用户名: 密码: 验证码:
θFXZ型坐标测量机结构分析与驱动系统热误差模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坐标测量机作为一种高效率的精密测量系统,是现代工业检测、质量控制和制造技术中不可缺少的重要测量设备。其技术水平是现代测量技术和制造技术水平高低的一个重要标志。随着坐标测量机精度和速度要求的不断提高,基于准刚体结构模型和低速状态下的坐标测量机误差模型,不能很好地描述测量机的各种非准刚体特性以及动态特性引起的附加误差。另外,较高的运行速度,使得基于滚珠丝杠和滚动直线导轨副结构的驱动系统产生较大的温升,引起不能忽略的热误差。
     本文基于某θFXZ型坐标测量系统,对该测量机非准刚体结构变形、动态特性和热特性以及该测量机驱动系统热误差模型等方面进行了深入的分析和研究。
     主要研究工作包括:
     1.本文针对特定结构形式的测量系统,基于测量机准刚体模型,引入附加变形误差项,建立该结构测量机非准刚体数学模型,确定了非准刚体误差的表达形式,并提出了特定结构形式测量系统的非准刚体结构误差分析方法。利用该方法,设计实验,通过激光干涉仪系统对该误差进行检定,并将检定结果做误差补偿,有效地提高了测量机精度。
     2.针对滚珠丝杠传动的驱动系统,建立柱坐标系下丝杠导热微分方程,根据边值条件对该方程求解。分析丝杠对不同热源作用下,温度响应的可叠加性。并通过对单热源条件下丝杠温度场分析,结合理论模型与丝杠实际温升情况,提出分段建模的思想,建立丝杠温度场分段模型。该模型在不同单热源及双热源实验条件下,都能得到较好的丝杠温度场预测。
     3.根据测量机不同运行条件及其驱动系统温升引起的空间定位误差,深入分析测量机的动态及温度特性。分析不同运行条件和驱动系统温度变化对测量机定位精度的影响关系,为空间定位误差补偿技术的研究提供了重要依据。
     4.通过分析在不同运行条件下所得测量机关键点温度值和驱动系统热误差,发现不同运行条件下实验可导致相近的热误差,但测量机关键点温度具有较大的差异。基于此现象,提出在热误差建模过程中,综合考虑测量机关键部件温度和运行条件因素的影响,采用人工神经网络建模,并与只考虑温度的建模结果进行比较。实验结果表明,依据该建模思想所建立的热误差模型具有更好的预测精度。
Coordinate measuring machines (CMMs) are dispensable and important measuring equipments in modern industrial inspection, quality control and manufacture. which are high efficiency precision measuring systems. The technology of CMMs represents the level of both modern measuring and manufacture technology. CMMs are expected to complete measuring assignment more precisely and quickly. Because of the improvement of CMMs’precision and speed, the CMMs error model, which is based on the rigid body model and low-speed operation state, can’t commendably describe the additional error induced by the CMMs’non-rigid body and dynamic characteristic. The high operating speed results in a large temperature rise of drive system which consists of ball-screw and linear rolling guide, and brings on thermal error which can’t be ignored.
     This paper presents the analysis and study of non-rigid body structure deformation, dynamic and thermal characteristic, and drive system thermal error modeling based on the CMMs withθFXZ structure. The main research works include:
     1. Basing on the non-rigid body model of CMMs, an additional deformation error item was introduced for measuring system with special structure. Non-rigid body model, the error expression form and the error analysis method of the specific CMMs were defined. According to the study above, experiment was designed to calibrate the error by laser interferometer. Finally, the error compensation was carried out to improve the CMMs’precision.
     2. In term of the ball screw drive system, the heat transfer differential equation of screw was established and solved according to boundary value in cylinder coordinate. The temperature response superposition was analyzed in different heat sources. Analyzing the screw temperature distribution of single heat source, theory model and actual temperature rise of screw was combined. The subsection modeling idea was proposed and a screw temperature field subsection model was built. The model got an expected result in screw temperature field prediction of single heat source and double heat sources.
     3. The CMMs’dynamic characteristic and temperature characteristic were deeply analyzed according to location error induced by different operating conditions and temperature rise of drive system. The influence on CMMs’location error of different operating conditions and drive system temperature variation were analyzed to provide important references for research of spatial location error compensation.
