用户名: 密码: 验证码:
低温稠油水热裂解催化降粘研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着常规原油的不断减少和人们对石油需求的日益增加,稠油,一种储量巨大的非常规能源的开采愈来愈受到重视。在我国,优质常规原油的极度短缺以及丰富的稠油资源使得我国对稠油的开采有着更为现实紧迫的需求。然而,由于稠油分子结构复杂,重质组分含量高,使得其粘度及凝固点较高,其开采迄今仍是世界难题。受石油化工生产中催化裂解技术的启发,人们提出了稠油水热裂解催化降粘开采方法:在注入蒸汽的同时,也给予油层合适的催化剂及其它助剂,使稠油中的重质组分在水热条件下实现催化裂解,将稠油中沥青质、胶质等大分子催化裂解成为小分子,从而使其粘度降低而易于采出。这项技术的关键在于水热裂解催化降粘剂的研制开发以及催化裂解降粘机理的探讨。
     国内外的学者研制开发出三大类水热裂解催化降粘剂:过渡金属离子水溶性催化降粘剂、过渡金属化合物油溶性催化降粘剂、酸碱催化降粘剂。这些催化降粘剂在不低于240℃的温度下对稠油发挥出了较好的降粘效果。同时,他们对稠油水热裂解催化降粘机理也做了深入探讨。他们指出在这样的温度下,稠油重质组分中的有机硫成分,在水热裂解反应中是关键物质,而C-S键断裂是水热裂解反应的关键步骤,加入的金属离子起到了催化C-S键断裂和其它反应的作用。部分学者还进行了现场试验的尝试,并取得了成功。前人的研究在一定程度上推动了这项稠油开采新技术的发展,也为今后的研究提供了方向和思路。
     前人的研究主要是针对240℃以上的稠油水热裂解催化降粘反应进行的,而目前注蒸汽后地层温度很难长时间的在大范围内达到这个温度。这就使得地层水热裂解催化降粘作用大打折扣。而且“C-S键的断裂说”描述的是高于240℃以上稠油水热裂解催化降粘机理,无法解释一些更低温度下的实验现象。近年来,我们一直围绕着如何获得适合于油层温度条件下(不高于200℃)的高效且适应面较广的水热裂解催化降粘剂进行了探索研究,并在实验室和生产现场中都取得了不错的效果。同时也在这个相对较低温度下的水热裂解催化降粘机理方面取得了一些新的认识。本文将详细介绍低温稠油水热裂解催化裂解降粘剂的研制开发、水热裂解催化降粘的室内模拟、降粘机理的研究、动力学机制的探讨以及现场试验方面的初步尝试等方面的相关研究结果。
     首先,提出了一种有机配体修饰高效催化中心的水热催化裂解降粘剂的研制开发思路,并成功的研制开发出了一类多功能系列低温高效稠油水热裂解催化降粘剂。初步的模拟实验表明这类催化降粘剂具有很好的普适性,在200℃的反应温度下,对于新疆、塔河、河南、胜利、以及辽河的十多种50℃时粘度在2×104-1.6×106mPa·s范围的稠油的降粘率均在90%以上。同时在室内开展了开采过程中全温度段(40-280℃)的室内模拟实验,并考察了反应时间对降粘作用的影响,结果显示,在140℃以下,不存在催化裂解作用,脱水降粘率均在降粘率在10%以下;140-200℃之间,混合降粘率在95%以上,200℃时脱水降粘率在90%以上。此温度段,随着反应温度的升高,降粘率大幅上升,重质组分含量大幅降低,催化裂解作用急剧增强;200-280℃之间,降粘率和重质组分含量基本维持在一个水平,催化裂解作用基本保持平衡,混合降粘率在95%以上,脱水降粘率在90%以上。模拟实验结果表明,稠油的水热裂解催化作用主要发生在140℃以上,大部分作用在200℃的时候基本完成,因此开采过程中,在催化降粘剂的作用下,只要让地层在更大范围内温度维持在200℃左右,稠油的粘度就可以降低到一个较为理想的粘度,获得较好的流动性。实验结果还表明整个过程中,总降粘作用在24 h的时候基本完成,那么开采过程中吞吐焖井时间以及驱替井网井距的确定要保证高温蒸汽、催化裂解降粘剂和稠油的作用时间不少于24 h才能获得较好的开采效果。
     其次,通过全面研究水热裂解催化降粘体系中油、气、水中的有机成分在降粘前后的变化来探讨稠油的水热裂解催化降粘机理。选取一种新疆油田的稠油,使用三种具有不同催化中心的水热裂解催化降粘剂进行降粘反应,采用柱层析法将反应前后的稠油分离成四个组分:沥青质、胶质、芳香烃和饱和烃,并进一步提取出胶质中典型的含氧和含氮组分,萃取出反应水中的有机成分,收集反应气体。采用棒薄层火焰离子色谱仪TLC-FID、傅里叶红外光谱仪FTIR、元素分析仪EL、核磁共振仪NMR和气相色谱质谱联用仪GC/MS等对比分析在这几种不同催化中心的催化裂解降粘剂的作用下反应前后稠油、反应水和反应气体的有机成分变化。结果显示反应后稠油中重质组分沥青质胶质的饱和度增加,芳香缩合度减小,侧链支化程度增加,杂原子含量减少;轻质组分饱和烃芳香烃含量增加,同时伴随有少量的相对较小分子量的有机化合物进入到反应水和反应气体当中。不同的催化中心作用下,各个组分变化程度不同。
