用户名: 密码: 验证码:
真空紫外反射膜特性及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真空紫外反射镜在太阳物理、宇宙物理、生命科学、同步辐射等高科技领域应用广泛。近年来,随着国民经济的高速发展,科技能力的快速提升,国内相关行业对真空紫外(VUV)光学元件的需求越来越多。对VUV反射镜制作工艺进行系统、深入的研究显得十分必要。
     本课题的目的是研究几种常用薄膜材料在50~200nm波长范围内(VUV波段)的反射特性及相关因素对反射率的影响,在此基础上,为制作高反射率真空紫外反射镜及相关光栅涂层提供优化参数。本文主要包括三个方面的内容:
     1.VUV反射膜反射特性研究
     基于国内外VUV反射镜研究现状,针对不同的应用波长,分别选定Au、Ir作为50-100nm波段反射镜膜材、Al+MgF2作110-200nm波段反射镜膜材。建立了基底为吸收材料时的单层金属膜和双层吸收膜数学计算模型。以光学工程中常用材料熔融石英、K9玻璃及Si为基底,计算了不同厚度的Au膜、Ir膜和Al+MgF2膜在不同基底上的反射率,并确定了最高VUV反射率时所对应的膜厚。
     分别以不同的工艺参数和不同的沉积方法(离子束溅射,电子束蒸发),在K9、石英玻璃和Si基片上镀制了不同厚度的薄膜,在科大国家同步辐射实验室“光谱辐射标准和计量线站”上测试了镀制的反射膜在115-140nm波段上的反射率,系统、深入地研究了其反射特性与各种工艺参数间关系。结果表明:
     1)基片材料对真空紫外反射镜反射率有重要影响。宜以石英或K9玻璃作基底,两者区别不明显,Si明显差。115-140nm波长范围内正入射反射率Au膜达24%,Ir膜近30%,Al+MgF2膜75%;
     2)膜厚对反射率有重大影响。在采用镀前离子清洗的情况下,石英基片上最佳Au膜厚度约为30nm,Ir膜约12nm;K9基片上稍厚(Au:30nm~40nm,Ir:12~18nm);而对Si片,厚膜好;对Al+MgF2膜,Al膜厚度应在60nm以上,MgF2厚度则需根据入射波长优化;
     3)镀膜前用能量适当的离子束对基片进行离子清洗,可明显降低基片表面粗糙度,有益于VUV反射率的提高;
     4)离子束溅射沉积时,溅射离子能量对反射率影响大,存在一最佳值。离子束能量低于此值,反射率明显下降。高于此值,膜反射率几乎不变;
     5)与电子枪热蒸发相比,离子束溅射得到的反射膜晶粒平均尺寸较小,与玻璃基底的附着力好,镀制过程相对简单,膜厚好控制,稳定性、重复性好;
     6)为提高Au膜与基底附着力而使用的过渡层越薄越好。过渡层材料对反射率影响不大;
     7)厚度较薄的膜层对表面具有明显的“均匀化”效应,即粗糙度大的表面覆盖一层薄膜后,粗糙度会得到改善,而光滑表面覆盖一层薄膜后,粗糙度会变差。成膜后的表面粗糙度对反射率影响比基片表面粗糙度要大得多;鉴于这一结果,对基片表面粗糙度提出的要求不必过高,1nm左右即可。
     8)热处理后膜应力有所释放,但晶粒平均尺寸变大,反射率下降。
     9)相对于Au膜,Ir膜获得的VUV反射率较高。就膜-基附着力来看,也以Ir为佳;
     10)镀前溶剂清洗工艺对反射率无明显影响。
     2.反射率计测试误差分析
     对反射率测试装置(反射率计)的测试误差进行了详细分析,有针对性地提出了提高测试效率和测试精度的方法,保证了测试结果的可靠性;
     3.用多重分形谱评价光学表面粗糙度
     针对实验过程中遇到的光学表面粗糙度评价问题,第一次将多重分形谱(MFS)引入光学表面粗糙度评价体系中,以克服常规评价方法下评价值随取样尺寸、位置发生变化的弊端。计算了熔融石英、K9玻璃及Si片的表面的MFS谱线,表明MFS能够区分不同的光学表面状态,受取样点位置、取样尺寸影响小。
     本论文的主要创新点体现在:第一次从理论和实验两个方面全面、系统地研究了各种工艺参数对真空紫外反射率的影响,给出了制作高反VUV反射镜的优化工艺参数;对反射率计的测试误差进行了系统、深入的分析;第一次将多重分形谱(MFS)引入光学表面粗糙度评价体系中,获得了一些有价值的结论。
Vacuum ultraviolet (VUV) reflector has found various applications in many hi-tech fields including solar physics, cosmic physics, life science, and synchrotron radiation. The rapid enhancement of the economical and technological power of our country has made lots of demand for various VUV components including VUV reflector. So it is quite necessary to have a systematical and intensive study on the fabrication of VUV reflector.
     The main purpose of this thesis is to study the reflective performance of several commonly used film material in 50~200 nm wavelength region and the influence of various fabrication parameters on the reflectivity. Based on these work, optimum fabrication parameters can be presented and VUV reflector with high reflectance can be made. The thesis contains three parts of work: 1. Research on the performance of VUV reflective film
     Based on the achievements acquired by other researchers, Au and lr are selected as reflective film material for the wavelength region from 50 nm to 100 nm, and Al covered with MgF2 for the wavelength region from 110 nm to 200 nm. The theoretical models for a single metal layer and a dual-absorbing-Iayer on absorbing substrate were established. The reflectance of Au, Ir, and Al film covered with MgF'2 of different thickness on fused silica, Bk7 glass, and Si wafer substrate, which are commonly used in optical engineering, was calculated, and optimum thickness was therefore determined.
     The different metal films of various thickness were deposited on various substrate with different fabrication parameter and deposition method (ion beam sputtering and electron beam evaporation). Their reflectance in the wavelength region from 115 nm to 140 nm was measured continuously by the reflectometer located in the National Synchrotron Radiation Libratory (NSRL) at the University of Science and Technology of China (USTC). The relationship between the reflective performance of the films and various fabricating parameters was investigated systematically and intensively. The results indicate:
     1) The substrate material has an important impact on the VUV reflectance of the film. Fused silica and Bk7 glass are proved to be suitable substrate materials which shows little difference, while Si wafer is not. In the wavelength region from 115nm to 140 nm, the highest normal incidence reflectance acquired is 24% for Au film, nearly 30% for Ir film, and 75% for Al film covered with MgF2.
     2) The layer thickness has a significant influence on the VUV reflectance of the film. In the case of pre-ion-cleaning, the optimum layer thickness on fused silica is about 30 nm for Au layer, and 12 nm for Ir layer, while on Bk7 glass substrate, a little bit thicker thickness is needed (Au: 30~40 nm, Ir: 12~18 nm). For Si wafer, the thicker the layer, the better the reflectance. As to Al covered with MgF2, the layer thickness of Al should be no less than 60 nm, while that of MgF2 should be optimized according to the incident wavelength.
     3) Bombardment of the substrate with ion beam of suitable energy before deposition can significantly enhance the VUV reflectance.
     4) The sputtering ion energy has a significant influence on the VUV reflectance. There does exist a optimum ion energy. The VUV reflectance will considerably decrease when the sputtering ion beam energy is lower than the optimum, while the higher energy contributes little to the enhancement of the reflectance.
     5) Compared with electron beam evaporation, the reflective film acquired by ion beam sputtering technique has average smaller grain size, better adhesion to the substrate, simpler and stabler deposition process, and easier control of layer thickness.
     6) The binding layer used for the enhancement of adhesion between film and the substrate should be as thin as possible. The material used for binding layer impacts the reflectance little.
     7) A layer of very thin film has a noticeable "averaging" effect on substrate surface, i.e. a rather rough surface could be "smoothened", while a rather smooth surface could be rough after covered with a layer of thin film. The surface roughness of film has much bigger influence on VUV reflectance than that of the substrate. So the surface roughness of 1 nm is reasonable for the substrate when it was grinded, better surface roughness is not necessary.
     8) The annealing of the film does benefit to the release of the tension, but it also causes the increase of average size of the grain and degradation of the reflectance.
