alaska, J. Brown, P. Miller, L. Tieszen, F. Bunnen(eds). Dowden,Hutchinson and Ross, Stroudsburg, 1980, 140-185.
    [225]Koster K L, AC Leopold . Sugars and desiccation tolerance in seeds [J]. 1988.
    [226]Ghasempour H R, D F Gaff, R P W Williams, et al. Contents of sugars in leaves of drying desiccation tolerant flowering plants, particularly grasses[J]. Plant Growth Reg., 1998, 24: 185-191.
    [227]Ghasempour H R, Anderson E M, Gaff Donald F. Effects of growth substances on the protoplasmic drought tolerance of leaf cells of the resurrection grass, Sporobolus stapfianus[J]. Aust. J. Plant Physiol., 2001, 28: 1115-1120.
    [228]苏丽英,吴勇,於新建,等.水稻叶片蔗糖磷酸合成酶的一些特性[J].植物生理学报,1989,15(2):117-123.
    [229]夏叔芳,徐建,苏丽英,等.水稻叶片的蔗糖合成酶[J].植物生理学报,1989,15(3):239-243.
    [230]Koch K E, Ying Z, Wu Y, et al. Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism[J]. Journal of experimental botany, 2000, 51:417-427.
    [231]Gibson S I. Plant sugar-response pathway. Part of a complex regulatory web[J]. Plant physiol., 2000, 124:1532-1539.
    [232]Hendry G A F, Wallace R K. The origin, distribution and evolutionary significance of fructan[M]//M. Suzuki and N.J. Chatterton, Editors, Science and technology of fructans, CRC Press, Boca Raton, FL ,1993, 119–139.
    [233]Pollock C J, Lloyd E J. The effect of low temperature upon starch, sucrose and fructan synthesis in leaves[J]. Annals of Botany., 1987, 60: 231-235.
    [234]Cairns A J, Nash R, Machado de carvalho M-A, et al. Characterization of the enzymatic polymerization of 2,6-linked fructan by leaf extracts from timothy grass( Phleum pratense) [J]. New Phytol., 1999, 142: 79-91.
    [235]Davies A. Carbohydrate levels and regrowth in perennial ryegrass[J]. Journal of Agricultural Science, 1965, 65:213-221.
    [236]潘庆民,韩兴国,白永飞,等.植物非结构性贮藏碳水化合物的生理生态学研究进展[J].植物学通报,2002,19(1):30-38.
    [237]Jeong B R, Housley T L. Fructan metabolism in wheat in alternating warm and cold temperatures[J]. Plant Physiol., 1990, 93: 902-906.
    [238]Archbold H K. Fructosans in the monocotyledons, a review[J]. New phytol, 1940, 39: 185-219.
    [239]Cairns A J, Nash R, Machado de carvalho M A, et al. Characterization of the enzymatic polymerization of 2.6-linked fructan by leaf extracts from timothy grass (Phleum pretense)[J]. New phytol., 1999, 142: 79-91.
    [240]Vergauwen R, Van den Ende W, Laere A V. The role of fructan in flowering of campanula rapuncaloides[J]. Exo Botany., 2000, 51:1261-1266.
    [241]Xiping Niu, Tim Helentjaris and Nicholas J. Bate. Maize ABI4 Binds Coupling Element1 in Abscisic Acid and Sugar Response Genes[J]. The Plant Cell, 2002(14): 2565-2575.
    [242]Pan R C. Plant Physiology[M]. 4th ed. Beijing(in Chinese): Higher Educatoin Press, 2001.
    [243]Sheen J, Zhou L, Jang J C. Sugar as signaling molecules[J]. Curr. Opin. Plant Biol., 1999, 2: 1001–1008.
    [244]Koch K E. Carbohydrate-modulated gene expression in plants[J]. Annu. Rev. Plant Physoil., Plant Mol.Biol, 1996, 47: 509–540.
    [245]Smeekens S. Sugar regulotron of gene expression in plants[J]. Curr. Opin. Plant Brol, 1998, 1: 230–234.
    [246]Jeong B R, Housley T L. Fructan metabolism in wheat in alternating warm and cold temperatures[J]. Plant Physiol., 1990, 93: 902–906.