     实验结果表明,反应温度不高于200℃的水热裂解催化降粘过程中存在着三种作用:吸附与沥青质胶质紧密缔合结构中的小分子有机化合物的解吸作用、紧密缔合结构的解聚作用和侧链桥链的断裂作用,而解吸和解聚作用是造成稠油粘度降低的主要原因,解聚作用是引起稠油降粘的主导原因。解吸和解聚作用主要破坏的是一些相对较弱的化学作用如范德华力、氢键、配位键等以及由它们造成的沥青质胶质的紧密缔合结构,其中数量极多的范德华力形成的合力贡献最大,是导致稠油粘度降低的主要原因。因此,大幅永久的降低稠油的粘度只需要在相对较低的温度下,破坏这些弱化学作用即可,无需高温下去断裂那些较强的共价键。这样的结论我们通过详细分析稠油在水热裂解催化降粘前后的粘度——温度曲线进一步得到证实。这里着重强调,水热裂解催化降粘中的“裂解”是不同于石油炼制过程中共价键的断裂作用,它是广义上的裂解,由三种作用组成,解吸、解聚和断裂作用。
     随后,为了考察稠油水热裂解催化降粘反应的动力学行为,采用GC/MS定量分析了稠油中饱和烃、芳香烃、以及水、气相有机成分随着反应时间(72 h之内)和反应温度(140-280℃)的变化规律,并总结出了在几个典型的反应温度段和反应时间段的降粘作用特点以及相应的动力学方程。结果显示,反应温度低于140℃时,催化裂解作用非常微弱,可以忽略;当反应温度在140-160℃时,解吸作用造成了粘度的降低和重质组分的减少,几乎没有解聚和断裂作用;当反应温度在160℃到解聚完成温度之间,稠油的降粘主要靠解吸和解聚作用,几乎不存在断裂作用,这个温度段,随着反应温度的升高,解吸作用比例由100/100减小到37/100,解聚作用比例由0增大到63/100。解聚完成温度高于180℃,低于200℃;从解聚完成温度到280℃,稠油的降粘由三种作用共同造成。随着温度的升高,反应速率在整个过程中不断加快,但反应平很基本维持在一个水平。在这个温度段,解吸、解聚和断裂作用的比例分别约为1/3,5/9和1/9。当反应温度为200℃时,解吸、解聚和断裂作用分别在12、18和24 h小时之内完成。稠油水热裂解催化降粘的动力学行为也再一次印证了室内模拟实验的结果和机理探讨的结论。
     最后,为了考察研制开发的新型稠油水热裂解催化降粘剂的现场开采效果,选取其中成本最廉价、制备工艺最简单的催化降粘剂在河南油田进行了现场实验,措施前后的主要工艺和生产参数显示试验取得了成功。泌阳凹陷古城油田两口井G6606和G61012的现场降粘率达到80%,采注比显著提高,同时还节约了氮气注入量,每口井单周期(14天)增油200多吨。
     综上,通过系统全面的研究水热裂解催化降粘剂的研制开发、降粘机理、降粘反应的动力学行为以及现场实验的尝试,本文提出了一种低温高效普适性强的催化降粘剂研制思路,即高效催化中心的有机配体修饰,那么大量的考察廉价的有机配体和廉价的催化中心应该成为催化降粘剂研制开发环节的一项极为重要的工作。真实原油的低温水热裂解降粘机理及动力学行为的探讨论证了稠油在相对较低温度下也就是地层可以达到的温度下发生大幅不可逆降粘的可能性,为了彻底解决水热裂解催化降粘需要高温和地层无法提供足够高的温度这一对矛盾提供了研究方向和理论指导。在不久的将来,在水热裂解催化降粘剂的研制开发这个制约这项技术大规模工业化应用的瓶颈环节取得突破之后,稠油的开采将不再是困扰我们的世界难题。
     本文的研究在思路、方法和结论上都有所创新。首先思路上的创新在于普适性好的系列多功能复合水热裂解催化降粘剂的研制。以往研制的催化降粘剂只是降低稠油的粘度,而且使用温度较高,基本都在240℃以上,在地层较低的温度下往往无法发挥其最好的降粘作用。本文研制的催化降粘剂可以在180-200℃这个地层更容易达到或者可以保持更长时间的温度下发挥出较好的催化降粘作用,可以使得降粘作用在底层波及更大的范围。同时催化降粘剂的多功能性还能够在一定程度上改善蒸汽吞吐和驱替过程中的不利因素,扩大波及范围并提高洗油效率,可以在采油过程中省去很多助剂并简化施工工艺。本文还将提出这类催化降粘剂研制的一般思路。这样的研究思路在以往的研究中极少涉及。其次方法上创新在于水热裂解催化降粘过程油、气、水有机成分的全面分析。前人的研究涉及到了稠油和反应气体,极少涉及反应水。本文完整的研究整个反应体系属于首次。最后,结论上创新在于稠油低温水热裂解催化降粘机理的描述,并在此基础上探讨了引起稠油高粘的主导原因。本文首次提出了相对较低温度下的“弱化学作用主导说”,很好的补充了前人描述的较高温度下的“C-S键断裂说”机理,将稠油水热裂解催化降粘机理延伸到更低的温度,更大的温度范围。这个结论指出稠油的大幅不可逆降粘并不需要太高的温度,使得稠油通过地层水热裂解催化降粘技术获得较高的采收率成为可能,同时也为催化降粘剂的研制开发提供了全新的思路和理论依据。
