用户名: 密码: 验证码:
高速滚珠丝杠进给系统动态性能检测与热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚珠丝杠副作为高速加工中心进给驱动系统的主要执行元件,其性能直接影响机床的运行状态和精度。由于速度的提高,滚珠丝杠进给系统中的接触区域(丝杠螺母、轴承等)会产生大量的热,而这些热量又无法及时散发,会使滚珠丝杠的温度升高,引起滚珠丝杠热变形,使得机床加工精度降低。因此,研究滚珠丝杠副在高速运行条件下的动态性能和热特性,对提高机床的加工精度有重要的意义。本文研究的主要内容如下:
     高速进给系统动态性能检测系统设计。建立了高速滚珠丝杠动态性能检测系统,该系统由机械系统和测试系统两部分组成。选用空心滚珠丝杠副作为被测元件,利用LMS数据采集卡进行数据采集,可完成负载状态下滚珠丝杠副动态性能的在线实时检测。
     高速进给系统动态性能测试与实验数据分析。在建立的高速进给系统动态性能测试系统上,通过实验检测滚珠丝杠温升变化、左右轴承座温升变化、丝杠热位移、加速度以及空心丝杠冷却系统进出口油温等基本参数,并对实验数据进行了分析处理。
     高速进给系统动态热特性分析。计算了滚珠丝杠进给系统的发热量,建立了滚珠丝杠副的温升与热位移之间的数学模型,分析出影响滚珠丝杠进给系统精度的主要因素是温升的变化,从而结合实验和理论计算对滚珠丝杠系统进行了热特性分析。
     高速进给系统动态热变形补偿。分析了抑制滚珠丝杠热变形的主要方法,提出了基于流体力学原理的空心滚珠丝杠科恩达气液二元热补偿方法,通过采用将冷却介质通入空心丝杠内部进行强制循环冷却,和冷却气流对丝杠重点发热区域进行局部冷却相结合的冷却方式,抑制因机床高速运转带来的丝杠热变形导致刚度和精度发生变化,并对其进行了仿真分析。
     滚珠丝杠进给系统的动态性能,尤其是发热问题是制约机床加工精度的主要因素之一,通过构建实验平台,结合理论分析和仿真分析,对滚珠丝杠进给系统动态性能和热特性的研究,为提高数控机床进给系统的刚度和加工精度,提供了一种实用的设计方法。
As the main actuator in high-speed machining centre feeding system, the ball screw pair'sperformance directly influence the CNC machine tools’ running condition and precision. Due tothe speed increasing, contact area (screw nut, bearing,etc.) of ball screw feeding system producesvast hot, and these heat can not send out in time, the temperature of the ball screw will increase,result in the ball screw thermal deformation, and making the machining accuracy decreased.Therefore the study of dynamic performance and thermal characteristic of ball screw laws toimprove the machining accuracy has important significance. This article main contents are asfollows:
     The dynamic performance testing system of high-speed feed system is designed. Thedynamic performance testing system of high-speed feed system is established, the system consistsof the two major components of mechanical system and test system. Selecting the hollow ballscrew as the tested component, using the LMS data acquisition system to collecting data, cancomplete online real time measurement of ball screw dynamic performance under the loadcondition.
     The dynamic performance of high speed-feed system is tested and the data is analyzed. Onthe established dynamic performance testing system, based on the dynamic performance testingsystem of high-speed feed system, through experiment method, the ball screw temperature rising,bearing pedestal temperature variation, ball screw thermal deformation, ball screw feedingacceleration and hollow ball screw cooling process import and export oil temperature, and otherbasic parameters are tested, and the collected data are processed.
     Dynamic thermal characteristic of high-speed feeding system is analyzed. The heat of ballscrew system is calculated, and mathematical model of temperature rising and thermaldisplacement of ball screw pair is established, the main factor to influencing ball screw feedingsystem accuracy is temperature variation, and then the thermal characteristic is analyzed based onexperimental and theoretical calculation.