     9) Compared with Au film, Ir layer can get higher VUV reflectance. As far as the adhesion is concerned, Ir layer performs better as well.
     10) Different solvent cleaning procedure before deposition has little impact on the VUV reflectance.
     2. Measuring error analysis of the reflectometer
     A detailed measuring error analysis is given to the reflectometer. Some effective measures are taken to ensure the accuracy and reliability of the measurement.
     3. Evaluation of optical surface roughness with multi-fractal spectrum(MFS)
     For the first time MFS was introduced into the evaluation of optical surfaceroughness in order to get rid of some shortcomings such as the variation of the evaluation with sampling size and position, which were generally encountered by conventional evaluation method including power spectrum density (PSD) and root-mean-square (rms) height. The MFS of the surfaces of fused silica, Bk7 glass, and Si wafer substrate were calculated, and the result indicates that MFS can distinguish different surface topographic condition from one another and can be hardly influenced by the sampling size and position.
     The main innovations of this paper include: for the first time the influence of various fabricating parameters on the VUV reflectance was studied theoretical and experimental, and optimum parameters for the fabrication of high reflective VUV layer were given; a intensive measuring error analysis is carried out for the reflectometer, and for the first time MFS was introduced into evaluation of optical surface roughness and some explorative conclusion was drawn.
引文
[1]唐晋发.郑权编著.1984.应用薄膜光学[M],上海:上海科学技术出版社.
    [2]D.L.Windt,W.C.Cash,Jr.,M.Scott,et al.1988.Optical constants for thin filrns of C,diamond,Al,Si,and CVD SiC from 24,A to 1216 A,[J].Appl.Opt.27(2):279-295.
    [3]R.Soufli,E M.Gullikson.1997.Reflectance measurements on clean surfaces for the determination of optical constants of silicon in the extreme ultraviolet-soft-x-ray region[J].Appl.Opt.36(22):5499-5507.
    [4]W.R.Hunter.1982.Measurement of optical properties of rnaterials in the vacuum ultraviolet spectral region[J].Appl.Opt.21(12):2103-2114.
    [5]D.W.Juenker,L.J.LeBlanc,C.R.Martin.1968.Optical properties of some transition metals[J].J.Opt.Soc.Am.58:164-171.
    [6]K.A.Kress,G J.Lapeyre.1970.Optical properties of molybdenum and ruthenium[J].J.Opt.Soc.Am.60:1681-1684.
    [7]G Hass,G F.Jacobus,W.R.Hunter.1967.Optical properties of evaporated iridium in the vacuum ultraviolet from 500 Angstroms to 2000 Angstroms[J].JOSA.57(6):758-762.
    [8]J.T.Cox,G Hass,J.B.Ramsey,et al.1972.Reflectance of evaporated rhenium and tungsten films in the vacuum ultraviol et from 300 to 2000[J].J.Opt.Soc.Am.62:781-785.
    [9]G Hass,J.B.Ransey,W.R.Hunter.1969.Reflectance of semitransparent platinum films on various substrates in the vacuum ultraviolet[J].Appl.Opt.8(11):2255-2260.
    [10]C.J.Powell.1970.Analysis of Optical-and Inelastic-Electron-Scattering Data Ⅲ.Reflectance Data for Beryllium,Germanium,Antimony,and Bismuth[J].J.Opt.Soc.Am.60(2):214-220.
    [11]RitvaA.M.Keski-Kuha 1984.Layered synthetic microstructure technology considerations for the extreme ultraviolet[J].Appl.Opt.23(20):3534-3537.
    [12]R Soufli,E M Gullikson.1997.Reflectance measurements on clean surfaces for the determination of optical constants of silicon in the extreme ultraviolet-soft-x-ray region[J].Appl.Opt.36(22):5499-5507.
    [13]F.J.Galeener.1971.Submicroscopic-Void Resonance:the effect of internal Roughness on optical absorption[J].Physical Review Letters.27(7):421-423.
    [14]J.T.Cox,G.Hass,J.B.Ramsey,W.R.Hunter.1973.Reflectance and Optical Constants of Evaporated Osmium in the Vacuum Ultraviolet from 300 to 2000 A[J].J.Opt.Soc.Am.63:435.
    [15]J.H.Weaver,D.W.Lynch,C.G.Olson.1974.Optical properties of V,Ta,and Mo from 0.1to 35 eV[J].Physical Review B.10(2):501-516.
    [16]D.L.Windt,W.C.Cash,Jr.,M.Scott,et al.1988.Optical constants for thin films of Ti,Zr,Nb,Mo,Ru,Rh,Pd,Ag,Hf,Ta,W,Re,Ir,Os,Pt,and Au from 24 A to 1216 A[J].Appl.Opt.27(2):246-278.
    [17]钟迪生.2001.真空镀膜:材料的选择与应用[M].沈阳:辽宁大学出版社,95-128.
    [18]L.J.LeBlanc,J.S.Farrell,D.W.Juenker.1964.Far-ultraviolet reflectance of several transition metals[J].JOSA.54:956-957.
    [19]J.I.Larruquert,R.A.M.Keski-Kuha 2000.Reflectance Measurements and Optical Constants in the Extreme Ultraviolet for Thin Films of Ion-Beam-Deposited SiC,Mo,Mg,Si,and InSb and of Evaporated Cr[J].Appl.Opt.39(16):2772-2781.
    [20]J.I.Larruquert,J.A.Mndez,J.A.Azndrez.1994.Far-UV reflectance of UHV-prepared Al films and its degradati on after exposure to O_2[J].Appl.Opt.33(16):3518-3522.
    [21]J.I.Larruquert,J.A.Mndez,J.A.Aznrez.1996.Optical constants of aluminum films in the extreme ultraviolet interval of 82 77 nm[J].Appl.Opt.35(28):5692-5697.
    [22]W.R.Hunter.1964.Optical constants of metals in the extreme ultraviolet.Ⅱ.Optical constants of aluminum,magnesium,and indium at wavelengths shorter than their critical wavelengths[J].J.Opt.Soc.Am.54:208-212.
    [23]J.I.Larruquert,J.A.M ndez,J.A.Azn rez.1995.Far UV reflectance measurements and optical constants of unoxidized aluminum films[J].Appl.Opt.34:4892-4899
    [24]R.L.Villa,H.Mendlowitz.1962.Optical constants of aluminum in vacuum ultraviolet[J].Phys.Rev.Lett.9:149 150.
    [25]P.Laporte,J.L.Subtil,M.Courbon,et al.1983.Vacuum-ultraviolet refractive index of LiF and MgF2 in the temperature range 80-300 K[J].J.Opt.Soc.Am 73(8):1062-1069.
    [26]L.R.Canfield,G.Hass,J.E.Waylonis.1966.Further studieson MgF_2-overcoated aluminum mirrors with highest reflectance in the vacuum ultraviolet[J].Appl.Opt.5(1):45-50.
    [27]W.R.Hunter,J.F.Osantowski,G Hass.1971.Reflectance of Aluminum Overcoated with MgF_2,and LiF in the Wavelength,Region from 1600 A to 300 A at Various Angles of Incidence[J].Appl.Opt.10(3):540-544.
    [28]M.W.Williams,R.A.MacRae,E.T.Arakawa 1967.Optical Properties of Magnesium Fluoridein the Vacuum Ultraviolet[J].Journal of Applied Physics 38(4):1701-1705.
    [29]J.T.Cox,G Hass,J.E.Waylonis 1968.Further studies on LiF-overcoated aluminum mirrors with highest reflectance in thevacuum ultraviolet[J].Appl.Opt.7(8):1535-1540.
    [30]E.T.Hutcheson,G Hass,J.T.Cox.1972.Effect of deposition rate and substrate temperature on the vacuum ultraviolet reflectance of MgF_2-and LiF-overcoated aluminum mirrors[J].Appl.Opt.11(10):2245-2248.
    [31]D.A.Patterson,W.H.Vaughan.1963.Influenceof Crystal Surface on the Optical Transmission of Lithium Fluoride in the Vacuurn-Ultraviolet Spectrum[j].JOSA.53(7):851-855.
    [32]V.Dauer.2000.Optical constants of lithium fluoridethin films in the far ultraviolet[J].JOSA B.17(2):300-303.