    [247]Loewe A, Einig W, Shi L, et al. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen[J]. New Phytol., 2000, 145: 565–574
    [248]Volaire F, Gandoin J M. The effect of age of the sward on the relationship between water-soluble carbohydrate accumulation and drought survival in two contrasted populations of cocksfoot (Dactylis glomerata)[J]. Grass Forage Sci., 1996, 51: 190–198.
    [249]Schellenbaum L, Sprenger N, Schüepp H, et al. Effects of drought, transgenic expression of a fructan synthesizing enzyme and of mycorrhizal symbiosis on growth and soluble carbohydrate pools in tobacco plants[J]. New Phytol., 1999, 142: 67–77.
    [250]Quick W P, Chaves M M, Wendler R, et al. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions[J]. Plant Cell Environ, 1992, 15: 25–35.
    [251]Garcia A B, Engler J A, Iyer S, et al. Effects of osmoprotectants upon NaCl stress in rice[J]. Plant Physiol., 1997, 115: 159–169.
    [252]Housley T L, Gibeaut D M, Carpita N C, et al. Fructosyl transfer from sucrose and oligosaccharides during fructan synthesis in excised leaves of Lolium temulentum L[J]. New Phytol., 1991,119: 491–497.
    [253]Fulkerson W J, Slack K. Leaf number as a criterion for determining defoliation time for Lolium perenne. I. Effect of water-soluble carbohydrates and senescence[J]. Grass Forage Sci., 1994, 49: 373–377.
    [254]Donaghy D J, Fulkerson W J. Priority for allocation of water-soluble carbohydrate reserves during regrowth of Lolium perenne[J]. Grass Forage Sci., 1998, 53: 211–218
    [255]Vanderklein D W, Reich P B. The effect of defoliation intensity and history on photosynthesis, growth, and carbon reserves of two conifers with contrasting leaf lifespans and growth habits[J]. New Phytol., 1999, 144: 121–132.
    [256]杨允菲,刘庚长,张宝田.羊草种群年龄结构及无性繁殖对策的分析[J].植物学报,1995,24(10):2171-2207.
    [257]杨允菲,郑慧莹,李建东.松嫩平原两个趋异类型羊草无性系种群特征的比较研究[J].植物学报,1997(11):1-12.
    [258]杨允菲,张宝田.松嫩平原赖草无性系生长及其构件的年龄结构[J].应用生态学报,2004(11) :2109-2112.
    [259]杨允菲,张宝田,李建东.松嫩平原栽培条件下羊草无性系构件的结构[J].应用生态学报, 2003(11):1-7.
    [260]Yunfei Yang, Jiandong Li. Effects of different utilization methods on reproductive characters of Aneurolepidium chinense[J]. Chinese Journal of Grassland, 1994, (5).
    [261]杨允菲,李建东.东北草原羊草种群单穗数量性状的生态可塑性[J].生态学报,2001(5):1-9.
    [262]丁雪梅,王涌鑫,杨允菲.松嫩平原不同土壤基质条件下羊草种群年龄结构的研究[J].植物学报,2004(2):2-16.
    [263]Teng N J, Tong C, Jin B, et al. Abnormalities in pistil development result in low seed set in Leymus chinensis[J].Flora, 2006, 201: 658–667.
    [264]Zhu T C. Ecological construction of the Leymus chinensis grassland, - Bioecology of Leymus chinensis[J]. Science and Technology Press. Jilin, 2004.
    [265]Zhu Y J, Dong M, Huang Z Y. Caryopsis germination and seedling emergence in an inland dune dominant grass Leymus secalinus[J].Flora,2007, 202: 249–257.
    [266]张浩然.2009年新麦上市后小麦市场特征及展望[N].国家粮油信息中心,2009:3-6.
    [267]翟得昌,王树杰,杨清岭,等.超级小麦育种的探讨[J].大麦与谷类科学,2006(2):1-3.
    [268]方正,刘维正,于雪方,等.超级小麦育种的探讨[J].山东农业科学,2004(3):27-29.
    [269]Rosegrant M W,Sombilla M A,Gerpaeio R V,et al. Globafood markets and exports in twenty flint century . Paper presented at the illinons World Food and Sustainable Agriculture Program Conference[M].Meeting the Demand for Food in the 21st Century:Challenges and Opportanities[M].1997.
