用户名: 密码: 验证码:
排污河道中重金属污染沉积物的植物修复
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着冶金、化工、电镀和印染工业的蓬勃发展,重金属及其化合物被广泛使用,致使富含重金属的废弃物日益增多,重金属污染的加重导致进入城市排污河道沉积物中的重金属数量不断增加。由于环境中的重金属对人类具有潜在危害性,故对河道沉积物的修复和治理已成为当今世界各国普遍面临的环境问题。
     对城市排污河道沉积物的修复采用植物修复的方法,本文主要选用黑麦草和玉米两种植物对富含铅、镉、铜、锌、锰和镍等重金属的河道沉积物进行了温室栽种修复试验,并通过投加双氧水对植物修复的效果进行了对比研究。
     从植物种植前后和投加双氧水前后沉积物中重金属总量和存在形态的种类和数量的变化、根际环境对植物吸收和累积重金属的影响、根际微生物种群的变化、植物以及植物根际与非根际重金属累积重金属的情况对比、酶活性的变化等几个方面对植物修复的效果进行了分析,首次表明双氧水可以促进植物对沉积物中铅、镉、铜、锌、锰和镍等重金属总量和各种形态重金属数量的吸收累积,还可以改变不同形态重金属的种类,根际环境和微生物以及酶活性的变化表明沉积物中的重金属被有效活化,植物吸收、运移重金属的能力明显增强。
     通过对植物的根、茎和叶等各个部位吸收和累积重金属的情况看出,植物各个部位对重金属的吸收和累积机制各不相同,种植时间的延长可以使植物中累积的重金属数量增加,而修复效率下降。种植时间较长时植物中累积重金属的数量不同,沉积物中的有机物种类在植物种植前后有较大变化。根际分泌物的增多、沉积物中微生物种群的变化以及酶活性的变化均说明植物可有效修复沉积物中的重金属,特别是针对多酚氧化酶活性恢复较快这一点,本文首次提出将沉积物中多酚氧化酶活性的恢复作为判断植物修复沉积物效果的一个重要指标,从而为植物修复沉积物的研究工作提供新的参考。
     在分析植物吸收和累积沉积物中重金属机理的基础上,以植物吸收累积重金属的四个过程为模型依据,将植物吸收重金属的动态过程的数学模型表述成非线性动态系统的形式,并首次结合Lyapunov稳定性理论对植物吸收和累积重金属的非线性动态过程进行了严格的稳定性分析。稳定性结论可表达成线性矩阵不等式(Linear matrix inequality, LMI)的形式,求解方便。数值仿真和试验验证表明了所选模型的合理性及理论分析方法的有效性,该理论分析方法将为受重金属污染的河道沉积物的植物修复技术提供重要的参考作用。
With the widely use of heavy metal and its compounds in flourishing development of industries of metallurgy, chemical engineering, electroplating and printing and dyeing, the remediation and treatment to heavy metal contamination has become a world-wide environmental problem because of the ever increasing heavy metal contaminants into urban river and even its potential danger to human beings. In order to remediate heavy metal in urban sewage river sediment, planting experiment and adding hydrogen peroxide treating research were conducted to study phytoremediation of lead, cadmium, copper, zinc, manganese and nickel in sediment by Lolium multiflorum and maize.
     Results showed after planting Lolium multiflorum the total concentration of heavy metal and different forms of heavy metal could be changed. In addition, the effect of rhizosphere, microorganism and urease activity in sediment could also help to uptake and translocation to heavy metal from sediment to plants. More important was the amounts and kinds of heavy metal or different forms heavy metal after adding hydrogen peroxide treating were largely changed. Heavy metals in sediment were activated efficiently and the ability of accumulation and translocation to heavy metals increased from sediment to plants.
     Through the research of uptake and accumulation of heavy metal in different parts of plant, results showed the root, stem and leaf had different phytoremediation mechanism to heavy metal. Even though extending planting time could make the amount of heavy metal in plant increased, efficiency of remediation decreased dramatically. The kinds and amounts of organics in sediment changed greatly. More rhizosphere exudates and microorganisms also helped to increase accumulation of heavy metal in plants. The activity of polyphenol oxidize had been increased after planting and adding hydrogen peroxide treating. The research firstly advised the activity of polyphenol oxidize could be considered as an important proof to judge the phytoremediation effect in sewage river sediment.
     Based on the mechanics of phytoremediation on heavy metal contaminants in sewage river sediment, the four dynamical processes of accumulation were described as a class of nonlinear dynamical systems. Then, the stability analysis of the nonlinear dynamical process of uptake and accumulation was achieved based on Lyapunov stability theory, and the result was formulated as the feasibility of linear matrix inequality (LMI) which could be solved numerically with available software. Numerical simulation and experimental data show the reasonableness of the dynamical model and the effectiveness of the proposed methods which will provide technical support for phytoremediation on heavy metal contaminants in sewage river sediment.