    [33]R.W.Spriger,D.S.Catlett.1978.Rate and pressure dependence of contaminants in vacuum deposited aluminum films[J].J.Vac.Sci.Tech.15(2):210-214.
    [34]R.B.Gillette,B.A.Kenyon.1971.Proton-induced contaminant film effects on uv reflecting mirrors[J].Appl.Opt.10(3):545-551.
    [35]R.A.M.Keski-Kuha J.F.Osantowski,G M.Blurnenstock,et al.High Reflectance Coatings and Materials for the Extreme Ultraviolet.SPIE Vol.294:2428
    [36]R.A.M.Keski-Kuha,J.I.Larruquert et al.1999.Optical Coatings and Materials for Ultraviolet SpaceApplications,Ultraviolet Optical SpaceAstronomy Beyond HST ASP Conference Series,Vol.164.
    [37]J.I.Larruquert,RitvaA.M.Keski-Kuha 1996.Multilayer coatingswith high reflectance in the EUV,SPIE Conference on EUV,X-Ray,and Gamma-Ray 86 Instrumentation for Astronomy Ⅸ·San Diego,California SPIE 3445:86-95.
    [38]R.A.M.Keski-Kuha,C.M.Fleetwood,J.Robichaud.1997.Performance of high-density cast silicon carbide in the extreme ultraviolet[J].Appl.Opt.36(19):4409-4410.
    [39]R.A.M.Keski-Kuha,J.F.Osantowski,H.Herzig,et al.1988.Normal incidence reflectance of ion beam deposited SiC films in the EUV[J].Appl.Opt.27:2815-2816.
    [40]G M.Blurnenstock,R.A.M.Keski-Kuha,M.L.Ginter.1995.Extreme ultraviolet optical properties of ion-beam-deposited boron carbide thin films,X-Ray and Extreme Ultraviolet Optics,Proc.SPIE.2515:558-564.
    [41]G M.Blumenstock,R.A.M.Keski-Kuha.1994.Ion-beam-deposited boron carbide coatings for the extreme ultraviolet[J].Appl.Opt.33:5962-5963.
    [42]J.I.Larruquert,R.A.M.Keski-Kuha 1997.Multilayer coatings for narrowband imaging in the extreme ultraviolet in EUV.Ⅹ-Ray,and Gamma-Ray Instrumentation for Astronomy Ⅷ,Proc.SPIE 3114:1231-1236.
    [43]J.I.Larruquert,R A.M.Keski-Kuha.1999.Multilayer coatings with high reflectance in the extreme-ultraviolet spectral range of 50 to 121.6 nm[J].Appl.Opt.38:1231-1236.
    [44]R.A.M.Keski-Kuha,C.M.Fleetwood,J.Robichaud.1997.Performance of high density cast silicon carbide in the extreme ultraviolet[J].Appl.Opt.36:4409-4410.
    [45]R.A.M.Keski-Kuha,J.F.Osantowski,D.B.Leviton,et.al,CVD Silicon Carbide Mirrors for EUV Applications,SRIE.2543:173-179.
    [46]R.A.M.Keski-Kuha,J.F.Osantowski,D.B.Leviton,et.al.1997.Chemical vapor deposited silicon carbide mirrors for extreme ultraviolet applications[J].Opt.Eng.36(1):157-161.
    [47]J.B.Kortright,D.L.Windt.1988.Amorphous silicon carbide coatings for extreme ultraviolet optics[J].Appl.Opt.27:2841-2846.
    [48]R.A.M.Keski-Kuha G M.Blumenstock,C.M.Fleetwood,et al.1998.Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings[JJ.Appl.Opt.37(34):8038-8042.
    [49]J.I.Larruquert,R.A.M.Keski-Kuha 2000.Optical properties of hot-pressed B_4C in the extreme ultraviolet[J].Appl.Opt.39(10):1537-1540.
    [50]J.I.Larruquert,R.A.M.Keski-Kuha.2002.Sub-quarter-wave multilayer coatings with high reflectance in the extreme ultraviolet[J].Appl.Opt.41(25):5398-5404.
    [51]J.I.Larruquert,R.A.M.Keski-Kuha 1997.Multilayer coati ngs for narrowband imaging in the extreme ultraviolet" i n EUV,X-Ray,and Gamma-Ray Instrumentation for Astronomy Ⅷ,Proc.SPIE 3114:1231-1236.
    [52]G Hass,W.R.Hunter.1967.Calculated reflectance of aluminum-overcoated iridium in the vacuum ultraviolet from 500 A to 2000A[J].Appl.Opt.6(12):2097-2100
    [1]唐晋发,郑权编著.1984.应用薄膜光学[M],上海:上海科学技术出版社.
    [2]林永昌,卢维强 编著.1990.光学薄膜原理[M],北京:国防工业出版社.
    [3]母国光,战远龄编.1978.光学[M],北京:高等教育出版社.
    [4]Born M.,Wolf E.1999.Principles of Optics(7th edition)[M],England:Cambridge university press:735-790
    [5]H.A.Macleod,Thin-Film Optical Filters[M],Bristol and Philadelphia Institute of Physics Publishing.
    [6]J.I.Larruquert,R.A.M..Keski-Kuha 1996.Multi layer coatings with high reflectance in the EUV,SPIE Conference on EUV,X-Ray,and Gamma-Ray 86 Instrumentation for Astronomy Ⅸ·San Diego,California.SPIE 3445:86-95.
    [7]P.G Verly.2001.Modified Needle Method with Simultaneous Thickness and Refractive-Index Refinement for the Svnthesis of Inhomogeneous and Multilayer Optical Thin Films[J].Appl.Opt.40:5718-5725.
    [8]A.V.Tikhonravov,M.K.Trubetskov,G W.DeBell.1996.Application of the needle optimization technique to the design of optical coatings[J].Appl.Opt.35:5493-5508.
    [9]B.T.Sullivan.1996.Implementation of a numerical needle method for thin-film design[J].Appl.Opt.35:5484-5492.
    [10]O.S.Heavens,H.M.Liddell.1966.Staggered broad-band reflecting multilayers[J].Appl.Opt.5:373-376.
    [11]E.Spiller.1972.Low-loss reflection coatings using absorbing materials[j].AppI.Phys.Lett.20(9):365-367.
    [12]C.Montcalm,P.A.Kearney.1996.Survey of Ti-,B-,and Y-based soft x-ray-extreme ultraviolet multilayer mirrors for the 2- to 12-nm wavelength region[J].Appl.Opt.35(25):5134-5147.
    [13]J.I.Larruquert,R.A.M.Keski-Kuha 1999.Multilayer coatings with high reflectance in the extreme-ultraviolet spectral range of 50 to 121.6 nm[J].Appl.Opt.38:1231-1236.
    [14]J.I.Larruquert.2002.Reflectance enhancement in the extreme ultraviolet and softx rays by means of multilayerswith more than two materials[J].J.Opt.Soc.Am.A,19:391-397.
    [15]M.Yamamoto,T.Namioka.1992.Layer-by-layer design method for soft-x-ray multilayers[J].Appl.Opt.31:1622-1630.
    [16]J.Gautier,F.Delmotte,M.Roulliay,et al.2005.Study of normal incidence of three-component multilayer mirrors in the range 20-40 nm[J].Appl.Opt.44(3):384-390.
    [17]J.I.Larruquert.2001.Reflectance enhancement with sub-quarterwave multilayers of highly absorbing materials[J].J.Opt.Soc.Am.A,18(6):1406-1414.
    [18]A.V.Vinogradov,B.Ya Zeldovich.1977.X-ray and far UV multilayer mirrors principles and possibilities[J].Appl.Opt.16:89-93.
    [19]C.K.Carniglia,J.H.Apfel.1980.Maximum reflectance of multilayer dielectric mirrors in the presence of slight absorption[J].J.Opt.Soc.Am.70:523-534.
    [20]J.F.Meekins,R.G.Cruddace,H.Gursky.1986.Optimization of layered synthetic microstructures for narrowband reflectivity at soft x-ray and EUV wavelengths[J].Appl.Opt.25:2757-2763.
    [21]R.A.M.Keski-Kuha 1984.Layered synthetic microstructure technology considerations for the extreme ultraviolet[J].Appl.Opt.23:3534-3537.
    [22]M.Singh,J.J.M.Braat.2000.Design of multilayer extreme-ultraviolet mirrors for enhanced reflectivity[J],Appl.Opt.39(13):2189-2197.
