用户名: 密码: 验证码:
反射式强度调制型光纤传感孔内表面粗糙度检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面粗糙度是描述表面微观形貌最常用的参数之一,是表面质量的直接反映,它在很大程度上影响和决定着零部件的使用性能,这种影响作用在机械、电子、生物医学和光学等诸多领域都有重要体现。近几十年来表面粗糙度测量问题一直是学术界重要的研究课题之一,随着产业发展的推动和新技术的引入,各领域内发展出许多新的测量方法。本文对各类典型的表面粗糙度测量方法进行了综述分析,针对目前内表面粗糙度测量技术的研究现状和反射式强度调制型光纤传感器(Reflective Intensity Modulation Fiber Optical Sensor, RIM-FOS)测量表面粗糙度存在的主要问题,以Φ5mm、Φ8mm和Φ10mm的孔为研究对象,提出了一种基于新结构的RIM型光纤内表面粗糙度传感器的测量方法,能够实现较小尺寸的孔内表面粗糙度的非破坏性测量。
     本文对RIM-FOS的工作原理进行了深入的理论研究,推导了一定假设条件下单光纤对的光强调制函数,从理论上分析了RIM-FOS强度调制特性曲线的主要影响参数,并对强度调制特性曲线的主要特性参数进行了解释,指出了表面粗糙度测量应用对应的目标特性。根据RIM-FOS强度调制特性的计算机仿真分析结论,确定了RIM型光纤表面粗糙度传感器设计的基本参考原则,设计了一种“1入12出”的双层同轴结构的光纤表面粗糙度传感器(传感器I)。利用微反射棱镜对传感器I的传感头进行结构改进,研制出一种RIM型光纤内表面粗糙度传感器(传感器II)。
     在RIM-FOS强度调制特性的建模研究中,光纤出射光强的分布假设若与实际情况不符,会直接影响模型的正确性和准确性。本文推导了光纤出射光强符合高斯分布假设下的单光纤对光强调制函数,并在反射面为理想镜面条件下建立了传感器I的强度调制模型。深入研究粗糙表面的散射特性,基于Beckmann的散射几何模型,推导了粗糙表面的光强调制函数。立足本文设计的双路输出的光纤表面粗糙度传感器,给出了RIM-FOS测量表面粗糙度的理论模型,可以实际指导表面粗糙度测量。最后针对孔内侧表面的测量问题,讨论了工作距离控制和传感头偏心等问题对测量结果的影响,为孔内表面粗糙度的测量提供了技术指导。
     基于理论分析的结论,本文对传感器I和传感器II的强度调制特性进行了实验研究,分析了两个传感器与表面粗糙度测量应用相关的特性,验证了光纤表面粗糙度传感器设计原则的合理性。通过传感器I和传感器II强度调制特性曲线的对比分析,实验研究了微反射棱镜对传感器应用特性的影响,结果表明传感器II在表面粗糙度测量方面有良好的应用能力。通过大量的实验,重点研究了反射面的表面粗糙度大小、加工方式和表面形状对传感器II强度调制特性的影响。实验结果表明,以传感器双路输出之比定义的测量参数对表面粗糙度有很好的区分能力,并通过分析确定了表面粗糙度测量时工作距离的取值范围;而反射面的加工方式和表面形状对传感器的输出有不同程度的影响,因此在对不同加工方式和不同表面曲率样本进行测量时要区别对待,分别标定测量曲线。
     应用传感器II,本文搭建了一套孔内表面粗糙度的光纤传感测量系统,对不同直径的孔进行了非破坏性测量。测量结果与TimeSurf TR220型触针式粗糙度仪的测量结果作了对比分析,论证了测量模型的正确性和测量方法的有效性、测量精度及测量范围,分析了测量结果的主要影响因素,指出了今后研究的努力方向。
     本文研制的反射式强度调制型光纤内表面粗糙度传感器不仅体积小、操作简便和经济性好,而且具有测量精度高和测量范围大的特点。因此,本文提出的基于该传感器的新测量方法将在较小零件内表面粗糙度的非破坏性测量方面具有很好的应用前景。
Surface roughness reflects surface quality directly, which is one of the most commonly used parameters that describe the surface topography. It determines the working performance of parts in many fields, such as mechanical, electronic, biomedical and optical industries. Surface roughness measurement has long been a hot issue for researchers in the last several decades. With the development of industries and adoption of new technologies, increasing numbers of measurement methods have been proposed in every field. Some classical surface roughness measurement methods have been reviewed in this dissertation. The development of the inner surface roughness measurement techniques is analyzed. And the problems about the applying of RIM-FOSs in the surface roughness measurement are discussed. A new measurement method based on a novel RIM fiber optical inner surface roughness sensor is proposed. The method can nondestructively measure the inner surface roughness of holes with small diameters such as 5mm, 8mm and 10mm.