引文
[1]李相然,城市化环境效应与环境保护,中国建筑工业出版社,2004
    [2]孟祥和,胡国飞,重金属废水处理,北京:化学工业出版社,2000
    [3]扶惠华,王煜,田延亮,镍在植物生命活动中的作用,植物生理学通讯,1996,32(1):45~49
    [4]乔显亮,骆永明,吴胜春,污泥的土地利用及其环境影响,土壤,2000,2,79-85
    [5]吕建霞,王亚韡,张庆华,等,天津大沽排污河河口沉积物多溴联苯醚、有机氯农药和重金属的污染趋势,科学通报,2007,52(3):277~282
    [6]Nemerow N L S, Joseph A A, Franklin J, Environmental Engineering Hoboken, NJ, USA, John Wiley and Sons, 2003
    [7]万本太,突发性环境污染事故应急监测与处理处置技术,北京:中国环境科学出版社,2006
    [8]Chen H M, Zheng C R, Tu C, et al, Chemical methods and phytoremediation of soil contaminated with heavy metals, Chemosphere, 2000, 41(1-2): 29~234
    [9]Pezeshki S R, Delaune R D, Jugsujinda A, The effects of crude oil and the effectiveness of cleaner application following oiling on US Gulf of Mexico coastal marsh plants, Environmental Pollution, 2001, 112(3): 483~489
    [10]Herkovits J, Perez-Coll C, Herkovits F D, Ecotoxicological studies of environmental samples from Buenos Aires area using a standardized amphibian embryo toxicity test, Environmental Pollution, 2002, 116(1): 177~183
    [11]韦朝阳,陈同斌,重金属超富集植物及植物修复技术研究进展,生态学报,2001,21(7):1196~1203
    [12]周国华,被污染土壤的植物修复研究,物探与化探,2003,27(6): 473~476
    [13]叶春和,土壤污染的植物修复技术:现状与前景,山东科学,2004,17(1):45~50
    [14]Salt D E, Prince R C, Pickering I J, Chemical speciation of accumulated metals in plants: evidence from X-ray absorption spectroscopy, Microchemical Journal, 2002, 71(2-3): 255~259
    [15]蒋先军,骆永明,赵其国,土壤重金属污染的植物提取修复技术及其应用前景,农业环境保护,2000,19(3):179~183
    [16]Karenlampi S, Schat H, Vangronsveld J, et al, Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils, Environmental Pollution, 2000, 107(2): 225~231
    [17]旷远文,温达志,周国逸,有机物及重金属植物修复研究进展,生态学杂志,2004,23(1):90~96
    [18]夏星辉,陈静生,土壤重金属污染治理方法研究进展,环境科学,1997,18(3):72~75
    [19]周启星,魏树和,刁春燕,污染土壤生态修复基本原理及研究进展,农业环境科学学报,2007,26(2):419~424
    [20]张兵生,绿色经济学探索,北京:中国环境科学出版社,2005
    [21]Chaney R L, Malik M, Li Y M, Phytoremediation of soil metals, Current Opinions in Biotechnology, 1997, 8: 279~284
    [22]浙江大学环境修复与生态健康教育部重点实验室,植物修复技术应用前景广泛,国际学术动态,2006(3):26~28
    [23]王庆仁,崔岩山,董艺婷,植物修复重金属污染土壤整治有效途径,生态学报,2001,21(2):326~335
    [24]Guerinot M L, Salt D E, Fortified foods and phytoremediation: two sides of the same coin plant physiology, 2001, 125(1): 164~167
    [25]孙约兵,周启星,郭观林,植物修复重金属污染土壤的强化措施,环境工程学报,2007,1(3):103~110
    [26]Kr?mer Ute, Phytoremediation: novel approaches to cleaning up polluted soils, Current Opinion in Biotechnology, 2005, 16(2): 133~141
    [27]李琴,植物对土壤重金属污染修复的研究进展,重庆工商大学学报(自然科学版),2007,24(6):561~565
    [28]王向健,郑玉,赫冬青,重金属污染土壤修复技术现状与展望,环境保护科学,2004,30(122):48~49
    [29]Patrick Audet, Christiane Charest, Heavy metal phytoremediation from a meta-analytical perspective, Environmental Pollution, 2007, 147: 231~237
    [30]宋玉芳,宋雪英,张薇,等,污染土壤生物修复中存在问题的探讨,环境科学,2004,25(2):129~133
    [31]Zhang X B, Liu P, Yang Y S, et al, Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes, 2007, 19: 902~909
    [32]Kumar P, Dushenkov V, Motto H, et al, Phytoextraction: the use of plants to remove heavy metals from soils, Environ Sci Techno1, 1995, 29: 1232~1238
    [33]Lasat M M, Phytoextraction of toxic metals: a review of biological mechanisms, 2002, 31: 109~120
    [34]张慧,李宁,戴友芝,重金属污染的生物修复技术,化工进展,2004,23(5):562~574
    [35]Kramer U, Chardonnens A N, The use of transgenic plants in the bioremediation of soils contaminated with trace elements, Appl Microbiol Biotechnol, 2001, 55: 661~672
    [36]孙铁珩,李培军,周启星,等,土壤污染形成机理与修复技术,北京:科学出版社,2005
    [37]沈德中,污染环境的生物修复,北京:化学工业出版社,2003
    [38]尚爱安,刘玉荣,梁重山,土壤重金属的生物有效性研究进展,土壤,2000,6:294~300
    [39]Caros G, Itziar A, Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment, Bioresource Technology, 2001, 77: 229~236
    [40]Cunningham S D, Berti W R, Huang J W, Phytoremediation of contaminated soils, Trends Biotechnol, 1995, 13: 393~397
    [41]Tomsett A B,Therman D A,Molecular biology of metal tolerance of plant, Plant Cell Environ, 1988, 11: 383~394
    [42]Baker A J M, Metal tolerance, New Phytol, 1987