    [23]E.Spiller,A.Segmuller,J.Rife,et al.1980.Controlled fabrication of multilayer soft-x-ray mirrors[J].Appl.Phys.Lett.,37(11):1048-1050.
    [24]P.Boher,L.Hennet,P.N.Houdy.1990.Three materials soft x-ray mirrors:theory and application in Advanced X-Ray/EUV Radiation Sources and Applications.Proc.SPIE,1345:5134-5147.
    [25]J.I.Larruquert,R.A.M.Keski-Kuha 2002.Sub-quarter-wave multilayer coatings with high reflectance in the extreme ultraviolet[J].Appl.Opt.41(25):5398-5404.
    [26]J.I.Larruquert.2002.Reflectance enhancement in the extreme ultraviolet and soft x rays by means of multilayers with more than two materials[J].J.Opt.Soc.Am.A,19:391-397.
    [27]J.Gautier,F.Delmotte,M.Roulliay,et al.2005.Study of normal incidence of three-component multilayer mirrors in the range 20-40 nm[J].Appl.Opt.44(11):384-390
    [28]M.Yamamoto,T.Namioka 1992.Layer-by-layer design method for soft-x-ray multilayers [J].Appl.Opt.31:1622-1630.
    [29]J.I.Larruquert.2004.Layer-by-layer design method for multilayers with barrier layers:application to Si/Mo multilayers for EUV lithography[J].J.Opt.Soc.Am.A 21:1750-1760.
    [30]T.EJIMA,A.Yamazaki,K.Sudo,et al..Wide Range Reflection Multilayer in 200-25nm Region for Normal Incidence.
    [31]E.Spiller.1976.Reflective multilayer coatings for the far UV region[J].Appl.Opt.15:2333-2338.
    [32]A.V.Vinogradov,B.Y.Zeldovich.1977.X-ray and far UV multilayer mirrors:prindples and possibilities[J].Appl.Opt.16:89-93.
    [33]E.Ritter.1976.Optical film materialsand their applications[J].Appl.Opt.15(10):2318-2328.
    [34]Edward D.Palik,Handbook of Optical Constants of Solids[M],Academic Press,Inc.,1985.
    [35]钟迪生.真空镀膜.材实的选择与应用[M].辽宁大学出版社,2001,11,pp58-160.
    [36]http://www.esrf.eu/computi ng/scienti fidxop2.1/extensions html.
    [1]http://baike.baidu.com/view/239362,htm
    [2]http://www.1hx.net/p_24.htm
    [3]http://www.rmico.com/content/view/101166/
    [4]http://hi.baidu.com/robbysun7/blog/item/ccec7012e72fa153f819b8b6.html
    [5]钟迪生.2001.真空镀膜:材料的选择与应用[M].沈阳:辽宁大学出版社:95-128.
    [6]李云奇.真空镀膜技术与设备设计安装及操作维护实用手册北京:化学工业出版社2006
    [7]付积闿.汪舒娅,顺培夫,唐晋发.1986.真空紫外反射镜的制备及其测量[J].激光与红外.3:30-34
    [8]W.C.Walker,O.P.Rstgi,G L.Weissler.1959.Optical and Photoelectric Properties of Thin Metallic Filmsin the Vacuum Ultraviolet[J].J.Opt.Soc.Am.49(5):471-475
    [9]G B.Irani,T.Huen,F.Wooten.1972.Optical Propertiesof Gold and α-Phase Gold-AluminumAlloys.Phys Rev.B 6(8):2904-2909
    [10]L.G Schulz,F.R.Tangherlini.1954.Optical Constants of Silver,Gold,Copper,and Aluminum.ll.The Index of Refraction n[J].J.Opt.Soc.'Am.44(5):362-368
    [11]L.G Schulz.The Optical Constants of Silver,Gold,Copper,and Aluminuml.The Absorption Coeffident[J].J.Opt.Soc.Am..44(5):357-362
    [12]D.L.Windt,W.C.Cash,Jr.,M.Scott,et al.1988.Optical constants for thin filmsof Ti,Zr,Nb,Mo,Ru,Rh,Pd,Ag,Hf,Ta,W,Re,Ir,Os,Pt,andAu from 24A to 1216A[J].Appl.Opt.27(2):246-278.
    [13]RitvaA.M.Keski-Kuha 1984.Layered synthetic microstructure technology considerations for the extreme ultraviolet[J].Appl.Opt.23(20):3534-3537.
    [14]W.C.VValker,O.P.Rstgi,G L.Weisster.1959.Optical and Photoelectric Properties of Thin Metallic Films in theVacuum Ultraviolet[J].J.Opt.Soc.Am.49(5):471-475
    [15]Marvin J.VVeber,2003.Handbook of optical materials[M].New York:CRC Press
    [16]Horiba Jobin Yvon.1999.Test report:toroidal mirror for the P2b09 beamline.
    [17]刘强,林理彬.2003.提高氧化手介质膜层损伤阈值的研究[J],中国激光,30(7):637-641
    [18]K.E.Torrance,E.M.Sparrow.1967.Theory for off-specular reflection from roughened surfaces[J].JOSA,57(9):1105-1114
    [19]Y.Sun.2007.Statistical ray method for deriving reflection models of rough surfaces[J]JOSA,A,24(3):724-744
    [20]R.L u,Jan J.Koenderink,A.M.L.Kappers 1999.Surface roughness from highlight structure[J].Appl.Opt.38(13):2886-2894
    [21]G Pinto,N.G Nayak.K M Balakrishna and K Siddappa 1994.Verification of incoherent scattering functions at intermediate photon momentum transfer[J].J.Phys.B:At.M ol.Opt.Phys 27:1683-1691.
    [22]H.Giovannini,A.SENTENAC and C.AMRA.1999.Scattering from overcoated rough structures.Application to the reduction of scatteding Part of the EUROPTO Conference on Advances in Optical Interference Coatings Berlin,Germany·May,SPIE Vol.3738.0277-786X/99/$10.00
    [23]Attwood D.T.1999.Soft-X-raysand extreme ultraviolet radiation:principlesand applications[M].London:Cambridge university press 86-91
    [24]H.C.Mertins,F.Schfers,H.Grimmer,et al 1998.WC,W Ti,Ni Ti,and Ni V multilayers for the soft-X-ray range:experimental investigation with synchrotron radiation[J]Appl.Opt.37:1873-1882
    [25]http://www,pcgrate.com
    [26]M.H.Su,J.M.Lu.2006.Investigation of Ar inddent energy and Ar inddent angle effects on surface roughness of Cu metallic thin film in ion assisted deposition[J].Computational Materials Science,38(2):386-394
    [27]Z.Insepov,A.Hassanein,D.Swenson.2006.Computer simulation of surface modification with ion beams[J].Physica C:Superconductivity,441(1-2):114-117
    [28]M.H.Modi,G S.Lodha M.K.Tiwari,S K.Rai,C.Mukharjee,R Magudapathy,K.GM.Nar,R.V.Nandedkar.2005.Ionirradiation damage on tin side surface of float glass[J].Nuclear Instrurnents and Methods in Physics Reseach Section B:Beam Interactions with Materials and Atoms.239(4):383-390
    [29]D.Ni,P.D.Christofides 2005.Dynamics and control of thin film surface microstructure in a complex deposition process[J].Chemical Engineering Science.60(6):1603-1617
    [30]T.Kenmotsu,Y.Yamamura,T.M uramoto,N.Hirotani.2005.Simulation studies on sputtering in rough surface[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms 228(1-4):369-372
    [31]S.G Mayr,Y.Ashkenazy,R.S.Averback.2003.Evolution of thin-film morphologies in metal s during ion beam bombardment[J].Nuclear Instrurnents and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.212:246-252
    [32]M.Zier and W.Hauffe.2003.Computer simulation of the topography evolution on ion bombarded surfaces[J].Nudear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.202:182-187
    [33]M.Mayer.2002.Ion beam analysis of rough thin fil ms[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.194(2):177-186