     The working principle of RIM-FOS is fully studied in theory. A new intensity modulation function of a single fiber pair is derived under certain assumptions. The main influence factors of the RIM-FOS intensity modulation characteristics are analyzed theoretically. And the characteristic parameters closely related to surface roughness measurement are explained and introduced. According to simulation conclusions, basic design principles of the RIM fiber optical surface roughness sensor have been determined finally. Consequently, a sensor that is coaxial, two-double, and“1input 12 outputs”is primarily designed (named Sensor I).On the basis of Sensor I, a micro prism is utilized, and the novel inner surface roughness sensor is developed (namely Sensor II).
     The intensity modulation model will be affected directly by the distribution assumption of emission intensity. Then the intensity modulation function of a single fiber pair is derived as the emission intensity is Gaussian distribution. And the intensity modulation function of Sensor I is established assuming that reflective surface is an ideal mirror. Besides, scattering of a rough surface is studied deeply. The intensity modulation function of a rough surface is derived on certain conditions based on the Beckmann’s scattering geometry model. Then a theoretical model of RIM-FOS for surface roughness measurement is proposed, which can guide the surface roughness measurement effectively. Finally, as to the inner surface roughness measurement of holes, the controlling of working distance and bias of the sensor head are discussed and analyzed qualitatively.
     Based on the conclusions of theoretical analysis, the intensity modulation characteristics of SensorI and SensorII have been studied experimentally. Characteristics that are relevant to surface roughness measurement are analyzed. Comparative analysis on characteristic curves of two sensors shows the influence of the micro prism. And the results show that SensorII has good capability in surface roughness measurement. The influence of the reflective surface to the characteristics of SensorII has been analyzed by abundant experiments. The factors include roughness value, machining method and shape of the surface. The experiment results show the defined measurement parameter by two outputs of the sensor can distinguish surfaces effectively. Simultaneously, the proper range of the working distance is found. However, the machining method and shape of the reflective surfaces affect the sensor characteristics to varing degree. Hence, when surface roughness is measured by a RIM-FOS, surfaces with different machining methods and curvature radius must be measured respectively.
     A surface roughness measurement system based on the designed Sensor II is set up. The inner surfaces of holes with different diameters are measured non-destructively. The measurement results are compared with those obtained by a TimeSurf TR220 roughness instrument. The measurement validity, accuracy and range of the proposed measurement method are verified and discussed, some main influencing factors are analyzed, and some future tasks are figured out.
     In conclusion, the study shows that the designed RIM fiber optical inner surface roughness sensor is not only small, simple and economical, but also with a high accuracy and a large measurement range. Therefore, its wide applications for non-destructive inner surface roughness measurement of relative small parts can be expected.