     4. The key parts temperature and drive system thermal error were analyzed in different operating conditions. It was found that the thermal error values are close while the temperature values of CMMs’key parts in different experiments make a large difference. In term of the phenomenon, the key parts temperature and operating condition are both considered during the thermal error modeling process. The model was built by artificial neural network and compared with the model built only considering the temperature. The result showed that the thermal error model built based on the modeling idea achieved a higher predicting precision.
引文
[1]张国雄.三坐标测量机[M].天津:天津大学出版社, 1999.
    [2]Castro H. F. F., Burdekin M. Evaluation of the measurement uncertainty of a positional error calibrator based on a laser interferometer [J]. International Journal of Machine Tools and Manufacture, 2005, 45 (3): 285-291.
    [3]Butler C. An investigation into theperformance of probes on coordinate measuring machines [J]. Industrial Metrology, 1991, 2 (1): 59-70.
    [4]张国雄.三坐标测量机的发展趋势[J].中国机械工程, 2000, 11
    [5]Bosch Ja. Coordinate measuring machines and systems [M]. CRC, 1995.
    [6]安卫.国外三坐标测量机技术发展动态[J].航空精密制造技术, 1996, 32 (6):
    [7]M.H. Attia S. Fraser. A generalized modelling methodology for optimized realtime compensation of thermal deformation of machine tools and CMM structures [J]. International Journal of Machine Tools & Manufacture, 1999, 39 16.
    [8] Cauchick-Miguel Pa, King Tg. Factors which influence CMM touch trigger probe performance [J]. International Journal of Machine Tools and Manufacture, 1998, 38 (4): 363-374.
    [9]Weckenmann A, Knauer M, Kunzmann H. The influence of measurement strategy on the uncertainty of CMM-measurements [J]. CIRP Annals-Manufacturing Technology, 1998, 47 (1): 451-454.
    [10] Wozniak A, Dobosz M. Metrological feasibilities of CMM touch trigger probes. Part I: 3D theoretical model of probe pretravel [J]. Measurement, 2003, 34 (4): 273-286.
    [11] Zhang G. X., Veale, R., Borchardt, B. And Hocken, R. Error Compensation of Coordinate Measuring Machines [J]. CIRP Annals, 1985, 34 (1): 4.
    [12] Chen Js, Yuan J, Ni J,等. Compensation of non-rigid body kinematic effect on a machining center [J]. Transaction of the North American Manufacturing Research Institute of SME, 1992, 20 325-329.
    [13] Weekers W. G., Schellekens P. H. J. Assessment of Dynamic Errors of CMMs for Fast Probing [J]. CIRP Annals - Manufacturing Technology, 1995, 44 (1): 469-474.
    [14]赵英剑.弱刚度三坐标测量机的误差补偿[J].制造技术与机床, 2000, 4 3.
    [15]张奕群李书和,张国雄,宋开臣.三坐标测量机动态误差补偿的研究[J].仪器仪表学报, 1999, 20 (1): 3.
    [16]杨庆东C.Van Den Bergh, P.Vanherck ,J.P.Kruth.数控床热误差补偿建模方法[J].制造拄木与机床, 2000, (2):
    [17]董晨松,张国雄,穆玉海.用激光干涉仪测量三坐标测量机的动态特性[J].天津大学学报, 1998, 31 (5):
    [18] Zhang Yf, Nee Ayc, Fuh Jyh,等. A neural network approach to determining optimal inspection sampling size for CMM [J]. Computer Integrated Manufacturing Systems, 1996, 9 (3): 161-169.
    [19]杨洪涛.坐标测量机误差建模与修正技术研究[D].合肥:合肥工业大学, 2007.
    [20] Feng Cxj, Saal Al, Salsbury Jg,等. Design and analysis of experiments in CMM measurement uncertainty study [J]. Precision Engineering, 2007, 31 (2): 94-101.
    [21] R. Ramesh M.A. Mannan, A.N. Poo. Error compensation in machine tools--a review:: Part I: geometric, cutting-force induced and fixture-dependent errors [J]. International Journal of Machine Tools and Manufacture, 2000, 40 (9): 1235-1256.