    [43]Meharg A, The role of the plasmalemma in metal tolerance in angiosperms, Plant Physiol, 1993, 88: 191~198
    [44]戴玲芬,高宏,夏建荣,雪松聚球藻对重金属镉的抗性和解毒作用,应用与环境生物学报,1998,4(3):192~195
    [45]Nies D H, Silver S, Plasmid determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus, Bacteriol, 1989, 171: 896~900
    [46]何勇强,陶勤南,镉胁迫下大豆中镉的分布状况及其籽粒品质,环境科学学报,2000,20(4):500~512
    [47]Maitani T, Kubota H, Sato K, et al, The composition of metals bound to classⅢmetallothionein (phytochelatin and its desglycyl peptide)included by various metals in root cultures of Rubiatinctorum, Plant Physiol, 1996, 110: 1145~1150
    [48]安志装,王校常,严蔚东,等,植物螯合肽及其在重金属胁迫下的适应机制,植物生理学通讯,2001,37(5):463~467
    [49]Inouhel, Ito R, Ito S, et al, Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins, Plant Physiol, 2000, 123: 1029~1036
    [50]彭少麟,杜卫兵,李志安,不同生态型植物对重金属的积累及耐性研究进展,吉首大学学报(自然科学版),2004, 25(4):19~26
    [51]汪行玉,赵可夫,植物重金属伤害及其抗性机理,应用与环境生物学报,2001,7(1):92~99
    [52]同延安,土壤植物大气连续体系中水运移理论与方法,陕西科学技术出版社,1998
    [53]Chardonnens A N, Koevoets P L M, Zanten A V, et al, Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerant Silene vulgaris, Plant Physiology, 1999, 120: 779~785
    [54]陈玉成,污染环境生物修复工程,北京:化学工业出版社,2003
    [55]Nishzono H, The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense, Plant and Soil, 1987, 101: 15~20
    [56]Molone C, Koeppe D E, Miller R J, Localization of lead accumulation by corn plants, Plant Physiol, 1974, 3: 388~394
    [57]杨居荣,鲍子平,张素芹,镉、铅在植物细胞内的分布及其可溶性结合形态,中国环境科学,1993,13(4):263~268
    [58]袁可能,土壤化学,北京:农业出版社,1990
    [59]Kramer U, Pickering I J, Prince R C, et al, Subcellurlar localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species, Plant Physiol, 2000, 122: 1343~1353
    [60]杨志敏,郑绍建,赵秀兰,等,磷对小麦细胞的镉、锌的积累及亚细胞分布的影响,环境科学学报,1999,19(6):693~695
    [61]徐明丽,关启堂,依艳丽,重金属植物螯合肽PC的研究进展,农业环境保护,2001,20(6):468~470
    [62]Kramer U, Smith R D, Wenzel W, et al, The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy, Plant Physiol, 1997, 115: 1641~1650
    [63]李法云,曲向荣,吴龙华,等,污染土壤生物修复理论基础与技术,北京:化学工业出版社,2006
    [64]Liu D H, Jiang W S, Liu C J, et al, Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)]. Bioresource Technology, 2000, 71: 273~277
    [65]Mulligan C N, Yong R N, Gibbs B F, Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 2001, 60: 193~207
    [66]Lim J M, Salido A L, Butcher D J, Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electronics, Microchemical Journal, 2004, 76: 3~9
    [67]Lasat M, Baker A J M, Kochian L V, Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species of Thlaspi, Plant Physiology, 1996, 112: 1715~1722
    [68]Pineros M A, Shaff J E, Kochian L V, Development,characterization and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat, Plant Physiol, 1998, 116: 1393~1401
    [69]李文一,徐卫红,李仰锐,等,重金属污染土壤植物修复机理研究,广东农业科学,2006,4:79~81
    [70]Mench M E, Martin E, Mobilization of Cd and other metals from two soils by root exudates of Zea mays L, Nicotiana tabacum L and Nicotiana rustica L, Plant and Soil, 1991, 132(20): 186~187
    [71]张淑香,高子勤,连作障碍与根际微生态研究Ⅱ.根系分泌物与酚酸物质,应用生态学报,2000,11(1):152~156
    [72]丁佳红,刘登义,储玲,等,重金属污染土壤植物修复的研究进展和应用前景,生物学杂志,2002,21(4):6~10
    [73]陈英旭,林琦,陆芳,等,有机酸对铅、镉植株危害的解毒作用研究,环境科学学报,2000,20(4):467~472
    [74]Inskeep W P, Thermodynamic prediction for the effect of root exudates on mental speciation in the rhizosphere, Journal of plant, 1986, 9(3): 567~586
    [75]Sun R L, Zhou Q X, Jin C X, Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly-found cadmium hyperaccumulator, Plant and Soil, 2006, 285: 125~134
    [76]Krishnamurti G S R, Huang P M, Van Rees K C J, et al, Speciation of particulate-bound cadium of soils and its bioavaility, The Analyst, 1995, 120: 661~689
    [77]Krishnamurti G S R, Cieslinski G, Huang P M, et al, Kinetics of cadmium release from soils as influenced by organic acids: implication in cadmium availability,Journal of Environmental Quality, 1997, 26: 271~277
    [78]韦朝阳,陈同斌,重金属污染植物修复技术的研究与应用现状,地球科学进展,2002,17(6):833~837