     High-speed feeding system dynamic thermal deformation compensation. Main methods torestrain the ball screw the thermal deformation is analyzed, and gas-liquid two element thermalcompensation principle for hollow the ball screw based on Coanda effect is proposed, by adoptingthe way of making cooling medium access to hollow ball screw internal forced circulationcooling, and combined with the way of making cooling flow access to ball screw key local area,CNC machine tools’ stiffness and accuracy variation are restrained, and the simulation results isanalyzed.
     The dynamic performance especially thermal deformation of ball screw system is one of themain factors that restricting CNC machine tool's development, by constructing the experimentalplatform, combined with theoretical and simulation analysis to research on dynamic performanceand thermal deformation of ball screw feeding system, and providing a practical design method toimprove CNC machine tool's rigidity and machining accuracy.
引文
[1]肖正义.滚珠丝杠副的发展趋势[J].制造技术与机床,2004(4):11-13.
    [2]肖正义,焦洁.高速滚珠丝杠副的开发和检测技术[J].制造技术与机床,2004(4):95-99.
    [3]袁帅.高速精密滚珠丝杠副综合检测技术研究[D].大连:大连理工大学,2004.
    [4]夏军勇.热弹性效应和数控机床进给系统热动态特性的研究[D].武汉:华中科技大学,2008.
    [5]张伯霖,黄晓明,范梦吾,等.高速机床进给系统的发展趋势[J].组合机床与自动化加工技术,2002(10):7-11.
    [6]何震.机床滚珠丝杠系统热特性分析及其热变形补偿[D].成都:西南交通大学,2009.
    [7]马术文,徐中行,刘立新,等. XH718加工中心的热误差补偿研究[J].机械科学与技术,2007(4):26-27.
    [8]胡鹏浩,费业泰,王会生,等.减少机床变形的有效途径[J].仪器仪表学报,1999,21(1):51-53.
    [9] O.Horejs. Thermo-mechanical Model of Ball Screws with Non-steady Heat Sources[J].Thermal Issues in Emerging Technologies,2007(6):17-19.
    [10]二宫瑞惠,宫口和男.滚珠丝杠高速化的最新技术动向[J].滚珠丝杠,2002(9):40-41.
    [11]王寇明.高速加工中心综合精度分析[D].大连:大连理工大学,2006.
    [12]鲁远栋.数控机床热误差检测及补偿技术研究[D].成都:西南交通大学,2007.
    [13] N.Mizuho, M.Kazuo. Recent Technical Trends in Ball Screws[J]. Motion and Control,1998(4):67-72.
    [14] I.R.Paul, S.Shim, S.H.Jeong, et al. Robust Friction Compensation for SubmiicrometrPositioning and Tracking for a Ball-screw-driven System[J]. Precision Engineering,2000,24(2):160-173.
    [15] I.Ter, Y.Tok, O.Kaz. Studies on the Sound and Vibration of a Ball Screw[J]. The JanpanSociety of Mechanical Engineers,1988,31(4):732-738.
    [16] D.Guevarra, A.Kyusojin, H.Isobe, et al. Development of a New Lapping Method forHigh Precision Ball Screw(1st report)-Feasibility Study of a Protocol Lapping Tool forAutomatic Lapping Process[J]. Precision Engineering,2001(1):63-69.
    [17] X.S.Mei, M.Tsutsumi, T.Tao. Study on the Load Distribution of Ball Screws withError[J]. Mechanism and Machine Theory,2003,38(11):1257-1269.
    [18]黄祖尧.国外滚珠丝杠副的精度性能检测动向[J].制造技术与机床,1985(11):37-39.
    [19] S.H.Yang. Real-time Compensation of Geometric, Thermal and Cutting Force-inducedError on Machine Tools[D]. Dissertation of the University of Michigan in USU,1996.