With increasing demands for energy resources and serious shortage of conventional petroleum, heavy oil, whose reserves share 70% of the total quantity of petroleum in the world, has attracted worldwide interest. However, its high viscosity often causes difficulties in exploitation. Refer to principle of upgrading of petroleum, catalytic aquathermolysis recovery developed in 1980s is a new exploitation technology with great potential for heavy oil, especially for extra heavy oil. In this technology, chemicals, as catalytic viscosity reducers CVRs, are adding into the oil layer to reduce the viscosity, decomposing the asphaltenes and resins permanently.
     Hence, a number of scientists conducted a lot of researches in which various catalysts were added to catalyze the aquathermolysis. Currently, the catalysts used in this technology were mostly transitional metal ion salts, transitional metallic compounds and some acid or base catalysts. Meanwhile, they study the mechanism of viscosity reduction through catalytic aquathermolysis and pointed out the hydrodesulfurization is the main reason for viscosity reduction during this process, the adding CVRs catalyzed the breakdown of C-Ss. Parts of them also conducted the field tests and obtained good effects to some extent. Their study promotes the development on this techonology and provides the research direction and thinking for the further study.
     The CVRs in above study can maxmum their catalysis at above 240℃, and the temperature in oil floor after steam injection gradually lower with the increasing depth of the oil floor and is difficult to remain above 240℃, so there is no enough energy supplied for catalysis. Inaddition, the theory of "breakdown of C-S" can describe the mechanism of viscosity reduction through catalytic aquathermolysis at above 240℃, but not explain that at relatively low temperature. These years, we studied the catalytic aquathermolysis at relatively low temperature and gained the great achievement both in laboratory and oilfield. This paper presents the study on synthesis of CVRs, laboratorial catalytic aquathermolysis experiments, mechanism and kinetics of viscosity reduction of heavy oil, and field texts.