    [34]R.Kissel,H.M.Urbassek.2001.Sputtering of aAu surface covered with large spherical dusters[J].International Journal of Mass Spectrometry.208(1-3):29-35
    [35]Q.Y.Zhang,T.C.Ma,Z.Y.Pan,J.Y.Tang.2000.The role of energetic atoms in the deposition of Au/Au(001)thin films—a computer simulation study[J].Surface and Coatings Technology.128-129:175-180
    [36]N.Toyoda,N.Hagiwara,J.Matsuo,I.Yamada 2000.Surface smoothing mechanism of gas cluster ion beans[J].Nudear Instruments and Methodsin Physics Research Section B:Beam Interactions with Materials and Atoms 161-163:980-985
    [37]I.Yarnada 1999.Low-energy cluster ion beam modification of surfaces[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms 148(1-4):1-11
    [38]G Gladyszewski,C.Jaouen,A.Dedemy,J.C.Girard,P.Guerin.1998.Ion-assted deposition of Ag(001)/Fe(001)multilayers:interface roughness[J].Thin Solid Films.319(1-2):44-48
    [39]R.S Averback,Mai Ghaly,P.Bellon.1996.Interfadal effectsduring ion beam processing of metats[J].Materials Scianceand Engineering B.37(1-3):Pages 38-48
    [40]唐晋发,顾培夫,刘旭,李海峰.现代光学薄膜技术[M].2006浙江大学出版社
    [41]卢进军、刘卫国.2005.光学薄膜技术[M].西安:西北工业大学出版社
    [42](美)L.B.Freund,S.Suresh著,卢磊译.2007.薄膜材料—应力 缺陷的形成和表面演化[M].北京:科学出版社
    [44]S.Jakobs,A.Duparre,H.Truckenbrodt.1998.Interfacial roughness and related scatter in ultraviolet optical coatings a systematic experimental approach.Appl.Opt.37(7):1180-1193
    [43]唐伟忠著.2003.薄膜材料制备原理技术及应用[M].北京:冶金工业出版社
    [44]S.Jakobs,A.Duparre,H.Truckenbrodt.1998.Interfacial roughness and related scatter in ultraviolet optical coatings:asytematic experimental approach.Appl.Opt.37(7):1180-1193
    [45]Hass G,Jacobus G F.,Hunter W.R.Optical properties of evaporated iridium in thevacuum ultraviolet from 500 Angstroms to 2000 Angstroms[J].Journal of the Optical Sodety of America 57(6):758-762,1967
    [46]H Jaeger,P.D.Mercer,R.G Sherwood.1969.The effect of exposureto air on silver and gold filmsdeposited in ultra-high vacuum[J].Surface,Science,13(2):349-360
    [47]Windt D.L.,Cash W.C.,Scott Jr.et al.Optical constants for thin filmsof Ti,Zr,Nb,Mo,Ru,Rh,Pd,Ag,Hf,Ta,W,Re,Ir,Os,Pt,and Au from 24A to 1216A[J].Applied Optics,27(2):246-278,1988Edward D.Palik,Handbook of Optical Constants of Solids,Academic Press,Inc.,1985.
    [48]Marvin J.Weber,2003.Handbook of optical materials[M].Boca Rato,CRC PRESS:
    [49]W.R.Hunter.Optical constants of metals in the extrerne ultraviolet.Ⅱ.Optical constants of aluminum,magnesium,and indium at wave engths shorter than their critical wavelengths[J].J.Opt.Soc.Am.1964.54:208-212.
    [50]Jose A.Medez,Juan I.Larruquert,JoseA.Aznerez.Preservation of far-UV aluminum reflectance by means of overcoating with C60 films[J].Appl.Opt.2000.39(1):149-156.
    [51]J.I.Larruquert,J.A.Mendez,J.A.Aznarez.Far-UV reflectance of-UHV prepared AI films and its degradation after exposure to O2[J].Appl.Opt.1994.33(16):3518
    [52]R.P Madden,L.R.Canfield,G Hass On the vacuum-ultraviolet reftectance of evaporated aluminum beforeand during oxidation[J].J.Opt.Soc.Am.1963.53:620-625.
    [53]H.Ehrenreich,H.R.Philipp,B.Segall.Optical properties of aluminum[j].Phys Rev.1963.132:1918-1928.
    [54]R.C.Vehse,E.T.Arakawa,J.L.Stanford.Normal-incidence reflectance of aluminum films in thewavetength region 800-2000[J].J.Opt.SOc.Am.1967.57:551-552.
    [55]R.W Ditchburn,F.R.S Freeman,G H.C.Freeman.The optical constants of aluminium from 12 to 36 eV[J].Proc.R.Soc.London Set.A.1966.294:20-37.
    [56]H.J.Hagemann,W.Gudat,C.Kunz.Optical constants from the far infrared to theX-ray region:Mg,AI,Cu,Ag,Au,Bi,C,and AI203[J].DESY report SR-74 7.Hamburg.1974.
    [57]R.LaVilla,H.Mendlowitz.Optical constants of aluminum in vacuum ultraviolet[J].Phys.Rev.Lett.1962.9:149 150.
    [58]E.Shiles,T.Sasaki,M.Inokuti,D.Y.Smith.Self-consistency and sum-ruletests in the Kramers Kronig analysis of optical data:applicationsto aluminum[J].Phys Rev.B 22.1980.1612-1628.
    [59]A.N.扎伊德尔,E.Y a希赖德著,李孝昌 张碧华译,真空紫外光谱学.成都:成都科技大学出版社.1990:p58-71.
    [60]R.P.Madden,L.R.Canfield,G Hass On thevacuum-ultraviolet reflectance of evaporated alumihum before and during oxidation[J].J.Opt.Soc.Am.1963.53:620-625.
    [61]G Hass,J.E.Waylonis Optical Constants and Reflectance and Transmittance of Evaporated Aluminum in the Visible and Ultraviolet[J].J.Opt.Soc.Am.1961.51:719.
    [62]G Hass,W.R.Hunter,R.Tousey.Reflectance of evaporated aluminum in thevacuum ultraviolet[j].J.Opt.Soc.Am.1956.46:1009-1012.
    [63]J.I.L arruquert,J.A.M ndez,J.A.Azn rez.Optical constants of aluminum films in the extreme ultraviolet interval of 82-77 nm.Appl.Opt.1996.35:5692-5697
    [64]M.W.Williams,R.A.MacRae,E.T.Arakawa Optical properties of rnagnesium fluoride in the vacuum ultraviolet[J].J.Appl.Phys.1967.38:1701-1705.
    [65]R Kato.Optical constants of LiF in the extreme ultraviolet[j].J.Phys Soc.Jpn.1961,16:1476.
    [66]D.M.Roessier.Optical constants of magnesium oxideand lithium fluoridein the far ultraviolet[j].J.Opt.Soc.Am.1967.57:835-836.
    [67]P.Laporte Refractive index of LiF from 105 to 200 nm[J].J.Opt.Soc.Am.1982.72:1558-1559.
    [68]J.T.Cox,G Hass,J.E.Waylonis.Further studies on LiF-overcoated aluminum mirrors with highest reflectance in the vacuum ultraviolet[J].Appl.Opt.1968.7:1535-1539.
    [69]D.W.Angel,W.R.Hunter,R.Tousey,G Hass Extreme ultraviolet reflectance of LiF-coated aluminum mirrors[j].J.Opt.Soc.Am.1961.51:913-914.
    [70]D.A.Patterson.Influence on crystal surface on the optical transmi ssi on of lithium fluoride in thevacuum ultraviolet spectrum[j].J.Opt.Soc.Am.1963.53:851-855.
    [71]T.L.Haltom,E.T.Arakawa,M.W.William& E.Kretschmann.Refractiveindex of LiF filmsasa function of time[J].Appl.Opt.1979.18:1233-1236.
    [72]U.Kaiser,N.Kaiser,R Weissbrodt,U.Mademann,E.Hacker,H.Muller.Structure of thin fluoride filmsdeposited on amorphous substrates[J].Thin Solid Films 1992.217:7-16.
    [73]D.M.Roessler.Electronic spectrum of crystalline lithium fluoride[J].J.Phys Chem.Solids.1967.28:1507-1515.
    [74]J.T.Cox,G Hass,and J.E Waylonis Further studieson LiF-overcoated aluminum mirrors with highest reflectance in the vacuum ultraviolet[J].Appl.Opt.1968.7:1535-1539.