引文
1 C.Babu Rao, P. Kalyanasundaram, B. Raj. Laser Scattering for Surface Roughness Measurement. Surface Roughness Monitoring. 2001, 43(4):265~269
    2 J. R. Smith, S. Breakspear, S. A. Campbell. AFM in Surface Finishing: Part II. Surface Roughness. Finishing. 2003,27(6):35~38
    3杨练根,王选择.新型表面形貌测量仪器.科学出版社,2008:1~2
    4袁成清,严新平,彭中笑.基于激光共焦扫描显微镜方法的磨损表面三维数字化描述.润滑与密封. 2006, (184):33~36
    5 G. Vineet, B. B. David. Optimal Slider-Disk Surface Topography for Head-Disk Interface Stability in Hard Disk Drives. IEEE Transactions on Magnetics. 2008,44(1): 138~144
    6郝立波,邢庆昌,王继芳等.人工关节假体不同材料及材料表面粗糙度对表皮葡萄球菌粘附能力的影响.中外关节外科杂志(电子版). 2008,2(5): 532~536
    7刘斌,冯其波,匡萃方.表面粗糙度测量方法综述.光学仪器. 2004,26(5):54~58
    8 H. N. Brecker, R. E. Fromson, L. Y. Shum. A Capacitance Based Surface Texture Measuring System. Annals of the CIRP. 1977, 25 (1): 375 ~ 377
    9 V. Radhakrishnan. Application of Inductive Heads for Non-contact Measurement of Surface Finish. Proc. Int. Conf. Prod. Eng. Instn. 1977:80~89
    10 V. Radhakrishnan, V. Sagar. Surface Roughness Assessment by Means of Pneumatic Measurement. Proc. ATMTDR Conf. 1970:487~494
    11 R. E. Reason. Progress in the Appraisal of Surface Topography During the First Half-Century of Instrument Development. Wear. 1979, 57(1):1~16
    12 T. R. Thomas主编.粗糙表面:测量、表征及其应用.周广仁等译.浙江大学出版社, 1987:14~17,76~78
    13宁波市江东欧亿检测仪器有限公司.表面粗糙度仪的工作原理. http://www.chem17.com/st139833/Article_34946.html
    14 D. Fan, H. Zhang, J. Chen et al. Measurement of Surface Roughness UsingOptical-Fiber Sensor and Microcomputer. SPIE International Conference on Optical Fibre Sensors in China OFS(C). 1991,1572:11~14
    15 D. Lu, F. Y, Z. Cheng. Measurement of Roughness Inside Aperture. 2nd International Symposium on Instrumentation Science and Technology. 2002,I-216~220
    16 Z. Yilbas, M. S. J. Hashmi. An Optical Method and Neural Network for Surface Roughness Measurement. Optics and Lasers in Engineering. 1997,(28):395~409
    17 K. P. Chaudhary, R. P. Singhal, S. K. Singh. A New Approach of Surface Roughness Measurement Using Optical Method and Image Processing. Proceedings of SPIE. 2005, 5879: 587914-1~11
    18 B. Dhanasekar, N. K. Mohan, B. Bhaduri et al. Evaluation of Surface roughness Based on Monochromatic Speckle Correlation Using Image Processing. Precision Engineering. 2008,(32):196~206
    19 B. Dhanasekar, B. Ramamoorthy. Digital Speckle Interferometry for Assessment of Surface Roughness. Optics and Lasers in Engineering. 2008,(46):272~280
    20 G. Govindan, S. Dillibabu, B. G. Athi et al. Fiber-optic Sensor to Estimate Surface Roughness of Corroded Metals. Optica Applicata. 2009, XXXIX(1):5~11
    21 K. Ersin, O. Hasan, H. Fikret et al. Measurement of Surface Roughness of Metals Using Binary Speckle Image Analysis. Tribology International. 2010,(43):307~311
    22 I. Sherrington, E. H. Smith. Modern Measurement Techniques in Surface Metrology: Part I; Stylus Instruments, Electron Microscopy and Non-Optical Comparators. Wear. 1988, 125:271~288
    23张妮,郭继春,张学云等.珍珠表面微形貌的AFM和SEM研究.岩石矿物学杂志. 2004,23(4):370~374
    24赵学增,李洪波,褚巍等.基于计量学的线边缘粗糙度定义.机械工程学报. 2007,43(1):214~218
    25张高峰,谭援强,邓朝晖.Al/SiCp复合材料铣削加工损伤形貌与分析.湘潭大学自然科学学报. 2009,31(3):59~64