    [79]李春明,姜恒,侯文强,等,酵母菌对重金属离子吸附的研究,菌物系统,1998,17(4):367~373
    [80]刘秀梅,聂俊华,王庆仁,六种植物对铅的吸收与耐性研究,植物生态学报,2002,26(5):533~537
    [81]崔爽,周启星,晁雷,某冶炼厂周围8种植物对重金属的吸收和富集作用,应用生态学报,2006,17(3):512~515
    [82]Wei S H, Zhou Q X, Wang X, et al, A newly discovered Cd-hyperaccumulatior Solanum nigrum L, Chinese Sci Bulletin, 2004, 49(24): 2568~2573
    [83]Yang X E, Long X, Ni W Z, Sedum alfredii H: A new Zn hyperaccumulating plant first found in China, Chin Sci. Bulletin, 2002, 47(19): 1634~1637
    [84]Brown S L, Chaney R L, Angle J S, et al, Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium contaminated soil, Journal of Environmental Quality, 1994, 23: 1151~1157
    [85]薛生国,陈英旭,林琦,中国首次发现的锰超积累植物-商陆,生态学报,2003,23(5):935~937
    [86]聂发辉,镉超富集植物商陆及其富集效应,生态环境,2006,15(2):303~306
    [87]姜理英,典型香薷属植物对铜的耐性和吸收特性及污染土壤植物修复机理研究,博士学位论文,浙江大学,2003
    [88]李红霞,赵新华,马伟芳,等,玉米对受污染河道复合沉积物的修复,环境科学,2008,29(3):165~169
    [89]赵新华,马伟芳,孙井梅,等,植物修复重金属-有机物复合污染河道疏浚底泥的研究,天津大学学报,2005,38(11):1011~1016
    [90]张蕾,李红霞,马伟芳,等,黑麦草对复合污染河道疏浚底泥修复的研究,农业环境科学学报,2006,25(1):107~112
    [91]廖晓勇,陈同斌,阎秀兰,等,提高植物修复效率的技术途径与强化措施,2007,27(6):881~893
    [92]周宝利,陈玉成,植物修复的促进措施及根际微生物的作用,环境保护科学,2006,32(3):39~42
    [93]周启星,黄国宏,环境生物地球化学及全球环境变化,北京:科学出版社,2001
    [94]Wu J, Hsu F C, Cunningham S D, Chelate-assisted Pb phytoextraction: Pbavailability, uptake, and translocation constraints, Environmental Science & Technology, 1999, 33: 1898~1904
    [95]Stanhope K G, Young S D, Hutchinson J J, et al, Use of isotopic dilution Techniques to assess the mobilization of nonlabile Cd by chelating agents in Phytoremediation, Environmental Science & Technology, 2000, 34: 4123~4127
    [96]何振立,周启星,谢正苗,污染及有益元素的土壤化学平衡,北京:中国环境科学出版社,1998
    [97]Shen Z G, Zhao F J, McGrath S P, Uptake and transport of Zinc in the hyperaccumulator Thlaspi caerulescense and the nonhyperaccumulator Thlaspi ochroleucum, Plant Cell Environ, 1997, 20: 898~906
    [98]Baker A J M, Brooks R R, Terrestrial higher plants which hyperaccumulate metallicelements-A view of their distribution, ecology and phytochemistry, Biorecovery, 1998, 1: 81~126
    [99]Yang X E, Peng H Y, Jiang L Y, et al. Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost, Inter J, phytoremediation, 2005, 7(1): 69~83
    [100]陈柳燕,张黎明,李福燕,等,螯合诱导植物修复技术在土壤重金属污染治理中的应用,华南热带农业大学学报,2007,13(3):18~23
    [101]Peng H Y, Yang X E, Jiang L Y, et al, Copper phytoavailability and uptake by Elsholtzia splendens from contaminated soil as affected by soil amendments, J Environ Sci Health-Part A, 2005, 40(4): 839~856
    [102]蒋先军,骆永明,赵其国,镉污染土壤的植物修复及其EDTA调控研究,EDTA对镉的形态及其生物学毒性的影响,土壤,2001,33(4):113~118
    [103]Reed B E, Carriere P C, Moore R, Flushing of a Pb (Ⅱ) contaminated soil using HCl, EDTA, and CaCl2, Journal of Environmental Engineering, 1996, 122(1): 48~50
    [104]Peters R W, Chelant extraction of heavy metals from contaminated soils, Journal of Hazardous Materials, 1999, 66(2): 151~210
    [105]陈玉成,熊双莲,熊治廷,基于表面活性剂的重金属去除技术,环境科学与技术,2004,27(增刊):162~165
    [106]Turgut C, Pepe M K, Cutright T J, The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus, Environmental Pollution, 2004, 131(1): 147~154
    [107]Meers E, Ruttens A, Hopgood M J, et al, Comparison of EDTA and EDDS aspotential soil amendments for enhanced phytoextraction of heavy metals, Chemosphere, 2005, 58(8): 1011~1022
    [108]Rampley C G, Ogden K L, Preliminary studies for removal of lead from surrogate and real soils using a water soluble chelator: adsorption and batch extraction, Environmental Science and Technology, 1998, 32(7): 987~993
    [109]Chen S H, Sun T H, Zhou Q X, et al, Interaction between Microorganisms and Heavy Metal and Its Application, Chinese Journal of Applied Ecology, 2002, 13(2): 239~242
    [110]张敬锁,李花粉,衣纯真,等,有机酸对活化土壤中的镉和小麦吸收镉的影响,土壤学报,1999,36(1):61~66
    [111]魏树和,周启星,张凯松,等,根际圈在污染土壤修复中的作用与机理分析,应用生态学报,2003,14 (1):143~147
    [112]Abumaizar R J, Smith E H, Heavy metal contaminants removal by soil washing, Journal of Hazardous Materials, 1999, 70(1-2): 71~86