    [20] S.C.Huang. Analysis of a Model to Forecast Thermal Deformation of Ball Screw FeedDrive Systems[J]. International Journal of Machine Tools and Manufacture,1995,35(8):1099-1104.
    [21] H.Q.Li, S.C.Yang. Analysis of bearing conguration effects on high speed spindles usingan integrated dynamic thermo-mechanical spindle model[J]. International Journal ofMachine Tools and Manufacture,2004,44(2):347-364.
    [22] J.Yuan, J.Ni. The improvement of thermal error modeling and compensation on machinetools by CMAC neural network[J]. International Journal of Machine Tools andManufacture,1996,36(4).31.35.
    [23] S.K.Kim, D.W.Cho. Real-time Estimation of Temperature Distribution in a Ball-screwSystem[J]. International Jornal of Machine Tools&Manufacture,1997,37(4):273-279.
    [24] S.Y.Won, S. K.Kim, D.W.Cho. Thermal error analysis for a CNC lathe feed drive system.International Journal of Machine Tools and Manufacture,1999,39(7):1087-1101.
    [25] Y.Hat. Development of an Intelligent Machining Center Active Compensation forThermal Distortion[J]. Annals of CIRP,1993,42(1):549-552.
    [26] G.Palazzo, R.Pasquino. Temperature Field in Machining Processes and Heat TransferModels[J]. Mathematical and Computer Modeling,2003(35):101-109.
    [27] R.Ramesh, M.A.Mannan. Thermal Error Measurement&Modeling in Machine Tools[J].International Journal of Machine Tools and Manufacture,2003,43(39):391-404.
    [28] C.H.Wu, Y.T. Kung. Thermal Analysis for the Feed Drive System of a CNC MachineCenter[J]. International Journal of Machine Tools&Manufacture,2003,43(15).
    [29] J.Y.Ahn, S.C.Chung. Real-time estimation of the temperature distribution and expansionof a ball screw system using an observer.Proceedings of the Institution of MechanicalEngineers, Part B:Journal of Engineering Manufacture,2004.
    [30]肖正义,焦洁.高速滚珠丝杠副的研发和检测技术[J].制造技术与机床,2004(4):95-99.
    [31]宋现春,刘剑,王兆坦,等.高速滚珠丝杠副综合性能实验台的研制开发[J].工具技术,2005(7):34-36.
    [32]张震宇.高速滚珠丝杠副综合性能检测系统开发与应用[D].南京:南京理工大学,2008.
    [33]宋洪涛,宾鸿赞.精密长丝杠磨削过程中工件热变形分析[J].光学与精密工程,1997(5):23-25.
    [34]陈琳,李郝林.丝杠磨削过程中的温度场和热变形分析[J].机械加工:冷加工,2007(10):36-38.
    [35]徐志良,张凤生,刘红,等.究精密长丝杠磨削热变形规律研[J].青岛大学学报,1993(3):49-52.
    [36]苗恩铭,费业泰,金施群.精密丝杠加工误差数学模型分析[J].工具技术,2003,19(8):11-14.
    [37]邓三鹏.具有丝杠热误差补偿功能的在线检测软件的开发[D].天津:天津大学,2004.
    [38]宋现春,王兆坦,刘现银.精密滚珠丝杠磨削加工中的热变形控制[J].工艺与检测,2006,23(1):59-61.
    [39]缪亚雄,孙蓓蓓.滚珠丝杠系统的热特性建模与分析研究[J].中国制造业信息化,2008,37(3):46-48.
    [40]夏军勇,吴波,胡友民.多变化热源下的滚珠丝杠热动态特性[J].中国机械工程,2008,19(8):955-958.
    [41]何震.机床滚珠丝杠系统热特性分析及其热变形补偿[D].成都:西南交通大学,2009.
    [42]王大伟.基于有限元法的滚珠丝杠传动过程中的温度场和热变形仿真[J].计算机辅助工程,2009,18(2):29-33.
    [43]陈兆年,陈子辰.机床热态特性学基础[M].北京:机械工业出版社,1989.