    [270]Langridge P, Paltridge N, Fincher G. Functional genomics of abiotic stress tolerance in cereals. http://bfgp.oxfordjournals. org/cgi/content/full/4/4/343, 2006.
    [271]Wang R L, J Dekker. Weedy Adaptation in Setaria Spp.: III. Variation in Herbicide Resistance in Setaria Spp[J]. Pesticide Biochemistry and Physiology, 1995, 51(2): 99-116.
    [272]Zheng H Y, J D Li. Form and dynamic trait of halophyte community[M]// HY Zheng, JD Li, eds, Saline Plants in Songnen Plain and Restoration of Alkalinene–saline Grass. Beijing : Science Press, 1999, 137–138.
    [273]字淑慧,吴伯志,沙本才,等.非洲狗尾草防治坡耕地水土流失效应的研究[J].水土保持研究,2006,13(5):183-185.
    [274]罗泉,邓菊芬,尹俊.纳罗克非洲狗尾草种子生产技术研究概况[J].草业与畜牧,2007(2):16-18,59.
    [275]Kingsbury R W,Epstein E,Peary R W. Physiological responses to salinity in selected lines of wheat[J].Plant Physiology, 1984,74: 417–423.
    [276]Zhu G L,Deng X W,Zuo W N. Determition of free proline in plants[J].Plant PhysiolCommun, 1983, 1: 35-37.
    [277]Shanghai Institute of Plant Physiology of Chinese Academy of Sciences,Shanghai Institute of Plant Physiolog. Modern experiment enchiridion of plant physiology[M]. Beijing: Science press, 1999.
    [278]Rui Guo,Lianxuan Shi,Yunfei Yang. Germination and growth, osmotic adjustment and ionic balance of wheat in response to saline and alkaline stresses[J].Soil Science & Plant Nutrition, 2009, 55(5): 667–679.
    [279]国家标准种子检验规程[S].北京,2005.
    [280]Wang H, Wang F, Wang G, et al. The responses of photosynthetic capacity, chlorophyll fluorescence and chlorophyll content of nectarine (Prunus persica var. Nectarina Maxim) to greenhouse and field grown conditions[J]. Scientia Horticulturae, 2007, 112: 66–72.
    [281]Wu Y Y, Li P P, Zhao Y G, et al. Study on photosynthetic characteristics of Orychophragmus violaceus related to shade-tolerance[J]. Scientia Horticulturae, 2007, 113: 173–176.
    [282]Olsson T, Leverenz J W. Non-uniform stomatal closure and the apparent convexity of the photosynthetic photon flux density response curve[J].Plant, Cell and Environment,1994, 17:701-710.
    [283]Prioul J L, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: A critical analysis of the methods used[J]. Annals of Botany,1997, 41: 789-800.
    [284]Field C B, Ball J t, Berry J A. Photosynthesis: principles and field techniques- in plant physiological ecology[J]. New York: Chapman and Hall, 1989, 209-253.
    [285]Chen G Y, Yug L, Chen Y, et al. Exploring the observation methods of photosynthetic responses to light and carbon dioxide[J].Journal of Plant Physiology and Molecular Biology, 2006, 32: 691-696.
    [286]Farquhar G D, Sharkey V C. Modeling of photosynthetic response to environmental condition[J].Encyclopedia of plant physiology. Berlin, 1982, 12: 549-587.
    [287]von Caemmerer S. Biochemical models of leaf photosynthesis[M].Techniques in Plant Sciences No.2. CSIRO Publishing, Collingwood, Victoria, Australia. 2000.
    [288]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochem. Biophys. Acta, 1989, 990: 87–92.
    [289]Harbinson J, Genty B, Baker N R. Relationship between the quantum efficiencies of photosystem I and II in pea leaves[J]. Plant Physiol., 1989, 90: 1029–1034.
    [290]Shi L X, Guo J X. Changes in photosynthetic and growth characteristics of Leymus chinensis community along the retrogression on the Songnen grassland in northeastern China[J].Photosynthetica, 2006, 44.
    [291]Holm G. Chlorophyll mutation in barley[J].Acta Agric.,1954, 3: 457.
    [292]Arnon D I. Copper Enzymes in Isolated Chlorop lasts Phenoloxidases in Beta Vulgaris[J]. Plant Physiol., 1949, 24: 1-15.