    26 G. Binnig, H. Rohrer, C. Gerber et al. Surface Studies by Scanning TunnelingMicroscopy. Physical Review Letters. 1982, 49(1):57~61
    27 M. A. Pasquale, F. J. R. Nieto, A. J. Arvia. In Situ Scanning Tunneling Microscopy Topography Changes of Gold(111) in Aqueous Sulfuric Acid Produced by Electrochemical Surface Oxidation and Reduction and Relaxation Phenomena. Surface Review and Letters. 2008,15(6):847~865
    28 S. Hara, H. Kobayashi, K. Ota et al. Scanning Tunneling Microscopy and Ab Initio Studies of Precursor States of Ga-induced Cluster on Si(001) Surface. Surface Science. 2009,603(1):183~189
    29 A. Roy, K. Bhattacharjee, H. P. Lenk et al. Surface Roughness of Ion-bombarded Si(100) Surface: Roughening and Smoothing With the Same Roughness Exponent. Nuclear Instrument &Methods in Physics Research Section B-beam Interactions With Materials and Atoms. 2008,266(8):1276~1281
    30 R. Tanya, H. Yvan, M. Anne. Characterization of TRIP-assisted Multiphase Steel Surface Topography by Atomic Force Microscopy. Materials Characterization. 2001,47(2):93~104
    31 X. Han, X. Chen, X. Yang et al. Application of Atomic Force Microscopy on the Nanometer Scale Surface Roughness Measurement. Proceedings of the
    1st IEEE International Conference on Nano/Micro Engineering and Molecular Systems. 2006:131~135
    32 X. Tang, V. Bayot, N. Reckinger et al. A Simple Method for Measuring Si-Fin Sidewall Roughness by AFM. IEEE Transactions on Nanotechnology. 2009,8(5):611~616
    33 A. Kuhle, B. G.. Rosen, J. Garnaes. Comparison of Roughness Measurement with Atomic Force Microscopy and Interference Microscopy. Proceedings of SPIE. 2003,5188:154~161
    34 N. Kazunori, W. Kenji, H. Toshiyuki et al. Impact of Silicon Surface Roughness on Device Performance and Novel Roughness Measurement Method. 2007 IEEE/SEMI Advanced Semiconductor Manufacturing Conference. 2007:157~160
    35 L. Chuen, H. Yang, M. Liu. The Measurement of Surface Roughness of Optical Thin Films Based on Fast Fourier Transform. Thin Solid Films. 2009,517:5110~511536 R. J. Whitefield. Noncontact Optical Profilometer. Applied Optics. 1975, 14(10):2480~2485
    37 M. Stedman. Limits of Surface Measurement by Optical Probes. Proceedings of SPIE. 1989, 1009:62~67
    38 Y. Hu, L. Zeng. Multipoint Focus-detecting Method for Measurement of Biological Non-smooth Surface Topography. Review of Scientific Instruments. 2005,76:053101-1~4
    39 Z. Ding, Y. Nagaike, G. Lai et al. Fiber-optic Based Scanning Confocal Microscopic Interferometer for the Measurement of Surface Topography in Manufacturing Process. IEEE Industry Applications Conference 2000.2000,2:1029~1032
    40杜颖,李真,张国雄.三维曲面的光学非接触测量技术.光学精密工程. 1999,7(3):1~6
    41 S. Anton, B. Ulrich. Fast Scanning Confocal Sensor Provides High Fidelity Surface Profiles on a Microscopic Scale. Proceedings of SPIE.2004,5457:115~125
    42 C. Bradley. Automated Surface Roughness Assessment. Proceedings of SPIE. 1999,3832:102~108
    43曾祥烨.光纤探针式表面粗糙度测量技术的研究.河北工业大学硕士学位论文. 2003: 4, 13~19
    44鲍振武,霍洪涛,刘钊,刘剑飞.单模光纤探针式光学轮廓仪的基础研究.仪器仪表学报.2000,21(1):104~107
    45刘剑飞,鲍振武,金杰,苏寒松.光学针描法表面粗糙度测量及其关键技术处理.河北工业大学学报. 2001,30(2):1~5