     We proposed synthesis thinking of a type of CVRs with effective catalytic center modified using organic ligands, and synthesized four kinds of CVRs. Later, we conducted the catalytic aquathermolysis at the whole temperature range 40-280℃, and analyzed the influence of reaction time to the viscosity reduction. The results showed that when the reaction temperature is below the 140℃, there is no catalysis, the real viscosity reduction is below 10%, and little content of heavy composition is decreasing; when the reaction temperature is between the 140℃and 200℃, the rate of viscosity reduction largely increase and the content of heavy components sharply decrease along the increase of the reaction temperature, the catalytic aquathermolysis mainly happens at this temperature range and the real viscosity reduction at 200℃is above 90%; when the reaction temperature is between the 200℃and 280℃, the rate of viscosity reduction and the content of heavy components maintain constant along the increase of the reaction temperature, the viscosity reduction can keep above 95% at this temperature range. In the whole process, the viscosity reduction can finished at 24 h.
     Then, we separated the four compound groups, namely, asphaltenes, resins, saturated and aromatic hydrocarbons from heavy oil before and after catalytic aquathermolysis through the column chromatography-based SARA method, and further isolated the oxygen and nitrogen containing compounds in resins, extracted and collected the organic compounds in reaction waters and gases after catalytic aquathermolysis. We used thin-layer chromatography-flame ionization detection (TLC-FID), element analysis (EL), nuclear magnetic resonance (NMR) and gas chromatography/mass spectroscopy (GC/MS) to comprehensively analyze the changes of heavy oil, reaction water and pyrolytic gas during catalytic aquathermolysis. The results show that there are three types of action during catalytic aquathermolysis:desorption, depolymerization and pyrolysis, and the desorption and depolymerization are the mainly reactions. These two types of actions are caused by the disruption of the associating structure due to the relatively weak actions, such as van der Waals forces and hydrogen, ionic and coordinate bonds, which play the leading role in high viscosity of heavy oil. Therefore, reducing the viscosity of heavy oil to a large degree permanently in oil layer is feasible, only through disrupting the relatively weak actions at relatively low temperature, needing not break the strong chemical ones at very high temperature.
     Meanwhile, we analyzed the change law of the organic compounds in saturated and aromatic hydrocarbons, reaction water and gas following with the changes of reaction time and temperature, and deduced the kinetic formula. It is found that when the reaction temperature is below the 140℃, few or no chemical actions happen; When the reaction temperature is between the 140℃and 160℃, there is only desorption exited during the reaction; When the reaction temperature is between the 160℃and T (depolymerization), the desorption and depolymerization cause the decrease of heavy compositions. The T (depolymerization) is above 180℃and below 200℃; when the reaction temperature is between T (depolymerization) and 280℃, three types of actions such as desorption, depolymerization and pyrolysis exit during the reaction. Following with increase of the reaction temperature, the reaction velocity increases in the whole process, but the reaction balance transfers only at the temperature below T (depolymerization), and keeps constant when the temperature is between T (depolymerization) and 280℃. Especially, at 200℃, desorption, depolymerization and pyrolysis finish at 12,18 and 24 h, respectively.
     At last, we conducted the field tests in Henan oilfield and obtained good effects. The viscosity reduction reached to 80%, and the production increased by 200 t in a period after using catalytic aquathermolysis recovery.
     To sum up, we proposed synthesis thinking of a type of CVRs with effective catalytic center modified using organic ligands, studying the synthesis of CVRs, mechanism and kinetics of catalytic aquathermolysis and field tests. Therefore, it is very important to investigate the cost catalytic center and organic ligands. The mechanism and kinetics of viscosity reduction of real heavy oil through catalytic aquathermolysis demonstrate the feasibility of large viscosity reduction of heavy oil irreversibly at oil layers. The conslusion can provide the research direction and theory instruction for thoroughly solving the contraction that the oil layers can not provide enough energy for viscosity reduction through catalytic aquathermolysis. Developing good CVRs will improve the catalytic aquathermolysis recovery to greatly enhance the recovery of heavy oil. This technology has widely prospects and its industrialized application will achieve in the near future, and eventually, the exploitation of heavy oil will not the world difficult problem puzzling us.
     The innovative points of this paper are research thinking, methods and conclusion. Firstly, we sythensized of the multi-function CVRs with good universality, which can show good effects at relatively low temperature (180-200℃), and meanwhile improve some disadvantages in recovery process to enlarge the impact scope and promote the oil displacement efficiency. Few of this research thinking are reported in provious study. Secondly, we firstly analyzed the changes of organic compounds in heavy oil, reaction water and gas comprehensively. Finally, we firstly describe the mechanism of viscosity reduction through catalytic aquathermolysis at relatively low temperature, and clearly stated the leading reason of high viscosity of heavy oil. Our low temperature theory "the weak chemical reaction is leading role" replenishes the high temperature theory "breakdown of C-S", extends the mechanism to a lower temperature, to a wider range. The conclusion indicates that reducing the viscosity of heavy oil to a large degree irreversibly at oil layers is feasible, and enhancing oil recovery largely through catalytic aquathermolysis at oil layer is possible. Meanwhile, it can provide the new thinking and theory instruction for sythensizing the catalytic viscosity reducer.