    [75]K.K.Rao,T.J.Moravec,J.C.Rife,R N Dexter.Vacuum ultraviolet reflectivitiesof LiE NaF,and KF[J].Phys Rev.B.1975.12:5937-5950.
    [76]D.M.Roessler.Electronic spectrum of crystalline lithium fluoride[J].J.Phys Chem.Solids.1967.28:1507-1515
    [77]P Laporte,J.L.Subtil,M.Courbon,and M.Bon Vacuum-ultraviolet refractive index of LiF and MgF2 in the temperature range 80-300 K[J].J.Opt.SOc.Am.1983.73:1062-1069.
    [78]M.R.Adriaens.Improved LiF and MgF2 overcoated aluminum mirrors for vacuum ultraviolet astronomy[J].Appl.Opt.1971.10:958-959.
    [79]E T.Hutcheson,G Hass,J.T.Cox.Effect of deposition rate and substratetemperature on the vacuum ultraviolet reflectance of MgF2 and LiF-overcoated aluminum mirrors[J].Appl.Opt.1972.11:2245-2248.
    [80]W.R.Hunter,J.F.Osantowski,G Has& Reflectance of aluminum overcoated with MgF2and LiF in the wavelength region from 1600 to 300 at various angles of incidence[J].Appl.Opt.1971.10:540-544.
    [81]M.F.Peree,J.I.Larruquert,J.A.Aznerez,A.Pons,J.A.Mendez.Vacuum ultraviolet coati ngs of Al protected with MgF2 prepared both by ion-bean sputtering and by evaporati on[J].Appl.Opt.2007.46(22):4871-4878
    [82]J I.Larruquert,J.A.M ndez,J.A.Azn rez.Far UV reflectance measurements and optical constants of unoxidized aluminum films[J].Appl.Opt.1995.34:4892-4899.
    [83]G Hass,W.R.Hunter,R.Tousey.Influence of purity,substrate temperature,and aging conditionson the extreme ultraviolet reflectance of evaporated aluminum[J].J.Opt.Soc.Am.1957.47:1070.
    [84]G Hass.R.Tousey.Reflecting coatings for theextrerne ultraviolet[J].J.Opt.SOc.Am.1959.49:593.
    [85]E.T.Hutcheson,J T.Cox,G Hass,W.R Hunter.Monitoring the thickness of thin MgF2and LiF filmson Al by reflectance measurements using the 1216-A lineof hydrogen[J].Appl.Opt.1972.11:1590.
    [86]G Has& W.R.Hunter.Reflection polarizers for the vacuum ultraviolet using Al and MgF2mirrorsand an MgF2 plate(TE)[J].Appl.Opt.1978.17:76.
    [87]P.H.Berning,G Has& R.P.Madden.Reflectance-increasing coatings for thevacuum ultraviolet and their applications[J].J.Opt.Soc.Am.1960.50:586.
    [88]W.R.Hunter,J.F.Osantowski,G Hass.Reflectance of aluminum overcoated with MgF2and LiF in the wavelength regi on from 1600 Ato 300 A at various angles of inddence[J].Appl.Opt.1971.10:540.
    [89]M.Yang,A.Gatto,N.Kaiser.Highly reflecting aluminum-protected optical coatings for the vacuum-ultraviolet spectral range[J].Appl.Opt.2006.45(1):178-183.
    [90]G Hass Filmed surfaces for reflecting optics[J].J.Opt.Soc.Am.1955.45:945-
    [91]刘颖,李福田.紫外-真空紫外波段的Al+MgF2膜[J].光学精密工程.2001.9(2):165-168
    [92]于铨林.用于真空紫外的特殊膜层[J].光学仪器,1981,01:72-80
    [93]Horiba Jobin Yvon.2001.Test report:Grating P2b05-02G-1200 l/mm.
    [94]R.Abermann.Internal stress of vapour-deposited aluminium on aluminium substrate films:Effect of O2 and water incorporated in the substrate[J].Thin Solid Films,1990.18(2);385-394
    [95]M.J.Verkerk,W.A.M.C.Brankaert.Effects of water on the growth of aluminium films deposited by vacuum evaporation[J].Thin Solid Films,1986.139(1):77-88
    [1]阿特伍德D.著,张杰等译.软X射线与极紫外辐射的原理和应用[M].北京:科学出版社,2003:86-91
    [2]Mertins H.C.,Schfers F.,Grimimer H.et al.W C,W Ti,Ni Ti,and Ni V multilayers for the soft-X-ray range:experimental investigation with synchrotron radiation[J].Applied Optics,1998,37:1873-1882.
    [3]袁长良 丁志华.表面粗糙度及其测量[M].北京:机械工业出版社.1989.
    [4]梁国民.表面光洁度的测量[M].北京:中国农业机械出版社.1983.
    [5]丁志华.公差合理选用与正确标注[M].北京:国防工业出版礼.1991:152-180
    [6]周海 刘岚岚 赵熙萍.表面粗糙度新国标的评定参数及其应用[J].机械工程帅.2003,8:83-85
    [7]廖念钊.互换性与技术测量[M].北京:中国计量出版社,1988.
    [8]王先逵.机械制造工艺学[M].北京:机械工业出版社,1995.
    [9]薛彦成.公差配合与技术测量[M].北京:机械工业出版社,1999.
    [10]甘永力.几何量公差与检测[M].上海:上海科学技术出版社.2000.
    [11]毛起广.表面粗糙度的评定和测量[M].北京:机械工业出版社.1991:23-70
    [12]Digital Instruments,Veeco Metrology Group,Scanning Probe Microscopy Training Notebook.V 3.0
    [13]程晓辉 赵洋.光学纳米测量方法及发展趋势[J].光学技术.1999,5(3):73-77.
    [14]杨甬英 陆春华 梁蛟等.光学元件表面缺陷的显微散射暗场成像及数字化评价系统[J].光学学报.2007.27(6):1031-1038.
    [15]P.Klapetek,I.Ohlidalb,J.Bilek.Influence of the atomic force microscopetip on the multifractal analysis of rough surfaces Ultramicroscopy.2004,102:51-59
    [16]李成贵 董申.表面粗糙度的光学测量方法[J].国外计测.2000,20(2):28-32
    [17]包学诚 周志尧.非接触式表面微观形貌光学测量技术的进展[J].现代科学仪器.1999,6:8-10.
    [18]徐德衍 林尊琪.光学表面粗糙度研究的进展与方向[J].光学仪器.1996,18(2):35-41
    [19]王更新.光学式表面粗糙度计测技术发展动向[J].航空计测技术.1994,14(3):40-43
    [20]尼启良,陈波.散射法表面粗糙度测量[J].光学精密工程.2001,9(2):151-154
    [21]李家文,陈宇航.黄文浩.AFM扫描参数对表面粗糙度测量的影响分析[J].电子显微学报.Journal of Chinese Electron Microscopy Society.2007,226(11):32-35.
    [22]李剑白 李达成 李小芸等.原子力显微镜测试光学超光滑表面微轮廓的研究[J].光学学报.2000.20(11):1533-1537.
    [23]冯斌 王建华.表面形貌光学法测量技术[J].计量与测试技术.2005,32(6):4-6.
    [24]冯斌 王建华.用于表面微观形貌测量的光学方法[J].工具技术.2005,39(11):71-75.
    [25]周肇飞 王世华.同轴式高分辨率激光轮廓仪[J].仪器仪表学报.1994,15(3):250-254.
    [26]高宏 李庆祥等.高分辨率光学轮廓仪[J].仪器仪表学报,1995,16(2).
    [27]王富生 谭久彬.表面微观轮廓的高分辨率光学测量方法[J].光学精密工程.2000.8(4):309-314.
    [28]周明宝.林大键.微结构表面形貌的测量[J].光学精密工程,1999,6.
    [29]罗忠生 杨建坤 张美敦.光学外差法检测超光滑表面粗糙度[J].上海交通大学学报.33(1):53-56
    [30]梁嵘 李达成.在线测量表面粗糙度的共光路激光外差干涉仪[J].光学学报.1999,19(7):958-961.
    [31]杨甬英 卓永模.超光滑表面无损检测轮廓仪[J].光子学报.1999,28(4):371-373.
    [32]张鄂.几何量测量仪器的新进展[J].航空计测技术.1995,15(1):3-9.