    46金杰,李奕,曾祥烨.光纤探针式表面粗糙度测量仪实验研究.南开大学学报(自然科学版).2005,38(1):49~52
    47 I. Sherrington, E. H. Smith. Modern Measurement Techniques in Surface Metrology: Part II; Optical Instruments. Wear. 1988, 125:289~308
    48杨春兰,浦邵邦,叶会英等.新型光触针式表面粗糙度测量系统.宇航计测技术. 1999,19(5):55~59
    49王富生,谭久彬.表面微观轮廓的高分辨率光学测量方法.光学精密工程. 2000, 8(4):309~315
    50周莉莉.基于动态散斑的表面粗糙度在线测量技术研究.哈尔滨工业大学博士论文. 2005:4,5
    51 66宋刚,胡德金.干涉法激光—光纤表面粗糙度传感器设计.仪表技术与传感器.2000,8:4~5,20
    52尤政,田芋,章恩耀.光外差干涉全光纤表面粗糙度传感器的研究.光学技术.1994,6:45~47
    53苏寒松,鲍振武.光纤F -P干涉传感器进行精密表面粗糙度测量原理探讨.仪器仪表学报.2001, 22(3):37~38
    54 S. Robert, K. Niles, M. Elisa. Surface Profile Analysis Using a Fiber-optic Low-coherence Interferometer. Proceedings of SPIE. 2009, 7389: 738914-1~8
    55王洪祥,董申,梁迎春等.超精密加工表面微观形貌的光学测量方法.工具技术. 1999,33(5):32~35
    56 H. C. Kandpal, D.S. Mehta, J. S. Vaishya. Simple Method for Measurement of Surface Roughness Using Spectral Interferometry. Optics and Lasers in Engineering. 2000,34:139~148
    57 I. Balboa, H. D. Ford, R. P. Tatam. Low-coherence Optical Fibre Speckle Interferometry. Measurement Science and Technology. 2006,17:605~616
    58洪光,邵静波.激光自混频干涉法测量表面粗糙度的理论分析.中国测试技术. 2006,32(5):45~47
    59 X. F. Zhang, Z. P. Wang, Y. E. Zhang et al. Method of Surface Roughness Measurement Based on Interferometry. Proceedings of SPIE. 2007,6595:65952F-1~10
    60 R. Blunt. Surface Roughness Measurement on Semiconductors Using White Light Interferometry. Proceedings of 2007 International Conference on Indium Phosphide and Related Materials.2007:582~585
    61 Z. Wang, L. Wang. Optical Scan Method for Fine Surface Roughness Measurement. Proceedings of SPIE. 2007,6616:66162K-1~6
    62 L. Salbut, K. Patorski. Polarization Phase-Shifting Method for MoiréInterferometery and Flatness Measurement. Applied Optics. 1990, 29:1471~1473
    63 M. S. Jo. Performance Optimization of Phase-Shifting Interferometry Using Data Average on Wide Rang Roughness Measurement. Optical Review. 2004,11(1):55~59
    64 Y. Lin, S. John. Precision Evaluation of a Common-path Interferometer in Measurement of Optical Surfaces. Acta Optica Sinica. 1994,14(1):55~61
    65罗忠生,杨建坤,张美敦.光学外差检测超光滑表面粗糙度.上海交通大学学报.1999, 33(1):53~56
    66梁嵘,李达成,曹芒,赵洪志,武勇军.在线测量表面粗糙度的共光路激光外差干涉仪.光学学报. 1999, 19(7):958~961
    67 T. Schuldt, M. Gohlke, D. Weise et al. A Compact High-sensitivity Heterodyne Interferometer for Industrial Metrology. Proceedings of SPIE. 2008,7003:7003Y-1~8
    68 H. Z. Zhao, R. Liang, D. C. Li et al. Practical Common-path Heterodyne Surface Profiling Interferometer with Automatic Focusing. Optics and Laser Technology. 2001,33(4):259~265
    69高志山,陈进榜.表面微观形貌的显微干涉检测原理及干涉显微镜发展现状.光学仪器. 1999,12(6):36~42
    70 X. Chen, K. T. V. Grattan, R. L. Dooley. Optically Interferometric Roughness Measurements for Spherical Surfaces by Processing Two Microscopic Interferograms. Measurement. 2002,32:109~115
    71刘晓军,高咏生.显微剪切干涉表面粗糙度轮廓测量.中国测试技术. 2004,(2):3~5
    72王海珊,史铁林,廖广兰等.基于干涉显微原理的表面形貌测量系统.光电工程. 2008,35(7):84~89
    73周明宝,林大键,白临波.双光路双波长相移干涉显微法测量衍射光学元件形貌.光学学报. 2000, 20(6):843~846
    74 C. Saxer, K. Freischlad. Interference Microscope for Sub-Angstrom Surface Roughness Measurements. Proceedings of SPIE. 2003, 5144:37~45