    [293]梁晓芳,于振文.施钾时期对冬小麦旗叶光合特性和籽粒淀粉积累的影响[J].应用生态学报,2004(8):1349-1352.
    [294]周玉梅,杨传平,王淑娟,等.外源糖溶液和高浓度CO2处理对白桦叶片糖和蛋白质含量的影响[J].林业研究:英文版,2003(1):61-63.
    [295]颜宏,石德成,尹尚军,等.盐碱胁迫对羊草体内N及几种有机代谢产物积累的影响[J].东北师大学报:自然科学版,2000,32(3):47-52.
    [296]章艺,刘鹏,史锋,等.高Fe2+对大豆叶片光合作用的影响[J].中国油料作物学报,2007,29(4):438-442.
    [297]Rengel Z. The role of calcium in salt toxicity[J]. Plant, cell and Environment, 2006, 17: 625-627.
    [298]Parida A K, A B Das. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicology and Environmental Safety, 2005, 60: 324–349.
    [299]Knight H, Trewavas A J, Knight M R. Calcium signaling in Arabidopsis thaliana responding to drought and salinity[J]. Plant Journal, 1997, 12: 1067–1078.
    [300]Liu Z H, Zhao K F. Effects of Salt Stress on the Growth and Na+ and K+ Contents in Aeluropus littoralis var. Sinensis Debeaux[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(3):311-316.
    [301]邵云,柴宝玲,李春喜,等.土壤添加玉米秸秆对小麦Pb毒害缓解效应[J].生态学报, 2009,4(3): 26-28.
    [302]Yan X X, Zhao T F. Effect of moderate salt stress on cells in roots tips of barely[J]. Acta AgricultureBoreali Sinca(supplement),1994: 9-13.
    [303]刘拥海,俞乐.植物草酸的功能及其代谢调控研究进展[J].安徽农业科学,2006,34(15):3572—3573,3575.
    [304]俞乐,彭新湘,杨崇,等.反相高效液相色谱法测定植物组织及根分泌物中的草酸[J].分析化学,2002,30(9):1119-1122.
    [305]刘拥海,彭新湘,俞乐.荞麦与大豆叶片中草酸含量差异及其可能的原因[J].植物生理与分子生物学学报,2004,30(2):201-208.
    [306]彭新湘,李明启.光呼吸代谢物乙醇酸、乙醛酸和草酸对烟草叶片硝酸还原的影响[J].植物生理学报,1987,13(2):182-189.
    [307]徐锐,彭新湘.草酸在提高大豆磷的利用效率及抗铝性中的作用[J].西北植物学报,2002,22(2):291-295.
    [308]杨荣金,彭新湘,姜子德,等.草酸诱导黄瓜抗炭疽病的机理研究[J].植物病理学报,2000,30(2):153-157.
    [309]张宗申,彭新湘,李明启.非生物诱抗剂草酸对黄瓜叶片中过氧化物酶的系统诱导作用[J].植物病理学报,1998,28(2):145-151.
    [310]胡军瑜,王俊刚,吴转娣,等.基因组学与应用生物学,2009,28(2):380-384.
    [311]张菊梅,吴清平,周小燕,等. L-苹果酸的生理功能及应用前景[J].微生物学通报,1997,24(2):116-117.
    [312]Martinoia E,Rentach D. Malate compartimentation responses to a complex metabolism[J].Annu.Rev.Plant Physiol, 1994, 45: 447-467.
    [313]De-Lacerda C F, Cambraia J, Oliva M A, et al. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress[J]. Environ Exp. Bot, 2003, 49: 107–120.
    [314]Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environ Exp Bot, 2002, 47: 39–50.
    [315]Marcelis L F M, van Hooijdonk J. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L)[J]. Plant Soil, 1999, 215: 57-64.
    [316]Soussi M, Ocana A, Lluch C. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.)[J]. Journal Experimental Botany, 1998, 49, 1329–1337.
    [317]Moghaieb R E A, Saneoka H, Fujita K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime[J]. Plant Sci., 2004, 166: 1345–1349.
    [318]Shi D C, Zhao K F. Effects of NaCl and Na2CO3 on growth of Puccinellia tenuiflora and on present state of mineral elements in nutrient solution[J].Acta pratacu. sin.1997, 6(2): 51-61.