    [113]Wu L H, Luo Y M, Effects of EDTA and low mo1ecular weight organic acids on soil solution properties of heavy metal polluted soil, Proceedings of Soil Rem Hangzhou, China, 2000, 213~218
    [114]Piechalak A, Tomaszewska B, Baralkiewicz D, Enhancing phytoremediative ability of Pisum sativum by EDTA application, Phytochemistry, 2003, 64(7): 1239~1251
    [115]McGrath S P, Zhao F J, Lombi E, Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils, Plant and Soil, 2001, 232: 207~214
    [116]吴龙华,骆永明,卢蓉晖,等,铜污染土壤修复的有机调控研究Ⅱ根际土壤铜的有机活化效应,土壤,2000,32(2):67~70
    [117]Hong Chen, Teresa Cutright, EDTA and HEDTA effects on Cd, Cr and Ni uptake by Helianthus annuus, Chemosphere, 2001, 45: 21~28
    [118]Lynch J M, Whipps J M, Substrate flow in the rihzosphere, Plant and Soil, 1990, 129: 1~10
    [119]Ernst W H O, Bioavailability of heavy metals and decontamination of soils by plants, Applied Geochemistry, 1996, 11 (1-2): 163~167
    [120]Aprill W, Smis R C, Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil, Chemosphere, 1990, 28: 253~265
    [121]金相灿,沉积物污染化学,北京:中国环境科学出版社,1992
    [122]Kramer U, Cotter-Howells J D, Charnock J M, et al, Free histidine as a metal chelator in plants that accumulate nickel, Nature, 1996, 379: 635~638
    [123]Boominathan R, Doran P M, Organic acid complexation, heavy meal distribution and effect of ATPase inhibition in hairy roots of hyperaccumulator plant species, Journal of Biotechnology, 2003, 101: 131~146
    [124]Chen Y X, Lin Q, He Y F, et al, The role of cit ric acid on the phytoremediation of heavy metal contaminated soil, Chemosphere, 2003, 50(6): 769~775
    [125]吴龙华,骆永明,黄焕忠,铜污染土壤修复的有机调控研究I可溶性有机物和EDTA对污染红壤铜的释放作用,土壤,2000,32(2):62~66
    [126]Romkens P, Bouwman L, Japenga J, et al, Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution, 2002, 116(1): 109~121
    [127]Kos B L, Estan D, Chelator induced phytoextraction and in situ soil washing of Cu, Environmental Pollution, 2004, 132: 333~339
    [128]Blaylock M J, Salt D E, Dushenkov O, et al, Enhanced accumulation of Pb in Indian mustard by soil- applied chelating agents, Environ Science & Technology, 1997, 31(3): 860~865
    [129]Vassil A D, Kapnlnik Y, Raskin I, et al, The role of EDTA in lead transport and accumulation by indian mustard, Plant Physiol, 1998, 117: 447~453
    [130]Huang J W, Phytoremediation of Uranium-contaminated soils: role of organic acids in triggering Uranium hyperaccumulation in plants. Environmental Science & Technology, 1998, 32: 2004~2008
    [131]Michael W H, Evangelou, Hatice D, et al, The influence of humic acids on the phytoextraction of cadmium from soil, Chemosphere, 2004, 57(3): 207~213
    [132]吴龙华,骆永明,赵其国,镉污染土壤的植物修复及其EDTA调控研究Ⅰ镉对富集植物印度芥(Brassica juncea)的毒性,土壤,2000,33(4):35~39
    [133]Vogel M K, Pongrac P, Kump P, et al, Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake, Environmental Pollution, 2006, 139: 362~371
    [134]Leung H M, Ye Z H, Wong M H, Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils, Environmental Pollution, 2006, 139: 1~8
    [135]Souza M P, Huang C P A, Chee N, et al, Rhizosphere bacteria enhance theaccumulation of selenium and mercury in wetland plants, Planta , 1999, 209: 259~263
    [136]Colpaert J V, Van Assche J A, The effect of Cadmium and the Cadmium-Zinc interaction on the axenic growth of ectomyconhizal fungi, Plant and Soil, 1992,145: 237~243
    [137]Denny H J, Ridge I, Fungal slime and its role in the mycorrhizal amelioration of Zinc toxicity to higher plants, New Phytol, 1995, 130: 251~257
    [138]黄艺,陶澎,陈有滥,等,外生菌根对欧洲赤松苗(Pinus sylvestris)Cu, Zn积累和分配的影响,环境科学,2000,21(3):1~6
    [139]Leyval C, Turnal K, Haselwandter K, Effect of Heavy Metal Pollution on Mycorrhizal Colonization and Function: Physiological, Ecological and Applied Aspects, Mycorrhiza, 1997, 7: 139~153
    [140]Smith K G, Reed D J, Mycorrhizal symbiosis, 2nd edition, Academic Press, London, 1997