    75徐晓梅.基于神经网络和激光散斑的表面粗糙度测量技术研究.哈尔滨工业大学硕士论文. 2005:19~21
    76 H. FujII, T. Asakura and Y. Shindo. Measurement of Surface Roughness Properties by Using Image Speckle Contrast. Journal of the Optical Society of America. 1976, 66(11):1217~1222
    77 H. Kadono, T. Asakura and N. Takai. Roughness and Correlation-Length Measurements of Rough Surface Objects Using the Speckle Contrast in the Diffraction Field. Optik. 1988, 80(3):115~120
    78 U. Persson. Real Time Measurement of Surface Roughness on Ground Surfaces Using Speckle-Contrast Technique. Optics and Lasers in Engineering. 1992, 17:61~67
    79 B. Ruffing. Application of Speckle-Correlation Methods to Surface-Roughness Measurement: a Theoretical Study. Journal of the Optical Society of America. A 1986, 3(8):1297~1304
    80 M. Ohlídal. Comparison of the Two-Dimensional Fraunhofer and the Two-Dimensional Fresnel Approximations in the Analysis of Surface Roughness by Angle Speckle Correlation I. Theory. Journal of Modern Optics. 1991, 38(11): 2115~2135
    81 I. Yamaguchi, K. Kobayashi and L. Yaroslavsky. Measurement of Surface Roughness by Speckle Correlation. Optical Engineering. 2004, 43:2753~2761
    82 J. M. Huntley. Simple Model for Image-Plane Polychromatic Speckle Contrast. Applied Optics. 1999,38(11):2212~2215
    83周莉莉,赵学增.表面粗糙度的激光及相关在线测量方法.激光杂志.2004,25(3):4~8
    84 R. A. Sprague. Surface Roughness Measurement Using White Light Speckle. Applied Optics. 1972, 11(12):2811~2816
    85 L. C. Leonard, V. Toal. Roughness Measurement of Metallic Surfaces Based on the Laser Speckle Contrast Method. Optics and Lasers in Engineering. 1998, 30:433~440
    86 C. J. Tay, S. L. Toh, H. M. Shang et al. Whole-field Determination of Surface Roughness by Speckle Correlation. Appl. Opt.1995,34(13):2324~2333
    87 S. L. Toh, H. M. Shang, C. J. Tay. Surface-roughness Study Using Laser Speckle Method. Optics and Lasers in Engineering. 1998,29:217~225
    88 U. Persson. Roughness Measurement of Machined Surfaces by Means of the Speckle Technique in the Visible and Infrared Regions. Optical Engineering. 1993,32(12):3327~3332
    89 U. Persson. Measurement of Surface Roughness on Rough Machined Surfaces Using Spectral Speckle Correlation and Image Analysis. Wear. 1993, 160(2): 221 ~225
    90 S. L. Toh, C. Quan, K. C. Woo et al. Whole Field Surface RoughnessMeasurement by Laser Speckle Correlation Technique Optics & Laser Technology. 2001,33(6):427~434
    91 M. P. C. Rodrigues, J. L. Pinto. Contrast of Polychromatic Speckle Patterns and Its Dependence to Surface Heights Distribution. Optical Engineering. 2003, 42(6):1699~1703
    92 Z. Gao, X. Zhao. On-Line Surface Roughness Measurement Based on Specular Intensity Component of Speckle Patterns. Proceedings of the 2008 IEEE. 2008:1050~1055
    93 X. Zhao, Z. Gao. Surface Roughness Measurement Using Spatial-Average Analysis of Objective Speckle Pattern in Specular Direction. Optics and Lasers in Engineering. 2007,47:1307~1316
    94 C. J. Tay, C. Quan. A Parametric Study on Surface Roughness Evaluation of Semi-conductor Wafers by Laser Scattering. Optik. 2003,114(1):1~6