    [33]谢峰 李健林.光针式轮廓仪的研制[J].现代计量测试.1999,(2):10-14.
    [34]高宏 李庆祥.高分辨率光学轮廓仪[J].仪器仪表学报.1995.16(2):135-139.
    [35]王晓飞 罗鸿逵 郭鸿北.表面形貌的全息式非接触光学测量方法[J].北方交通大学学报.1998,22(4):79-82.
    [36]王洪祥 董申 梁迎春等.超精密加工表面微观形貌的光学测量方法[J].工具技术.1999,33:32-35.
    [37]徐建强 王蕴珊.大曲率表面物体形貌的光学检测方法研究[J].光电子与激光,1998,9(4):322-325.
    [38]张华,乇文,庞媛媛.光学表面超精密加工技术[J].光学仪器.2003.25(3):47-51.
    [39]高志山 陈进榜.激光损伤光学表面的检测研讨[J].激光技术.2000,24(3):185-188.
    [40]杨甬英 卓永模 杨明建.用于超光滑表面无损检测的光学轮廓仪[J].光电工程.1999,126(6):12-16.
    [41]李成贵 董申 强锡富.三维表面粗糙度的均方根斜率评定[J].仪器仪表学报.1999,20(6):644-647
    [42]李成贵 沈国帅.三维粗糙表面的高阶谱分析[J].航空精密制造技术.2003,39(5):26-28
    [43]李成贵 石照耀.三维粗糙表面的谱矩特征[J].北京工业大学学报.2003,29(4):406-410
    [44]王贵林 李圣怡 戴一帆.光学表面的分形特点与模拟表征算法[J].国防科技大学学报.2003,25(4):72-75
    [45]曾文涵 高咏生 谢铁邦等.三维表面粗糙度高斯滤波快速算法[J].计量学报.200324(1):10-13
    [46]杨芊.表面粗糙度及表面形状的测量与描述[J].中国计量.1998,07:47-48
    [47]葛世荣.粗糙表面的分形特性与分形表达研究[J].摩擦学学报.1997.17(1):73-80
    [48]贺林 朱军.粗糙表面接触分形模型的提出与发展[J].摩擦学学报.1996,16(4):378-384
    [49]袁长良 李成贵 刘延启.表面微观形貌的分形表征及模拟[J].中国机械工程.1997,8(5):78-80
    [50]廖小云 雷闻宇.基于分形的机加工零件表面几何精度与性能分析[J].重庆大学学报.1999,22(1):18-23
    [51]D.S,Hallp.Fractal analysis of surface roughness using spatial data[J].Journal Of The Royal Statistical Society Series B.1999,61:3-37.
    [52]TEH F.Nanotribology and fractal analysis of ZnOthin films using scanning probe microscopy[J].Journal of Physics D:Appl.Phys 2003,36:878-883.
    [53]Y.E Gao,A.F.Bower and K.S.Kim.Some issues of rough surface contact plasticity at micro- and nano-scales[J].Materials Research Society Symposium Proceeding.2005,841:R7.3.1-6
    [54]A.Beaudryn,T.D.Milster.Imaging properties of a patterned rough surface:effects of roughness correlation and partial coherence[J].Optical Engineering.2005,44(7):078001-1-8
    [55]B.N.J.Persson,O.Aibohr,U.Tartaglino et al.On the nature of surface roughness with application to contact mechanics,sealing,rubber friction and adhesion[J],Journal of Physics Condensed Matter.2005,17:R1-R62.
    [56]D.A.Lange,H.M.Jennings,S.Shah.Relationship between fracture surface roughness and fracture behavior of cement paste and mortar[J],Journal of theAmerican Ceramic Society.1995,76(3):589-597.
    [57]J.Hu,N.Song,G L imin.Roughness effects on the reflectance in the design of a soft X-ray multi-layer mirror[J].Optics and Recision Engineering.2004:12(4):380-385
    [58]N.Kobayashi,Y.Kobayashi.In-situ optical monitoring of surface morphology and stoichiometry during GaN metal organic vapor phase epitaxy[J].Applied Surface Science 2000(159-160):398-404
    [59]K.Haberlanda,M.Zornc,A.Kleinc,et al.In-situ determination of interface roughness in MOVPE-grown visible VCSELs by reflectance spectroscopy[J].Journal of Crystal Growth 2003(248):194-200
    [60]H.Parviainen,K.Muinonen.Rough-surface shadowing of self-affine random rough surfaces[J].Journal of Quantitative Spectroscopy & RadiativeTransfer(JQSRT),2007,in press,
    [61]R.M.Patrikar.Modeling and simulation of surface roughness.Applied Surface Science[j].2004,228(1-4):213-220
    [62]R.E.Tanner,A.Szekeres,D.Gogova and K.Gesheva.Study of the surface roughness of CVD-tungsten oxide thin films[J].Applied Surface Science.2003,218(1-4):163-169.
    [63]J.J.Wu.Simulation of rough surfaceswith FFT[J].Tribol.2000(33):47-58.
    [64]L.Lai,E.A.Irene Area evaluation of Microscopically rough surface[J].J.Vac.Sci.Technol.B 1999(17):33-39.
    [65]O.Filies,O.Boling,K.Grewer,J.Lekki,M.Lekka,Z.Stachura and B.Cleff.Surface roughness of thin layers--a comparison of XRR and SFM measurements.Applied Surface Science[J].1999,141(3-4):357-365.
    [66]P.G Evans,A.Passian and T.L.Ferrell.A spectroscopic investigation of the shape dependency of gold nanoparticles grown on roughened surfaces.UItramicroscopy[J].2007,107(10-11):1012-1019.
    [67]M.Zou,B.Yu,Y.Feng,et al.A Monte Carlo method for simulating fractal surfaces Physica A:Statistical Mechanics and itsAppl ications[J].In Press,Uncorrected Proof,Available online,2007.
    [68]M.Su,J.Lu.Investigation of Ar incident energy andAr incident angle effects on surface roughness of Cu metallic thin film inion assisted deposition[J].Computational Materials Science.2006,38(2):386-394.
    [69]S.Jha,V.K.Jain.Modeling and simulation of surface roughness in magnetorheological abrasive flow finishing(MRAFF)process[J].Wear.2006,261(7-8):856-866.
    [70]Z.Insepov,A.Hassanei n,D.Swenson.Computer simulation of surface modification with ion beams.Physica C:Superconductivity[J].2006,441(1-2):114-117.
    [71]J.N.Ding,J.Chert,J.C.Yang.The effects of surface roughness on nanotribology of confined two-di mensional films[J].VVear.2006,260(1-2):205-208.
    [72]D.Ni,P.D.Christofides.Dynamics and control of thin film surface microstructure in a complex deposition process[J].Chemical Engineering Science.2005,60(6):1603-1617.
    [73]B.Bhushan,S.Venkatesan.Effective mechanical properties of layered rough surfaces[J].Thin Solid Films.2005,473(2):278-295
    [74]T.Kenmotsu,Y.Yarnamura,T.M urarnoto and N.Hirotani.Simulation studieson sputtering in rough surface[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms 2005,228(1-4):369-372
    [75]P.K lapetek,I.Ohlidal,J.Bilek.Influence of the atomic force microscope tip on the multifractal analysisof rough surfaces[J].Ultramicroscopy.2004,102(1):51-59.
    [76]S.G Mayr,Y.Ashkenazy and R.S.Averback.Evolution of thin-film morphologies in metals during ion beam bombardment[J].Nudear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms 2003,212:246-252.
    [77]R.E.Tanner,A.Szekeres,D.Gogova and K.Gesheva.Study of the surface roughness of CVD-tungsten oxide thin films[j].Applied Surface Science.2003,218(1-4):163-169.
    [78]Y.Kaneko,Y.Hiwatari,K.Ohara and T.Muakami.Computer simulation of thin film growth with defect formation[J].Surfaceand Coati ngs Technology.2003,169-170(2):215-218
    [79]M.Zier and W.Hauffe Computer simulation of the topography evolution on ion bombarded surfaces[J].Nuclear Instrurnents and Methods in Physics Research,Section B:Beam Interactions with Materials and Atoms.2003,202:182-187.