引文
[1]胡常忠编,稠油开采技术,北京:石油工业出版社,1998,6.
    [2]Charles D. Masters等人,世界的石油、天然气、天然沥青和页岩油资源.范从武译,第十二届世界石油会议报告论文第四分册,1993.
    [3]胡见义,稠油资源的巨大潜力.石油勘探与开发,1988,1.
    [4]秦匡宗,郭绍辉.石油沥青质.北京:石油工业出版社,2002,11.
    [5]Roger M A, Application of organic facies to hydrocarbon source rock evaluation. Preprint of the 10th World Petroleum Congress,1979
    [6]Tissot B.胶质和沥青质的地球化学,国际重油和渣油性质分析鉴定会议文选,石油工业出版社.1989,2-23
    [7]Yen T F, Preprints, Am. Chem. Soc. Div. Petrol. Chem,.1972,17(4), F102
    [8]Speight J.G. The Chemistry and Technology of Petroleum. Marcel Dekker, Inc., New York, 1980
    [9]Schabron J F, Speight J G The solubility and three-dimensional structure of asphaltenes. Petroleum Science and Technology,1998,16 (3&4):361-375
    [10]Acevedo S, Escobar G, Ranaudo M N, et al.. Observations about the structure and dispersion of petroleum asphaltenes aggregates obtained from dialysis fractionation and characterization. Energy& Fuels,1997,11:774-778
    [11]Mujica V, Nieto P, Puerta L, et al. Caging of molecules by asphaltenes-A model for free radical preservation in crude oils. Energy & Fuel,2000,14(3):632-639
    [12]Murgich J, Abanero J A, Strausz O P. Molecular recognition in aggregates formed by asphaltene and resin molecules from the Athabasca oil sand. Energy & Fuel,1999,13(2): 278-286
    [13]刘文章.稠油注蒸汽热采工程.北京.石油工业出版社,1997,1.
    [14]刘慧卿,范玉平,赵东伟等.热力采油技术原油与方法.东营:石油大学出版社,2000.
    [15]张锐,薄启亮,刘尚奇等.稠油开采前沿技术.世界石油工业,1998.5(9):29-35
    [16]刘文章.稠油热采工程技术.北京:石油工业出版社,1996
    [17]王仲茂,王怀彬等.高新采油技术.北京.石油工业出版社,1998,9.
    [18]常毓文,张毅等.稠油热采技术新进展.北京.石油工业出版社,1997,12.
    [19]张锐.稠油热采技术.北京.石油工业出版社,1999,4.
    [20]Hyne J B, Greidanus J W. Aquathermolysis of heavy oil. Rev. Tec. Intevep.1982,2 (2):87-94; also in Proc.2nd International Conference On heavy crude and tar sands. Vol. Ⅰ, Chapter Ⅸ, UNITAR, Caracas, Venezuela, February 7-17,1982; and revised version in ASRL Quarterly Bulletin, Vol. ⅩⅧ, Nos.2,3 & 4, July 1981-March 1982,21-43
    [21]Hyne J B. Aquathermolysis-A synopsis work on the chemical reaction between water (steam) and heavy oil sands during simulated stimulation. Synopsis Report No.50, April 1986, AOSTRA
    [22]Clark P D, Hyne J B. Studies on the chemical reactions of heavy oils under steam stimulation condition. AOSTRA Journal of Research,1990,6 (29):29-39
    [23]Clark P D, Hyne J B. Steam-oil chemical reactions:mechanisms for the aquathermolysis of heavy oil. AOSTRA Journal of Reacher,1984,1:15-20
    [24]Clark P D,Kirk M J,Studies on the upgrading of bituminous oils with water and transition metal catalysts [J],Energy Fuels,1994,8,p380-387.