    [22] R. Ramesh M.A. Mannan, A.N. Poo. Error compensation in machine tools—a review Part II: thermal errors [J]. International Journal of Machine Tools & Manufacture 2000, 40
    [23]马修水.三坐标测量机动态误差源分析_建模与修正技术研究[D].合肥:合肥工业大学, 2005.
    [24] Weckenmann A, Lorz J. Monitoring coordinate measuring machines by calibrated parts [A]. [C]. IOP Publishing, 2005. 190.
    [25] Caenen Jl, Angue Jc. Identification of geometric and nongeometric parameters of robots [A]. [C]. IEEE, 2002. 1032-1037.
    [26] Franceschini F, Galetto M, Settineri L. On-line diagnostic tools for CMM performance [J]. The International Journal of Advanced Manufacturing Technology, 2002, 19 (2): 125-130.
    [27] Chen Js, Chiou G. Quick testing and modeling of thermally-induced errors of CNC machine tools [J]. International Journal of Machine Tools and Manufacture, 1995, 35 (7): 1063-1074.
    [28] Chen Js, Yuan J, Ni J. Thermal error modelling for real-time error compensation [J]. The International Journal of Advanced Manufacturing Technology, 1996, 12 (4): 266-275.
    [29]杨庆东C.Van Den Bergh, P.Vanherck ,J.P.Kruth.三坐标测量机的热变形和神经网络误差补偿[J].计量学报, 2000, 21 (2):
    [30] Castro H. F. F., Burdekin M. Dynamic calibration of the positioning accuracy of machine tools and coordinate measuring machines using a laser interferometer [J]. International Journal of Machine Tools and Manufacture, 2003, 43 (9): 947-954.
    [31]粟时平.多轴数控机床精度建模与误差补偿方法研究[D].长沙:国防科学技术大学, 2002.
    [32] Barakat Na, Spence Ad, Elbestawi Ma. Adaptive compensation of quasi-static errors for an intrinsic machine [J]. International Journal of Machine Tools and Manufacture, 2000, 40 (15): 2267-2291.
    [33] Chensong Dong Chuck Zhang, Ben Wang,Guoxiong Zhang. Reducing the Dynamic Errors of Coordinate Measuring Machines [J]. Journal of Mechanical Design, 2003, 125,9.
    [34]J.A.Soons. Modeling the errors of multi-axis machines:a general methodology [J]. Precision Engineering, 1992, 14 (1): 15.
    [35]倪军.数控机床误差补偿研究的回顾及展望[J].中国机槭工程, 1997, 8 (1):
    [36]赵英剑张国雄.坐标测量机非刚体误差补偿模型中附加函数的研究[J].组合机床与自动化加工技术, 1999, 6 (9):
    [37] J.O. Harris A.D. Spence. Geometric and quasi-static thermal error compensation for a laser digitizer equipped coordinate measuring machine [J]. International Journal of Machine Tools and Manufacture, 2004, 44 (1): 12.
    [38]张奕群李书和,张国雄.机床热变形误差的动态模型[J].航空精密创造技术, 1997, 33 (2):
    [39]宋开臣,张奕群,李书和,张国雄.三坐标测量机动态误差补偿的研究[J].仪器仪表学报, 1999, 2
    [40]马修水.三坐标测量机动态误差源分析_建模与修正技术研究[J]. 2005,
    [41] Belforte G, Bona B, Canuto E,等. Coordinate measuring machines and machine tools selfcalibration and error correction [J]. CIRP Annals-Manufacturing Technology, 1987, 36 (1): 359-364.
    [42]费业泰,赵静,王宏涛,等.三坐标测量机动态误差研究分析[J].仪器仪表学报, 2004, 1
    [43]林述温,吴昭同,李刚.三坐标测量机非刚性效应测量误差分布特征[J].仪器仪表学报, 2001, 2
    [44]郭俊杰,张琳.坐标测量机的空间误差检测及21项几何误差分离的方法[J].中国机械工程, 2002, 13 (013): 1081-1084.