    [319]Blumwald E. Sodium transport and salt tolerance in plants[J]. Curr Opin Cell Biol, 2000, 12: 431–434.
    [320]Debez A, Hamed B K, Grignon C, et al. Salinity effects on germination, growth, and seed production of the halophyte Cakile maritime[J]. Plant Soil, 2004, 262: 179–189.
    [321]Bethke P C, Drew M C. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves ofCapsicum annuum during progressive exposure to NaCl salinity[J]. Plant Physiol., 1992, 99: 219–226.
    [322]Ralph P J, Burchett M D. Photosynthetic response of Halophila ovalis to heavy metal stress[J]. Environ Pollute, 1998, 103: 91–101.
    [323]Rau S, Miersch J, Neumann D, et al. Biochemical responses of the aquatic moss Fontinalis antipyretica to Cd, Cu, Pb and Zn determined by chlorophyll fluorescence and protein levels[J]. Environmental and Experimental Botany, 2007, 59: 299-306.
    [324]Naumann J C, Young D R, Anderson J E. Leaf chlorophyll fluorescence, reflectance, and physiological response to freshwater and saltwater flooding in the evergreen shrub, Myrica cerifera[J]. Environ. Exp. Bot, 2008, 63: 402–409.
    [325]Maxwell K, Johnson G N. Chlorophyll fluorescence a practical guide[J]. J.Exp, 2000,51: 659–668.
    [326]Larcher W, Wagner J, Thammathaworn A. Effects of superimposed temperature stress on in vivo chlorophyll fluorescence of Vigna unguiculata under saline stress[J].Plant Physiol,1990,136: 92–102.
    [327]Everard R, Gucci S C, Kann J A, et al. Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity[J]. Plant Physiol, 1994, 106: 281–292.
    [328]Lu C M, Qiu N W, Lu Q T, et al. Does saline stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors[J].Plant Science,2002,163: 1063-1068.
    [329]Parker D R, Zelazny L W, Kinraide T B. Improvements to the program Geochem[J].Soil Sci. Soc Am J.,1987,51: 488–491.
    [330]Gratzer G, Darabant A, Chhetri P B, et al. Light response of six tree species in the conifer belt of the Bhutan Himalayas[J].Candian Journal of Forest Research,2004,34(5):1093-1107.
    [331]Gratzer G, Rai P B, Darabant A, et al. Leaf characteristics and growth response to light of understory Rhododendron hodgsonii in the Bhutan Himalayas.Ekologia[J]. Ekológia (Bratislava), 2004, 23(3): 283-297.
    [332]Prioul J L, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation. A critical analysis of the methods used[J]. Annals of Botany, 1977, 41: 789-800.
    [333]Frederico L P, Jurandi G O, Maura D C, et al. Chlorophyll a fluorescence and ultrastructural changes in chloroplast of water hyacinth as indicators of environmental stress[J].Environmental and Experimental Botany,2008,64:307–313.
    [334]Antonio F, Tommaso M. Chlorophyll a fluorescence measurements to evaluate storage time and temperature of Valeriana leafy vegetables[J]. Post harvest Biology and Technology, 2007, 45: 73–80.
    [335]Biswall B. Carotenoid catabolism during leaf senescence and its control by light[J]. Photochem. Photobiol. B, 1995, 30: 3–14.
    [336]Toivonen P M A, DeEll J R. Chlorophyll fluorescence, fermentation product accumulation, and quality of stored broccoli in modified atmosphere packages and subsequent air storage[J]. Postharvest Biol. Technol, 2001, 23: 61–69.
    [337]Huang D, K Wang. Dynamics of soluble sugar and endogenous hormone contents in several steppe grass species during their germination period in spring[J].Chinese Journal of Applied Ecology, 2006,17(2):210-214.
    [338]Wilekens H, et al. Elebted levdls of superoxide dismutase protect transgenic plants against ozene damage[J].Biology Technology, 1994, 12: 165-168.
    [339]周瑞莲,张普金.春季高寒草地牧草根中营养物质含量和保护酶活性的变化及其生态适应性研究[J].生态学报,1996(4):402-407.
    [340]Liu Y, Wang D L, Han S J, et al. Variations of water soluble carbohydrate and nitrogen contents in Leymus chinensis and Phragmites communis under different stocking rates[J]. China J. Appl. Ecol, 2003, 14:2167–2170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700