    [25]Erdman, J.G. and Dickie, J.P. Mild thermal alteration of asphaltic crude oils. Preprints. Div. Pet. Chem.(ACS).1964.9 (2).P69-79
    [26]Clark P D, Hyne J B, and Tyrer J D. Chemistry of organo sulfur compound type occurring in heavy oil sands:1. High temperature hydrolysis and thermolysis of therahydro-thiophene in relationto steam stimulation processes. Fuel,1983,62(5):959-962
    [27]Clark P D, Hyne J B, and Tyrer J D. Chemistry of organo sulfur compound type occurring in heavy oil sands:2. Influence of pH on the high temperature hydrolysis of tetrathiophene and thiophene. Fule,1984,63(1), January:125-128
    [28]Clark P D, Hyne J B, and Tyrer J D. Chemistry of organo sulfur compound type occurring in heavy oil sands:3. Reaction of thiophene and tetrahydro-thiophene with vanadyl and nickel salts. Fuel,1984,63(6), December:1649-1645
    [29]Clark P D, Hyne J B, and Tyrer J D. Chemistry of organo sulfur compound type occurring in heavy oil sands:4. The high-temperature reaction of hiophene and tetrahydro-thiophene with aqueous solution of aluminium and first row transition-metal cations. Fuels 1987,66(5), October:1353-1357
    [30]Clark P D, Hyne J B, and Tyrer J D. Chemistry of organo sulfur compound type occurring in heavy oil sands:5. Reaction of thiophene and tetrahydro-thiophene with aqueous group VIIIB metal species at high temperature. Fuels,1987,66(5), December:1699-1702
    [31]Clark P D, Clarke R A, Hyne J B, and Lesage K L. Studies on the effect of metal species on oil sands undergoing steam treatments. AOSTRA Journal of Research,1990,53 (6):53-64
    [32]Kenneth A. Gould. Influence of thermalprocessing on the properties of cold lake asphaltene. Fuel,1983,62(2),370-372
    [33]McNab, J.G., Smith, P.V. and Bette, R.L.. The evolution of petroleum. Ind. Eng. Chem..1952. 44(11). P2556-2563.
    [34]Henderson, J.H. and Weber, L.. Physical upgrading of heavy oils by the application of heat. J. Can. Pet. Tech..1965.4. P206-212
    [35]Jana M. Jacobson and Murray R. Gray. Use of IR spectroscopy and nitrogen titration date in structural group analysis of bitumen. Fuel,1987,Vol66.749-752.
    [36]Monin, J. C. Audlbert,A. Thermal cracking of heavy-oil/mineral matrix system. SPE reservoir Engineering, November,1988.1243-1250.
    [37]Chen H H, Montgomery D S, Strausz O P. Hydrocracking of Athabasca bitumen using oil-s oluble organometallic catalysts. Part Ⅰ:The influence of temperature and pressure on catalyst activity.AOSTRA Journal of Research,1988,4:45-57
    [38]Chen H H, Montgomery D S, Strausz O P. Hydrocracking of Athabasca bitumen using oil-soluble organometallic catalysts. Part Ⅱ:Comparison of metal naphthenates and metal acetylacetonates with nickel carboxylate as oil-soluble liquid phase hydrocracking catalysts. AOSTRA Journal of Research,1988,4:143-152
    [39]Chen H H, Montgomery D S, Strausz O P. Hydrocracking of Athabasca bitumen using oil-soluble organometallic catalysts. Part Ⅲ:Optimization of liquid-phase hydrocracking conditions for mixtures of nickel and molybdenum naphthenates and coking studies on the hydrocracked product. AOSTRA, Journal of Research,1988,5:33-48
    [40]Patel. Catalytic process for upgrading of light hydrocarbons by treatment of heavy hydrocarbons with water. US Patent 4743357.1988
    [41]Gregoli. Method of in-situ hydrogenation of carbonaceous material. US. Patent 4501445. Feb.26,1985
    [42]Flora T T, Tsakiri, Sophia K, Upgrading crude oil emulsions. US. Patent 5055175, Oct.8, 1991
    [43]Cordova. Production of oil soluble catalytic precursors. US. Patent 6043182. Mar.28,2000
    [44]范洪富,刘永建,赵晓非.稠油在水蒸气作用下组成变化研究.燃料化学学报.2001,29(3):269-272
    [45]范洪富,刘永建,赵晓非.国内首例井下水热裂解催化降粘开采稠油现场实验.石油钻采工艺.2001,23(3):42-44
    [46]刘永建,范洪富,钟立国等.水热裂解开采稠油新技术初探.大庆石油学院学报.2001,25(3):56-69
    [47]范洪富,刘永建,赵晓非,井下降粘开采超稠油技术研究[J],石油与天然气化工,2001,30(1),p39-40.