    [80]G Gladyszewski,C.Jaouen,A.Declemy,J.C.Girard and P.Guerin.Ion-assisted deposition of Ag(001)/Fe(001)multilayers interlace roughness[J].Thin Solid Films 1998,319(1-2):44-48.
    [81]M.Mayer.Ion bearn analysis of rough thin films[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with M aterials and Atoms,2002,194(2):177-186.
    [82]R.Kissel,H.M.Urbassek.Sputtering of aAu surface covered with large spherical clusters[J].International Journal of Mass Spectrometry.2001,208(1-3):29-35.
    [83]H.N G VVadley,X.Zhou,R.A.Johnson and M.Neurock.Mechanisms,models and methods of vapor deposition[J].Progress in Materials Science.2001,46(3-4):329-377.
    [84]N.Toyoda,N.Hagiwara,J.Matsuo and I.Yarnada Surface smoothing mechanism of gas cluster ion beans[J].Nud ear Instrurnents and Methodsin Physics Research Section B:Beam Interactions with Materials and Atoms 2000,.161-163:980-985.
    [85]O.Filies,O.Boling,K.Grewer,J.Lekki,M.Lekka,Z.Stachura and B.Cleff.Surface roughness of thin layers--a comparison of XRR and SFM measurements[J].Applied Surface Science.1999,141(3-4):357-365.
    [86]I.Yamada Low-energy duster ion beam modification of surfaces[J].Nuclear Instruments and Methodsin Physics Research Section B:Beam Interactions with Materials and Atoms 1999,148(1-4):1-11.
    [87]R.Behrisch,S.Grigull,U.Kreissig and R.Grotzschel.Influence of surface roughness on measuring depth profilesand the total amount of implanted ions by RBS and ERDA[J].Nuclear Instruments and Methods in Physics Research Section B:Bean Interactions with Materials and Atoms.1998,136-138:628-632.
    [88]R.M.Ribeiro,M.M.D.Ramos,A.M.Stoneham and J.M.C.Pires.Modelling of surface evaporation by laser ablation[J].Applied Surface Science.1997,109-110:158-161.
    [89]N Almqvist.Fractal analysis of scanning probe microscopy images[J].Surface Science.1996,355(1-3):221-228.
    [90]R.S.Averback,M.Ghaly and P.Bellon.Interfacial effectsduring ion beam processing of metals[J].Materials Science and Engineering B,1996,37(1-3):38-48.
    [91]S.W.Min,S P.Lim and K.S.Lee.A fractal surface and its measurement by computer simulation[J].Optics& Laser Technology.1995,27(5):331-333.
    [92]N.P.Barradas,J.C.Soares M.F.da Silva F.paszti and E.Szilagyi.Study of multilayer substrate surface roughness usi ng RBS with improved depth resol ution[J].N udea Instruments and Methods in Physics Research Section B:Beam Interactionswith Materials and Atoms 1994,94(3):266-270.
    [93]H.Fujii,T.Asakura and Y.Shindo.Measurement of surface roughness properties by using image speckle contrast[J].J.Opt.Soc.Am.1976,(66):1217-1222
    [94]B.J.Pernick.Surface roughness measurernents with an optical Fourier spectrum analyzer[J].Appl.Opt.1979,18(6):796-
    [95]K.E.Torrance and E.M.Sparrow.Theory for off-specular reflection from roughened surfaces[j].JOSA,57(9):1105-1114.
    [96]Y.Sun Statistical ray method for deriving reflection models of rough surfaces[J].J.Opt.Soc.Am.A 2007,24(3):724-744
    [97]Rong Lu,Jan J.Koenderink,andAstrid M.L.Kappers Surface roughness from highlight structure[j].Appl.Opt.1999,38(13):2886-2894
    [98]王洪祥.用于超精密加工表面形貌测量的几种光学方法[J].航天工艺.1999.3:3-7
    [99]杨练根等.表面形貌的Motif评定方法及其发展[J].中国机械工程,2002,13(21):1862-1864.
    [100]Fahl C.F.Motif Combination-a new approach to surface profile analysis[j].Wear,1982,83:165-179.
    [101]李伯奎 刘远伟.表面粗糙度理论发展研究[J].工具技术.2004,38(1):63-67.
    [102]费斌,王海容,蒋庄德.机械加工表面分形特性的研究[J].西安交通大学学报,1998(5)
    [103]J.M.Elson,J.M.Bennett.Calculation of the power spectral density from surface profile date[J].Appl.Opt.1995,34(1):201-208
    [104]C.J.Walsh,A.J.Leistner,B.F.Oreb.Power Spectral Density Analysis of Optical Substrates for Gravitational-Wave Interferometry[J].Appl.Opt.1999,38(22):4790-4801
    [105]E L.Church.Fractal surface finish.Appl.Opt.1988,27(8):1518-1526.
    [106]S Jakobs,A.Duparre,H.Truckenbrodt.Interfacial Roughness and Related Scatter in Ultraviolet Optical Coatings A Systematic Experimental Approach[J].Appt.Opt.1998,37(7):1180-1193.
    [107]H.Kadono,T.Asakura,and N.Takai.Roughness and correlation-length determi nation of rough-surface objects usi ng the speckle contras[J]t.Appl.Phys.B 1987,44:167-173).
    [108]O.V.Angelsky,D.N.Burkovets,A.V.Kovalchuk,and S.G Hanson.Fractal Description of Rough Surfaces[JJ.Appl.Opt.2002,41(22):4620-4629.
    [109]J.M.Bennett,J.Jahanmir,D.T.Hobbs,J.C.Podlesny,and T.L.Baiter.Scanning force microscope as a tool for studying optical surfaces[J].Appl.Opt.1995,34(1):213-230.
    [110]J.Borrull,A.Duparre,and E.Quesnel.Procedure to Characterize Microroughness of Optical Thin Films:Application to Ion-Beem-Sputtered Vacuum-Ultraviolet Coatings[J].Appl.Opt.2001,40(13):2190-2199.
    [111]高志山,陈进榜,何勇,张国安.吴新民.波面功率谱密度中频波段的干涉测试研究.中国激光[J].2000.27(4):327-331.
    [112]任寰,卓志云,蒋晓东等.波前功率谱密度函数评价方法探讨[J].强激光与粒子束.2002,14(2):279-282.
    [113]张蓉竹,蔡邦维,杨春林等.功率谱密度的数值计算方法[J].强激光与粒子束.2000,12(6):661-664.
    [114]于瀛洁,李国培.关于光学元件波面测量中的功率谱密度[J].计量学报.2003,24(2):103-107.
    [115]沈卫星,徐德衍.强激光光学元件表面功率谱密度函数估计[J].强激光与粒子束.2000.12(4):392-396.
    [116]A.D upaTe,J.Ferre-Borrull,S.Gliech,et al.Surface characterizati on techniques for determining the root-rnean-square roughness and power spectral densities of optical components[J].Appl.Opt.2002,41(1):154-171
    [117]王占山.超光滑表面评价问题禄探[C].2006年光学测量技术讲座及研时会文集.2007:36-44
    [118]B.B.Mandelbrot.How Long Is the Coast of Britain?Statistical Self-Similarity and Fractional Dimension[J].Science.1967,156:636-638.
    [119]B.B.Mandelbrot,P.Pfeifer,O.Biham,O.Malca,D.A.Lidar,and D.Avnir.Is Nature Fractal? Science[j].1998,279:783
    [120]李成貴,袁长良.双分形表面的粗糙度表征及参数计算[J].计量学报.1996,17(4):246-250.
    [121]徐小刚,欧宗瑛.机械表面的分形及维数计算[J].润滑与密封.1998,2:53-55
    [122]全书海,彭静,柴苍.机加工的多重分形表面模拟及维数计算[J].武汉汽车工业大学学报.2000.22
    [123]孙霞,吴自勤.规则表面形貌的分形和多重分形描述[J].物理学报.2001,50(11):2126-2130
    [124]孙霞 熊刚 傅竹西等.ZnO薄膜原子力显微镜图像的多重分形谱[J].物理学报.2000.49(05):0854-862
    [125]吴自勤.王兵.薄膜生长[M].北京:科学出版社.2000:290-305
    [126]孙霞.吴自勤.分形原理及应用[M].合肥:中国科学技术大学出版社.2003:53-88
    [127]张济中.分形[M].北京:清华大学出版社.1995:363-373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700