    [141]Sharma A K, Srivastava P C, Effect of VAM and zinc application on dry matter and zinc uptake of greengram(Influence of soil moisture fegime on VA-mycrorrhiza L wilczek), Biol Fertil Soils, 1991, 11(1): 52~56
    [142]Gnekov M A, Marschner H, Roles of VA-mycrorrhiza in growth and mineral nutrition of apple (Malus pumila var. domestica)stock cuttings, Plant and Soil, 1989, 119(9): 285~293
    [143]黄艺,陈有键,陶澎,菌根植物根际环境对污染土地中Cu,Zn,Pb,Cd形态的影响,应用生态学报,2000,11(3):431~434
    [144]Khan A G, Kuek C, Chaudhry T M, et al, Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation, Chemosphere, 2000, 41: 197~207
    [145]廖继佩,林先贵,曹志洪,内外生菌根真菌对重金属的耐受性及机理,土壤,2003,35(5):370~377
    [146]周启星,污染土壤修复的技术再造与展望,环境污染治理技术与设备,2002,3(8):36~40
    [147]魏树和,周启星,重金属污染土壤植物修复基本原理及强化措施探讨,生态学杂志,2004,23(1):65~72
    [148]Mulligan C N, Yong R N, Gibbs B F, Removal of heavy metals from contaminated soil and sediments using the biosurfactant surfaction, Journal of Soil Contamination, 1999, 8(2): 231~254
    [149]吴龙华,骆永明,张海波,有机络合物修复的环境风险研究ⅠEDTA对复合污染土壤TOC和重金属动态变化的影响,土壤,2001,34(4):189~192
    [150]周东美,邓昌芬,重金属污染土壤的电动修复技术研究进展,农业环境科学学报,2003,22(4):505~508
    [151]Lageman R, Electroreclamation application in the Netherlands, Environ Sci Technol, 1993, 27(13): 2648~2650
    [152]Probstein R F, Hicks R E, Removal of contaminants from soils by electric fieles, Science, 1993, 260: 498~503
    [153]Marceau P, Broquet P, Baticle P, Electrokinetic remediation of cadmium-spiked clayey medium, Pilottest Geochemistir, 1999, 328: 37~43
    [154]Zagury G J, Dartiguenave Y, Setier J, Exsitu electroreclamation of heavy metals contaminated sludge: pilot scale study, J Environ Eng, 1999, 125(10): 972~978
    [155]周启星,宋玉芳,污染土壤修复原理与方法,北京:科学出版社,2004
    [156]王剑虹,麻密,植物修复的生物学机制,植物学通报,2000,17(6):504~510
    [157]Samuelsen A I, Martin R C, Mok D W S, et al, Expression of the yeast FRE genes in transgenic tobacco, Plant Physiol, 1998, 118: 51~58
    [158]张斌,范仲学,柳絮,等,植物修复重金属污染土壤的遗传工程研究,分子植物育种,2006,4(6):37~43
    [159]Persans M W, Yan X, Patnoe J M, et al, Molecular dissection of the role histidine in nickel hyperaccumulation in Thlaspi goesingense Halacsy, Plant Pysiology, 2000, 121: 1117~1126
    [160]赵丽红,杨宝玉,吴树礼,等,重金属污染的转基因植物修复原理与应用,中国生物工程杂志,2004,24(6):68~73
    [161]Pence N S, Lasat M, Garvin D F, et al, Molecular physiology of zinc transport in the Zn hyperccumulator Thlaspi caerulescens, Exp Bot, 2000, 51: 71~79
    [162]Robinson N J, Procter C M, Connolly E L, et al, A ferric-chelate reductase for iron uptake from soils, Nature, 1999, 397: 694~697
    [163]Kim D Y, Bovet L, Kushnir S, et al, ATM3 is involved in heavy metal resistance in Arabidopsis, Plant Physiol, 2006, 140(3): 922~932
    [164]Harada E, Choi Y E, Tsuchisaka A, et al, Transgenic tobacco plants expressing a rice cysteinesynthase gene are tolerant to toxic levels of cadmium, J Plant Physiol, 2001, 158: 655~661
    [165]Martinez M, Bernal P, Almela C, et al, An engineered plant that accumulateshigher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomassin mine soils, Chemosphere, 2006, 64(3): 478~485
    [166]Song W J, Sohn E J, Martinoia E, et al, Engineering tolerance and accumulation of lead cadmium in transgenic plants, Nat Biotechnol, 2003, 21: 914~919
    [167]Song W Y, Martinoia E, Lee J, et al, A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis, Plant Physiol, 2004, 135(2): 1027~1039
    [168]Murphy A, Zhou J, Goldsbrough P B, et al, Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana, Plant Physiol, 1997, 113(4): 1293~1301
    [169]Bizily S P, Ruch C L, Meagher R B, Phytodetixification of hazardous organomercurials by genetically engineered plants, Nat Biotechnol, 2000, 18: 213~217
    [170]Rugh C L, Gragson G M, Meagher R B, et al, Toxic mercury reduction and remediation using transgenic plants with a modified bacterial gene hort, Science, 1998, 33: 618~621
    [171]Meagher R B, Phytoremediation of toxic elemental and organic pollutants, Curr Opin Plant Biol, 2000, 3: 153~162