    [48]Fan Hongfu, Liu Yongjian, Downhole catalytic upgrades of heavy oil[J],Oil&Gas Journal, 2002,100(11),p60-63
    [49]范洪富,张翼,刘永建,蒸汽开采过程中金属盐对稠油粘度及平均分子量的影响[J],燃料化学学报,2003,31(5),p429-433
    [50]闻守斌,刘永建,宋玉旺,李芙蓉,刘跃俊,硅钨酸对胜利油田超稠油的催化降黏作用[J],大庆石油学院学报,2004,28(1),p25-27
    [51]刘永建,陈尔跃,闻守斌,刘春天,用油酸钼和石油磺酸盐强化辽河油田稠油降粘的研究[J],石油与天然气化工,2005,34(6),p511-512
    [52]陈尔跃,刘永建,闻守斌,甲苯在强化辽河油田稠油催化降黏中的作用[J],大庆石油学院学报,2005,29(6),p38-39
    [53]陈尔跃,刘永建,葛红江,闻守斌,辽河稠油沥青质在催化水热裂解反应中的降解[J],大庆石油学院学报,2005,29(5),p9-11
    [54]陈尔跃,刘永建,闻守斌,辽河稠油中胶质在催化水热裂解反应中的降解[J],石油与天然气化工,2005,35(1),p49-50
    [55]范洪富,梁涛,催化剂对稠油水热裂解反应研究[J],工业催化,2006,14(2),p1-4
    [56]范洪富,刘永建,赵晓非.井下水热催化降粘开采稠油新技术研究.油田化学.2001,18(1):13-16
    [57]赵晓非,刘永建,范洪富,钟立国.稠油水热裂解可行性的研究.燃料化学学报.2002,30(4):381-384
    [58]Hongfu Fan, Yongjian Liu, and Liguo Zhong. Studies on the synergetic effects of mineral and steam on the composition changes of heavy oils. Energy & Fuels.2001,15(6):1475-1479
    [59]范洪富,刘永建,钟立国.油层矿物对蒸气作用下稠油组成与粘度变化的影响.油田化学,2001,18(4):299-301
    [60]范洪富,刘永建,赵晓非等.金属盐对辽河稠油水热裂解反应影响研究.燃料化学学报.2001,29(5):430-433
    [61]赵法军,刘永建,闻守斌.稠油水热裂解催化剂研究进展[J].油田化学,2006,23(3):277-283
    [62]Fan, H. F., Zhang, Y., & Liu, Y.J. The catalytic effects of minerals on aquathermolysis of heavy oils. Fuel.2004; 83:2035-2039.
    [63]Johnson H.S. Bright A. Upgrading of Heavy Hydrocarbonaceous Oil Using CO and Steam. Canada Patent 1195639. Oct.22,1985
    [64]Clough T J. Process for recovering hydrocarbon [P], US Patent,4846274,1989,07,11
    [65]Bruce P. Pelrine, Ewing, N. J. Iron-based ionic liquid catalysts for hydro-processing carbonaceous feeds, US Patent,6139723,2000,10,31.
    [66]李奉孝,王鸿勋主编,赵玉兰副主编,AOSTRA大学研究报告译文汇编(二),沥青化学[M],山东:石油大学出版社,1991,p117-133
    [67]李博,辽河油田催化供氢稠油改质的实验[J],大庆石油学院学报,2005,28(4),p24-26
    [68]樊泽霞,赵福麟,王杰祥,巩永刚,超稠油供氢水热裂解改质降黏研究[J],燃料化学学报,2006,34(3),p315-318
    [69]William C. Richardson. Chemically assisted thermal flood process. US. Patent 6305472, Oct. 23,2001
    [70]Richard. P. Dutta, William C. Mc. Caffrey, Murray R. Gray. Thermal cracking of Athabasca bitumen:influence of steam on reaction chemistry [J],Energy & Fuels,2000,14(2),p671-676
    [71]McFarlane. Process for dispersing transition metal catalytic particles in heavy oil. US. Patent 5916432.Jun.29,1999
    [72]Stuart L. Soled. Hydroprocessing using bulk group VIII catalysts. US. Patent 6162350, Dec. 19,2000
    [73]陈勇,陈艳玲,朱明.过渡金属的有机酸盐对稠油水热裂解降黏反应的催化作用[J].地质科技情报,2005,24(3):75-79.