    [45] Weekers W. G., Schellekens P. H. J. Compensation for dynamic errors of coordinate measuring machines [J]. Measurement, 1997, 20 (3): 197-209.
    [46]董晨松,曲军,汪健新,张国雄,穆玉海.三坐标测量机运动精度的描述[J].航空精密制造技术, 1998, 34 (1):
    [47]董晨松,张国雄,吉贵军,诸锡金,李洪泉,王晋.三坐标测量机动态误差的建模方法[J].中国机械工程, 1999,第lO卷(第7期):
    [48]董晨松,张国雄,穆玉海.评定三坐标测量机的动态误差[J].中国机械工程, 1998, 9 (7):
    [49]董晨松,张国雄,穆玉海.移动桥式三坐标测量机Z轴运动的动态误差[J].航空计测技术, 1998, 18 (2):
    [50]韦进文,郭俊杰.坐标测量机动力学刚度估计与加速度误差补偿[J].西安交通大学学报, 2009, 43 (001): 47-51.
    [51] Santolaria J, Aguilar Jj, Yagüe Ja,等. Kinematic parameter estimation technique for calibration and repeatability improvement of articulated arm coordinate measuring machines [J]. Precision Engineering, 2008, 32 (4): 251-268.
    [52]刘悦,汪劲松.基于轴承及导轨接触刚度的混联机床静刚度研究及优化[J].机械工程学报, 2007, 43 (009): 151-155.
    [53] Nawara L, Kowalski M, Sladek J. The influence of kinematic errors on the profile shapes by means of CMM [J]. CIRP Annals-Manufacturing Technology, 1989, 38 (1): 511-516.
    [54] Barakat Na, Elbestawi Ma, Spence Ad. Kinematic and geometric error compensation of a coordinate measuring machine [J]. International Journal of Machine Tools and Manufacture, 2000, 40 (6): 833-850.
    [55]费业泰,卢荣胜.动态测量误差修正原理与技术[M].中国计量出版社, 2001.
    [56]粟时平,李圣怡.基于多体系统运动学理论的坐标测量机误差自动建模[J].机械设计与制造, 2002, (004): 63-65.
    [57] Jorge Santolaria José-Antonio Yagüe, Roberto Jiménez,Juan-JoséAguilar. Calibration-based thermal error model for articulated arm coordinate measuring machines [J]. Precision Engineering, 2009, 33 10.
    [58]许桢英,费业泰.用多分辨分析法研究动态测试误差溯源[J].上海交通大学学报, 2003, 37 (001): 9-12.
    [59]费业泰,罗哉.精密技术中热变形误差影响的基本问题[J].纳米技术与精密工程, 2003, 1 (001): 79-84.
    [60]张佐营.高速滚珠丝杠副动力学性能分析及其实验研究[D].山东大学, 2008.
    [61] Xia Junyong Hu Youmin, Wu Bo,Shi Tielin. Research on thermal dynamics characteristics and modeling approach of ball screw [J]. Int J Adv Manuf Technol 2008, 43 10.
    [62]夏军勇.多变化热源下的滚珠丝杠热动态特性[J].中国机械工程, 2008,第19卷(第8期): 4.
    [63]夏军勇.基于一维传热的机床热动态特性分析[J].机械科学与技术, 2008, 27 (10): 6.
    [64]夏军勇.考虑热弹性的滚珠丝杠热动态特性[J].华中科技大学学报(自然科学版), 2008, 36 (3): 4.
    [65]陈曼龙.滚珠丝杠副选型设计中的热变形问题[J].机械设计与制造, 2008, (12): 70-72
    [66]黄祖尧.精密高速滚珠丝杠副的最新发展及其应用[J].航空制造技术, 2003, 4: 36-40
    [67]宋现春姜洪奎,许向荣,张佐营.高速滚珠丝杠副弹性变形的有限元分析[J].北京工业大学学报, 2009, 35 (5): 5.