    [172]Grotz N, Fox T, Connolly E, et al, Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency, Proc Natl Acad Sci USA, 1998, 95: 7220~7224
    [173]Zhu Y L, Pilon-Smits E A H, Jouanin L, et al, Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance, Plant Physiol, 1999, 119: 73~79
    [174]Zhu Y L, Pilon-Smits E A H, Tarun A S, et al, Cadmium tolerance and accumulation in Indian mustard is enhanced by over expressingγ-glutamylcysteinesynthetase, Plant Physiol, 1999, 121: 1169~1177
    [175]Ma J F, Zheng S J, Hiradate S, et al, Detoxifying aluminum with buckwheat, Nature, 1997, 390: 569~570
    [176]王宏镔,覃勇荣,束文圣,等,砷超富集植物研究进展,生态科学进展,2004(1):339~353
    [177]郎明林,张玉秀,柴团耀,基因工程改良植物重金属抗性与富集能力的研究进展,生物工程学报,2004,20(2):157~164
    [178]Wei S H, Zhou Q X, Phytoremediation of cadmium-contaminated soils byRorippa globosa using two-phase planting, Environmental Science and Pollution Research, 2006, 13(3): 151~155
    [179]Wei S H, Zhou Q X, Koval P V, Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation, Science of the Total Environment, 2006, 369: 441~446
    [180]陈华林,陈英旭,污染底泥修复技术进展,农业环境保护,2002,21(2):179~182
    [181]白晓慧,杨万东,陈华林,等,城市内河沉积物对水体污染修复的影响研究,环境科学学报,2002,22(5):562~565
    [182]刘贵云,姜佩华,河道底泥资源化的意义及其途径研究,东北大学学报(自然科学版),2002,28(1):33~36
    [183]骆永明,滕应,过园,土壤修复-新兴的土壤科学分支学科,土壤,2005,37(3):230~235
    [184]Mertens J, Vervaeke P, Schrijver A D, et al, Metal uptake by young trees from dredged brackish sediment: Limitations and possibilities for phytoextraction and phytostabilisation, Science of the total environment, 2004, 326: 209~215
    [185]Salt D E, Blaylock M, Kumar N, et al, Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plant. Bio Technology, 1995, 13: 468~474
    [186]Pulford I D, Watson C, phytoremediation of heavy metal-contaminated land by trees-a review, Environment International, 2003, 29: 529~540
    [187]Citterio S, Reprint A, Santagostino A, et al, Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L, Plant and Soil, 2003, 256(2): 243~252
    [188]魏树和,周启星,刘睿,重金属污染土壤修复中杂草资源的利用,自然资源学报,2005,20(3):432~440
    [189]刘杰,朱义年,罗亚平,等,清除土壤重金属污染的植物修复技术,桂林工学院学报,2004,24(4):507~511
    [190]刘素纯,萧浪涛,王惠群,等,植物对重金属的吸收机制与植物修复技术,湖南农业大学学报(自然科学版),2004,30(5):493~498
    [191]Lin Q, Chen Y X, Wang Z W, et al, Study on the possibility of hydrogen peroxide pretreatment and plant system to remediate soil pollution, Chemosphere, 2004 , 37: 1439~1447
    [192]杨强,林琦,王兆炜,等,重金属污染土壤H2O2预处理的植物修复技术研究,浙江大学学报(农业与生命科学版),2005,31(3):315~320
    [193]Watts R J, Udell M D, Rauch P A, Treatment of pentachlorophenol-contaminated soils by Fentons reagent, Haz Waste Haz Mat, 1990, 7: 335~345
    [194]Howsawkeng J, Watts R J, Washington D L, et al, Evidence for simultaneous abiotic oxidations in a microbial-Fentons system, Environ Sci Technol, 2001, 36: 2961~2966
    [195]Tyre B W, Watt s R J, Miller G C, Treatment of four bioref ractory contaminant s in soils using catalyzed hydrogen peroxide, J Environ Qual, 1991, 20: 832~838
    [196]中国土壤学会编,土壤农业化学分析方法,北京:中国农业科技出版社,2000
    [197]中国科学院南京土壤研究所,土壤理化分析,上海:上海科学技术出版社,1978
    [198]李红霞,河道底泥中重金属和有机物的植物去除及资源化,硕士学位论文,天津大学,2005
    [199]Tessier A, Campbell P G C, Bisson M, Sequential extraction procedure for the speciation of trace metals, Analytical Chemistry, 1979, 51: 844~851
    [200]关松荫,土壤酶及其研究法,北京:农业出版社,1986
    [201]张宪政,作物生理研究法,北京:农业出版社,1992
    [202]程晓东,郭明新,河流底泥重金属不同形态的生物有效性,农业环境保护,2001,20(1):20~21
    [203]McGrath S P, Shen Z G, Zhao F J, Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochraleucm grown in contaminated soils, Plant Soil, 1997, 188: 153~159
    [204]刘秀梅,重金属铅污染的植物修复研究,硕士学位论文,山东:山东农业大学,2002
    [205]彭红云,杨肖娥,香薷植物修复铜污染土壤的研究进展,水土保持学报,2005,19(5):195~199
    [206]Wozny A, Schneider J, Goozdz E A, The effect of lead and kinetin on green barley leaves, Biology Plant, 1995, 37: 541~552
    [207]杨仁斌,曾清如,周细红,等,植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应,农业环境保护,2000,19(3):152~155
    [208]曹享云,营养胁迫与根系分泌物,土壤学进展,1994,22(3):27~32
    [209]涂书新,孙锦荷,郭智芬,等,根系分泌物与根际营养关系评述,土壤与环境,2000,19(1):64~67
    [210]申建波,张福锁,根分泌物的生态效应,中国农业科技导报1999,1(4):21~27