    95邱瑜,秦?龙,王世华.用激光散射法非接触在线检测表面粗糙度.工具技术. 2000,34(4):36~38
    96尼启良,陈波.散射法表面粗糙度测量.光学精密工程.2001 ,9(2):151~154
    97崔岩梅,周自力,孙志刚,何英.核翼比法进行表面粗糙度的标定及测量.航空计测技术. 2002,22(2):25, 26, 48
    98张涛,徐彧,迟桂纯.内表面粗糙度测量仪.四川大学学报(工程科学版). 2000,32(3):45~47
    99徐彧,徐继麟,廖俊必等.内表面粗糙度测量仪.激光与光电子进展.2002,39(4):30~33
    100 J. C. L. Bosse, G. Hansali, J. Lopez, T. Mathia. Characterisation of Surface Roughness by Laser Light Scattering: Specularly Scattered Intensity Measurement. Wear 1997, 209:328~337
    101 C. B. Rao, B. Raj. Study of Engineering Surfaces Using Laser-scattering Techniques. Sadhana. 2003,28:739~761
    102 C. J. Tay, S. H. Wang, C. Quan et al. Surface Roughness Measurement of Semi-conductor Wafers Using a Modified Total Integrated Scattering Model. Optik. 2002,113(7):317~321
    103 C. J. Tay, S. H. Wang, C. Quan, H. M. Shang. In Situ Surface Roughness Measurement Using a Laser Scattering Method. Optics Communications.2003,218:1~10
    104 S. H. Wang, C. J. Tay, C. Quan et al. Laser Integrated Measurement of Surface Roughness and Micro-displacement. Meas. Sci. Technol. 2000,11:454~458
    105 H. Y. Kim, Y. E. Shen, J. H. Ahn. Development of a Surface Roughness Measurement System Using Reflected Laser Beam. Journal of Materials Processing Technology. 2002, 130-131:662~667
    106 S. P. Lo, J. T. Chiu, H. Y. Lin et al. Rapid Measurement of Surface Roughness for Face-milling Aluminum Using Laser Scattering and the Taguchi Method. Int J Adv Manuf Technol. 2005:1~7
    107 P. Lehmann. In-process Roughness Characterization of Specularly Reflecting Surfaces Using Doubly Scattered Light. Part of the SPIE Conference on Scattering and Surface Roughness III. SPIE.1999, 3784: 157~165
    108郑露滴,汤全安,章燕申.激光陀螺反射镜基片的加工和测量.仪器仪表学报. 1995,16(1):389~391
    109周肇飞,李文杰,王世华,张涛.精密测量用光电传感器集成化研究.光电工程.2000,27(5):31~35
    110 K. Zhang, C. Butler, Q. Yang et al. A Fibre Optic Sensor for the Measurement of Surface Roughness and Displacement using Artificial Neural Networks. IEEE Instrumentation and Measurement Technology Conference. 1996:917~920
    111张莉萍,余璆 .光纤位移传感器系统测量粗糙度的研究.无损检测. 2004,26(2):616~618
    112向红军,雷彬.便携式表面粗糙度测试仪设计.计算机测量与控制.2006,14(5): 692~694
    113向红军,雷彬.表面粗糙度测试仪中光纤传感器的设计.传感技术学报.2007,20(3):546~549
    114 S. W. Harun, M. Yasin, H. Z. Yang et al. Estimation of Metal Surface Roughness UsingFiber Optic Displacement Sensor . Laser Physics. 2010,20(4):904~909
    115鲍振武,苏寒松.粗糙度光纤传感器的理论与实践.电子测量与仪器学报. 1994,8(1):7~14
    116王廷津,徐建强,史伟等.用于测量表面粗糙度的漫射反射比光纤传感器.仪器仪表学报.1997,18(5):505~508
    117王毅,陈荣,陈光辉等.反射式表面粗糙度光纤传感器及其模糊算法.光子学报.2000,29(7):669~672
    118 Y. Yang, A. K. Yamazakia, H. Aoyama et al. Fiber Optic Surface Topography MeasurementSensor and Its Design Study. Precision Engineering. 2000,24:32~40
    119 J. Liu, K. Yamazaki and Y. Zhou. A Reflective Fiber Optic Sensor for Surface Roughness In-Process Measurement. Journal of Manufacturing Science and Engineering. 2002,124:515~522
    120向红军,雷彬.基于光纤传感器的表面粗糙度测试仪.先进制造技术.2006,25(3):40~41
    121李亚非,谢竹生.基于光纤传感器的表面粗糙度在线检测研究.中国机械工程.2007,18(4): 411~414
    122徐晓辉,崔艳.光纤表面粗糙度传感器的改进.数据采集与处理.2009,24:216~218
    123 L. Yuan, M. Li and Q. Chi. 2-D Fiber-Optic Sensing Probe.光子学报. 2004,33(1):35~39