    [44]王文,陈子辰.线性系统热动态激励及其响应研究[J].浙江大学学报1994(9):563-569.
    [45]傅建中,陈子辰.精密机械热误差校正机理及参数遗传优化[J].浙江大学学报,2003,37(9):719-723.
    [46]中国机械行业标准《高速精密滚珠丝杠副第1部分:性能实验规范》JB-T10890.1-2008.
    [47]洪宇.高速滚珠丝杠副综合性能测量系统设计[D].南京:南京理工大学,2008.
    [48] NSK滚珠丝杠综合样本,2008.
    [49] FANUC电机综合样本,2008.
    [50] KTR梅花型弹性联轴器综合样本,2008.
    [51]李亚芹,龙泽明,韩阳阳.高速加工中滚珠丝杠进给系统性能分析[J].机电工程技术.2006,35(10):13-14.
    [52]李杰,刘德平,苏宇锋,等.铣削床鞍温度场建模与热变形分析[J].机械设计与制造,2007.
    [53]万长森.滚动轴承的分析方法[M].北京:机械工业出版社,1985.
    [54]刘泽九,贺士荃.滚动轴承的额定负荷与寿命[M].北京:机械工业出版社,1982.6:51-52.
    [55]肖正义,焦洁.高速滚珠丝杠副的研发和测试技术[J].制造技术与机床,2004(4).
    [56]天日和仁.滚珠丝杠的发热对策及环保技术[J].功能部件,2004(3):65-67.
    [57]王金生. XK717数控铣床热特性研究[D].杭州:浙江工业大学,2004.
    [58]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [59] Senda, Harumitsu.AStudy to Suppress Machining Error due to Thermal Deformation ofBall Screw of Machine Tools. Nihon Kikai Gakkai Ronbunshu[J]. C Hen/Transactionsof the Japan Society of Mechanical Engineer,2006,72(5):P1667-1672.
    [60]张传辉.数控机床高速滚珠丝杠进给系统发热问题研究[D].兰州:兰州理工大学,2011.
    [61]杨锦斌,杨维平,黄桂英,等.滚珠丝杠副在高速条件下的热位移及抑制对策[J].制造技术与机床,2006(08).
    [62]苗恩铭,费业泰,赵静.温度、热量与热变形的关系及计算方法研究[J].工具技术,2003,7(7):19-21.
    [63]曹爱文.数控车床运动误差建模及其补偿技术研究[D].哈尔滨:哈尔滨工业大学,2005.
    [64] N.wood, J.Nielsen. Cirulation Control Airfoils Past, present, future[J]. ALAA paper,1985.
    [65]汪建文,张智羽,辛士红,等.风力机扩散放大器正置和倒置的风洞试验及其流场的数值模拟[C].第三届工程计算流体力学会议,2006.
    [66] K.BInit, K.Anjani. Analysis of geometric errors associated with five-axis machiningcentre in improving the quality of cam profile[J]. Journal of Machine tools andManufacture,2003,43(6):629-636.
    [67]徐芝轮.弹性力学[M].北京:高等教育出版社,2005.
    [68]林瑞泰.热传导理论与方法[M].天津:天津大学出版社,1992.
    [69]戴锅生.传热学[M].北京:高等教育出版社,2002.
    [70]俞昌铭.热传导及其数值分析[M].北京:清华大学出版社,1982.
    [71]白亚磊.康达效应在流量测量中的研究与应用[D].南京:南京航空航天大学:流体力学,2007.
    [72]陶文铨.传热学[M].西安:西北工业大学出版社,2006.
    [73]诸乃雄.机床动态设计原理与应用[M].上海:同济大学出版社,1987.
    [74]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,1999.
    [75]李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2004.
    [76]王希珍. S195柴油机缸体套温度场与热变形的三维有限元分析[D].合肥:合肥工业大学,2000.
    [77]罗熹乾.流体力学[M].北京:机械工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700