    [211]林琦,陈英旭,陈怀满,根系分泌物与重金属的化学行为研究,植物营养与肥料学报,2003,9(4):425~431
    [212]姜理英,杨肖娥,石伟勇,等,植物修复技术中有关土壤重金属活化机制的研究进展,土壤通报,2003,34(2):154~157
    [213]杨元根,城市土壤中重金属元素的积累及其微生物效应,环境科学,2001,22(3):44~48
    [214]孟昭福,张增强,薛澄泽,用幼苗法指示污泥和土壤中重金属的植物有效性环境化学,2001,20(2):129~137
    [215]周国华,黄怀曾,何红寥,重金属污染土壤植物修复及进展,环境污染治理技术与设备,2002,3(6):33~38
    [216]蔡信德,仇荣亮,陈桂珠,等,植物修复对重金属镍污染土壤微生物群落的影响,土壤学报,2006,43(6):919~925
    [217]万敏,周卫,林葆,不同镉积累类型小麦根际土壤低分子量有机酸与镉的生物积累的研究,植物营养与肥料学报,2003,9(3):331~336
    [218]王校焕,污染生态学,北京:高等教育出版社,2002
    [219]何章莉,潘伟斌,受污染土壤环境的植物修复技术,广东工业大学学报,2004,21(1):56~62
    [220]孙铁珩,周启星,李培军,污染生态学,北京:科学出版社,2000
    [221]杨晔,陈英旭,孙振世,重金属胁迫下根际效应的研究进展,农业环境科学,2001,20(1):55~58
    [222]Romheld V, Awad F, Significance of root exudates in acquisition of heavy metal from a contaminate calcareous soil by graminaceous species, Journal of plant Nutrition, 2000, 23: 1857~1866
    [223]Cieslinski G, van Rees K C J, Szmigielska A M, et al, Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation, Plant and Soil, 1998, 203: 109~117
    [224]张胜,胡炳义,陈龙,重金属及有机物污染土壤的植物修复机制,2006,7:10~14
    [225]曹慧,孙辉,杨浩,等,土壤酶活性及其对土壤质量的指示研究进展,应用与环境生物学报,2003,9(1):105~109
    [226]Burns R G, Dick R P, Enzymes in the environment: ecology, activity and applications, New York: Marcel Dekker, Inc, 2001
    [227]杨肖娥,龙新宪,倪吾钟,超积累植物吸收重金属的生理及分子机制,植物营养与肥料学报,2002,8(1):8~15
    [228]王慎强,陈怀满,司有斌,我国土壤环境保护研究的回顾与展望,土壤,1999,5:255~260
    [229]周鸿,刘成远,玉米幼根对铅的吸收途径及有关的两种酶活性变化初探,环境科学学报,1986,(1):66~70
    [230]刘云惠,魏显有,王秀敏,等,土壤中铅镉的作物效应研究,河北农业大学学报,1999,22(1):24~28
    [231]江行玉,赵可夫,铅污染下芦苇体内铅的分布和铅胁迫相关蛋白,植物生理与分子生物学学报,2002,28(3):169~174
    [232]匡少平,徐仲,张书圣,玉米对土壤中重金属铅的吸收特性及污染防治,安全与环境学报,2002,2(1):28~31
    [233]刘世亮,骆永明,丁克强,等,土壤中有机污染物的植物修复研究进展,土壤,2003,35(3):187~192
    [234]Gaur A, Adholeya A, Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils, Current Science, 2004, 86(4): 528~534
    [235]Liliana Gianfreda, Maria A Rao, Potential of extra cellular enzymes in remediation of polluted soils: a review, Enzyme and Microbial Technology, 2004, 35(4): 339~354
    [236]Alkorta I, Garbisu C, Phytoremediation of organic contaminants in soils, Bioresource Technology, 2001, 79(3): 273~276
    [237]张太平,潘伟斌,根际环境与土壤污染的植物修复研究进展,生态环境,2003,12(1):76~80
    [238]孙瑞莲,周启星,高等植物重金属耐性与朝积累特性及其分子机理研究,植物生态学报,2005,29(3):497~504
    [239]施积炎,陈英旭,林琦,等,根分泌物与微生物对污染土壤重金属活性的影响,中国环境科学,2004,24(3):316~319
    [240]Tülay A ?zbelge, H ?nder ?zbelge, P?nar Alt?nten, Effect of acclimatization of microorganisms to heavy metals on the performance of activated sludge process, Journal of Hazardous Materials, 2007, 142(1-2): 332~339
    [241]李廷强,朱恩,杨肖娥,等,超积累植物东南景天根际土壤酶活性研究,水土保持学报,2007,21(3):112~117
    [242]Caille N, Vauleon C, Leyval C, Metal transfer to plants grown on a dredgedsediment: use of radioactive isotope 203Hg and titanium, Science of The Total Environment, 2005, 341(1-3): 227~239
    [243]Schnoor J L, Licht L A, McCutcheon S C, et al, Phytoremediation of organic and nutrient contaminants, Environmental Science Technology, 1995, 29(7): 318~323
    [244]Narusawa K, Hayshida M, Deterioration in fuel cell performance resulting from hydrogen fuel containing impurities: poisoning effects by CO, CH4, HCHO and HCOOH, J SAE Review, 2003, 24(1): 41~46
    [245]刘云国,李欣,徐敏,土壤镉污染植物修复与土壤酶活性,湖南大学学报(自然科学版),2002,29(4):108~114
    [246]Mark A, Michael L, A model of the uptake, translocation, and accumulation of lead by maize for the purpose of phytoextraction, Ecological Engineering, 1999,12(3-4): 271~297
    [247]马伟芳,植物修复重金属-有机物复合污染河道疏浚底泥的研究,博士学位论文,天津大学,2006
    [248]刘豹,唐万生,现代控制理论(第三版),北京:机械工业出版社
    [249]Boyd S, Ghaoui L, Feron E, et al, Linear matrix inequalities in system and control theory, Philadelphia: SIAM, 1994
    [250]Petersen I R, A stabilization algorithm for a class of uncertain linear systems, System & Control Letters, 1987, 8(4): 351~357
    [251]Gahinet P, Nemirovski A, Laub A, et al, The LMI Control Toolbox, The Math works Inc, 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700