    [68]天日和仁.滚珠丝杠的发热对策及环保技术[J].世界制造技术与装备市场, 2004, 3
    [69] R. Ramesh M.A. Mannan, A.N. Poo. Thermal error measurement and modelling in machine tools.Part I. Influence of varying operating conditions [J]. International Journal of Machine Tools & Manufacture, 2003, 43
    [70] R. Ramesh M.A. Mannan, A.N. Poo. Thermal error measurement and modelling in machine tools.Part II. Hybrid Bayesian Network—support vector machine model [J]. International Journal of Machine Tools & Manufacture, 2003, 43
    [71] A. Verl S. Frey. Correlation between feed velocity and preloading in ball screw drives [J]. CIRP Annals - Manufacturing Technology, 2010, 59, 4.
    [72] Santolaria J, Yagüe Ja, Jiménez R,等. Calibration-based thermal error model for articulated arm coordinate measuring machines [J]. Precision Engineering, 2009, 33 (4): 476-485.
    [73] Wang Y, Zhang G, Moon Ks,等. Compensation for the thermal error of a multi-axis machining center [J]. Journal of materials processing technology, 1998, 75 (1-3): 45-53.
    [74] Hocken R, Simpson J, Borchardt B,等. Three dimensional metrology [R]. 1977.
    [75]刘鹏,林述温.三坐标测量机非刚性误差的分析与补偿[J].工具技术, 2001, 35 (010): 32-35.
    [76]刘鹏.三坐标测量机非刚性效应运动误差及建模的研究[D].福州大学, 2002.
    [77] De Nijs Jfc, Lammers Mgm, Schellekens Phj,等. Modelling of a coordinate measuring machine for analysis of its dynamic behaviour [J]. CIRP Annals-Manufacturing Technology, 1988, 37 (1): 507-510.
    [78] Pereira P. H., Hocken R. J. Characterization and compensation of dynamic errors of a scanning coordinate measuring machine [J]. Precision Engineering, 2007, 31 (1): 22-32.
    [79]陈维方.三次元量测仪动态误差之研究台湾科学委员会专题研究计划成果报告[J]. 2004
    [80]许桢英,费业泰,陈晓怀.动态精度理论研究与发展[J].仪器仪表学报, 2001, (0z1): 70-71.
    [81]焦卫兵吴志国,李富强.滚珠丝杠传动的热变形对机床精度的影响[A].第三届十省区市机械工程学会科技论坛暨黑龙江省机械工程学会2007年年会[C]. 2007.
    [82] Amin Kamalzadeh Daniel J. Gordon, Kaan Erkorkmaz Robust compensation of elastic deformations in ball screw drives [J]. International Journal of Machine Tools & Manufacture 2010, 50 16.
    [83] Chinedum E. Okwudire Yusuf Altintas. Hybrid Modeling of Ball Screw Drives With Coupled Axial, Torsional, and Lateral Dynamics [J]. Journal of Mechanical Design, 2009, 131
    [84] Huang Shyh Chour. Analysis of a model to forecast thermal deformation of ball screw feed drive systems [J]. Int. J. Math. Tools Manufact., 1995, 35 (8): 6.
    [85] S.K. Kim D.W. Cho. Real-time estimation of temperature distribution in a ball-screw system. [J]. Int. J. Math. Tools Manufaet, 1997, 37 (4): 14.
    [86] Horejs O. Thermo-mechanical model of ball screw with non-steady heat sources [A]. [C]. 2007. 133-137.
    [87] Ahn Jy, Chung Sc. Real-time estimation of the temperature distribution and expansion of a ball screw system using an observer [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2004, 218 (12): 1667-1681.
    [88]夏军勇,吴波,胡友民,等.多变化热源下的滚珠丝杠热动态特性[J].中国机械工程, 2008, 19 (008): 955-958.
    [89] Hong Yang Jun Ni. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error [J]. International Journal of Machine Tools and Manufacture, 2005, 45 (4-5): 11.
    [90]Huang Ps, Ni J. On-line error compensation of coordinate measuring machines [J]. International Journal of Machine Tools and Manufacture, 1995, 35 (5): 725-738.
    [91] Chen Js. Neural network-based modelling and error compensation of thermally-induced spindle errors [J]. The International Journal of Advanced Manufacturing Technology, 1996, 12 (4): 303-308.
    [92] Li X. Real-time prediction of workpiece errors for a CNC turning centre, Part 2. Modelling and estimation of thermally induced errors [J]. The International Journal of Advanced Manufacturing Technology, 2001, 17 (9): 654-658.