    [74]Bel grave J D M, Moore R G, and Ursenbach M G. Gas evolution from the aquathermolysis of heavy oil. The Canadan Journal of Chemical Engineering,1994,72:511-516
    [75]Chen, Y. L.; Wang, Y. Q.; Lu, J. Y; Wu, C. The Viscosity Reduction of Nano-Keggin-K3PMo1204o in catalytic aquathermolysis of heavy oil. Fuel.2009; 88:1426-1434.
    [76]夏菲,陈艳玲,吴川,芳基双希夫碱在低温稠油水热催化裂解中的室内研究[J],地质科技情报。2007,26(3):91-94.
    [77]邹长军,黄志宇,罗平亚.[(MoO2)(acac)2]/t-BuOOH/H3PO4催化氧化体系对稠油中重组分的降解作用[J].化工学报,2005.56(5):853-856.
    [78]邹长军,刘超,黄志宇,平亚.2004.离子液体介质中沥青砂内重组分降解过程[J].化工学报,55(12):2095-2098.
    [79]范洪富,李忠宝。离子液体[bmmi]Br · FeCl3改质稠油实验研究[J].石油与天然气化工,2007,36(6):475-477.
    [80]范洪富,李忠宝,梁涛.离子液体催化改质稠油实验研究[J].燃料化学学报,2007,35(1):32-35.
    [81]Babcock. Flourinated solid acid as catalysts for the preparation of hydrocarbon resins. US. Patent 6281309 B1. Aug.28,2001.
    [82]Thomas J C, Santa Monica. Process for recovering hydrocarbon. US. Patent 4846274 Jul.11, 1989.
    [83]Vallejos. Process for down-hole upgrading of extra heavy crude oil. US Patent 5891829.1999
    [84]Rivas O R,Campos R E,Borges L G,et al. Experimental evaluation of transition metals salt solutions as additives in steam recovery processes [Z], SPE 18076,1988, p539-547.
    [85]Van Nes K, Van Westen H A. Aspects of the constitution of mineral oils. Elsevier Publishing Co.New York,1951
    [86]Thompson C J, Dooley J E, Hirsch D E et al.. Analyzing heavy ends of crude. Hydrocarbon Processing,1973, (9):123
    [87]Altgelt K H and Boduszynski M M. Composition and Analysis of Heavy Petroleum Fractions. New York. Marcel Dekker Inc.1994
    [88]Speight J G. Petroleum Chemistry and Refining. Taylor & Francis. Washington D. C..1998
    [89]程玉桥.胜利油田单家寺油区稠油物理化学性质研究.浙江大学硕士学位论文.2002.40-41.
    [90]Chen, Y.; Wang, Y.; Wu, C.; Xia, F. Laboratory Experiments and Field Tests of an Amphiphilic Metallic Chelate for Catalytic Aquathermolysis of Heavy Oil[J],. Energy & Fuels; 2008,22(3):1502-1508.
    [91]吴川,陈艳玲,王元庆,杨超.胜利超稠油催化水热裂解改质降黏研究[J],油田化学,2009,26(2):121-127.
    [92]陈艳玲,王元庆,逯江毅.稠油水热裂解催化降粘研究的进展[J].地质科技情报.2008,27:53-57.
    [93]朱健.稠油热催化裂化降粘室内研究[M].山东大学.2007.
    [94]Analysis of family composition of rock extract and crude oil by TLC-FID. China National Petroleum Corporation,1997,12,31.
    [95]Analysis of family composition of rock extract and crude oil by column chromatography. China National Petroleum Corporation,1995,12,25.
    [96]梁文杰主编.重质油化学[M].东营,石油大学出版社.2000.
    [97]J.A.迪安主编,尚久方等译.兰氏化学手册.北京,科学出版社.1991.
    [98]Schlosberg R H. Chemistry of Coal Conversion[M]. New York:Plenum Press,1985:18.
    [99]Shi, B.P., Wang, Y.C., Lu, B.D., Zhao, X.X. Study on new relationship between viscosity of liquid and temperature[J]. Journal of Tai Yuan University of Science and Technology.2007, 28:500-503.
    [100]Nzvin C P, Amyn S T. A new cubic equaion of state for fluids and fluid mixtures[J]. Ch E Science,1982,37(3):463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700