    [93]严宗达王洪礼热应力[M].高等教育出版杜, 1993.
    [94]程尚模.传热学[M].北京:高等教育出版社, 1990.
    [95]梁允奇.机械制造中的传热与热变形基础[M].机械工业出版社, 1982.
    [96] S. Fraser M. H. Attia, M. 0. M. Osman. Modeling, identification and control of thermal deformation of machine tool structures [J]. Journal of Manufacturing Science and Engineering, 1998, 120
    [97]黄寿荣黄家贤.滚珠丝杠副摩擦力矩影响因素的分析[J].东南大学学报, 1993, 23 (增刊): 4.
    [98]万长森.滚动轴承的分析方法[M].机械工业出版社, 1987.
    [99]程光仁,施祖康,张超鹏.滚珠螺旋传动设计基础[M].机械工业出版社, 1987.
    [100]俞昌铭.热传导及其数值分析[M].清华大学出版社, 1981.
    [101]二宫瑞穗.滚珠丝杠的摩擦和温升[J].机床, 1981, 3
    [102]苗恩铭,费业泰,赵静.温度,热量与热变形的关系及计算方法研究[J].工具技术, 2003, 37 (007): 19-21.
    [103]董晨松.三坐标测量机动态误差补偿的研究. [D]. 1999.
    [104]Holroyd Geoffrey. THE MODELLING AND CORRECTION OF BALL-SCREW GEOMETRIC,THERMAL AND LOAD ERRORS ON CNC MACHINE TOOLS [D]. University of Huddersfield 2007.
    [105]曹岩,梅林.三坐标测量机热特性分析及改善对策[J].制造技术与机床, 2000, (002): 17-19.
    [106]Zhu Jie. Robust Thermal Error Modeling and Compensation for CNC Machine Tools [D]. The University Of Michigan, 2008.
    [107]范金梅许黎明,赵晓明,范浩,黄凯峰.机床热误差补偿中温度传感器布置策略的研究[J].仪器仪表学报, 2005, 26 (8):
    [108]Lo Ch, Yuan J, Ni J. Optimal temperature variable selection by grouping approach for thermal error modeling and compensation [J]. International Journal of Machine Tools and Manufacture, 1999, 39 (9): 1383-1396.
    [109]Chen Js, Ling Cc. Improving the machine accuracy through machine tool metrology and error correction [J]. The International Journal of Advanced Manufacturing Technology, 1996, 11 (3): 198-205.
    [110]Tseng Pc, Ho Jl. A study of high-precision CNC lathe thermal errors and compensation [J]. The International Journal of Advanced Manufacturing Technology, 2002, 19 (11): 850-858.
    [111]张奕群李书和,张国雄.机床热误差建模中温度测点选择方法研究[J].舰空精密制造技术, 1996, 32 (6):
    [112]李永祥杨建国,郭前建,王秀山,沈金华.数控机床热误差的混合预测模型及应用[J].上海交通大学学报, 2006, 40 (12):
    [113]林伟青傅建中.数控机床热误差建模中的温度传感器优化研究[J].成组技术与生产现代化, 2007, 24 (3):
    [114]钱华芳.数控机床温度传感器优化布置及新型测温系统的研究[D]. 2006.
    [115]赵海涛.数控机床热误差模态分析_测点布置及建模研究[D].上海:上海交通大学, 2006.
    [116]Tseng Pc, Chen Sl. The neural-fuzzy thermal error compensation controller on CNC machining center [J]. JSME International Journal Series C, 2002, 45 (2): 470-478.
    [117]Wang Kun-Chieh. Thermal Error Modeling of a Machining Center using Grey System Theory and Adaptive Network-Based Fuzzy Inference System [A]. Cybernetics and Intelligent Systems, 2006 IEEE Conference on [C]. Bangkok 2006.
    [118]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].中国科学技术大学出版社, 1998.
    [119]孙志强,葛哲学,刘瑛.神经网络理论与MATLAB7实现[M].北京:电子工业出版社, 2005.
    [120]董长虹. Matlab神经网络与应用[M].国防工业出版社, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700