    124杨华勇,吕海宝,徐涛等.反射式光纤传感器光纤参量对调制系数的影响.光子学报.2002,1(31):74~78
    125吕海宝,颜树华,余志雄等.反射式强度调制型光纤传感器调制函数的研究.导波光学、光纤传感器及光通信增刊2. 227
    126杨华勇,吕海宝,徐涛.反射式强度型光纤传感器的研究.传感技术学报.2001,4:349~355
    127杨华勇,吕海宝,徐涛.基于单光纤对模型的光纤束调制函数的建模与仿真.光子学报. 2002,31(6): 719~724
    128周毅,孙尚祥,乐静.强度反射式光纤传感器的数学模型及参数选择.石油仪器.2001,15(5):1~3
    129周毅,辛天益.强度型反射式光纤传感器参数的灰色优化.西安科技学院学报.2001,21(4):380~382,394
    130杨华勇.反射式强度调制型光纤传感器强度调制特性的数学模型与关键技术研究.国防科技大学博士论文.2002:4~8,24,39,45~49
    131杨华勇,吕海宝,徐涛等.反射面的倾斜度对RIM-FOS光强调制特性的影响.国防科技大学学报.2001,23(3):107~110
    132杨华勇,吕海宝.反射面形状对反射式光纤位移传感器理论特性的影响.光学精密工程.2002,10(4):379~382
    133隋鑫,徐熙平,徐海峰等.反射式光纤传感器光纤对强度调制特性分析.长春理工大学学报(自然科学版) .2009,32(2):220~223
    134吕海宝,余志雄,颜树华等.反射式光纤传感器光纤对输出特性的数学模型.光电工程.1998,25(5):16~23
    135杨华勇,吕海宝,胡永明.反射式光纤传感器强度调制特性的仿真测试系统.仪器仪表学报.2004,25(3):418~420
    136金远强,周岩,胡丽国等.光强调制式光纤传感器测量精度的研究.传感器与微系统.2007,26(6):48~50
    137杨华勇,吕海宝,徐涛等.几种带补偿功能的三光纤传感器的分析.国防科技大学学报.2002,24(1):105~108
    138刘丽华,车仁生,李建新等.三层反射式同轴光纤束位移传感器设计.光学精密工程.2005,13:25~29
    139 X. Wang. Intelligent Signal Processing of Fiber Optic Sensor for Simultaneous Measurement of Displacement and Surface Roughness. Proceedings of SPIE.2002,4920:427~432
    140 Y. Wang, R. Chen, G. Chen et al. A Novel Surface Roughness Optical Fiber Sensor.International Conference on Sensors and Control Techniques, Proceedings of SPIE.2000,4077:137~140
    141王毅,陈荣,陈光辉等.基于神经网络的反射式表面粗糙度光纤传感器.光子学报.2000,29(6):545~548
    142 K. Zhang等.利用人工神经网络的测量表面粗糙度和位移的光纤传感器.现代计量测试.1997,2:57~59
    143陈超,徐建林.神经网络技术在表面粗糙度检测中的应用.农业机械学报.2002,33(6):135~137
    144 Z.Yilbas, M. Hashmi. An Optical Method and Neural Network for Surface Roughness Measurement. Optics and Lasers in Engineering.1997,28:395~409
    145 K. Zhang, C. Butler, Q. Yang et al. A Fiber Optic Sensor for the Measurement of Surface Roughness and Displacement Using Artificial Neural Networks. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. 1997,46(4):899~902
    146汪晓东,叶美盈.RBF神经网络在表面粗糙度光纤传感器中的应用.光电子·激光.2001,12(9):934~936
    147 K. Modis, D. Kaliampakos, D. Labrakis. A New Approach to Surface Roughness Characterization Using Geostatistics. Canadian Metallurgical Quarterly. 2002,41(2):243~248
    148向红军,雷彬.光纤法测量表面粗糙度的影响因素分析.军械工程学院学报.2006,18(4):36~37
    149 L. Dong, X. Yang, A. Wang et al. The Study of Surface Roughness Measuring by LaserOptical Fiber Sensor. Advanced Sensor Systems and Applications II, Proceedings of SPIE.2005,5634:524~532
    150孙俊卿.表面粗糙度的光纤传感测量方法.电子测量与仪器学报增刊.2002:1408~1411
    151徐建强,江驰,张惠等.检测表面粗糙度的光纤传感器研究.计量学报.2002,23(4):280~282,293
    152 D. Lu, Y. Xiang, A. Wang et al. The Study of Surface Roughness Measuring by Laser Optical Fiber Sensor. Proceedings of SPIE.2005, 5634: 524~532
    153杜登崇,韩兆福.高精度深孔表面粗糙度检测仪.仪表技术与传感器. 2005,(3):14~15
    154白素平,李凯,王禹浩等.管道内表面疵病及其位置的测量.长春理工大学学报(自然科学版). 2008,31(4):84~86
    155 B. You, X. Yu, S. Xu. Research on Automatic Measuring Instrument for Deep Hole. Proceedings of SPIE. 2003,5264:349~353
    156张广军,贺俊吉,李秀智.一种新型的微小型构件内表面三维形貌检测系统.仪器仪表学报. 2006,27(3):302~306
    157 S. Devdas. Improving the Quality of Fiber Optic Based Surface Roughness Sensing Instrument Using Robust Design Methodology. Proceedings of SPIE. 1992,1821:195~205
    158 Y. Zhao, P. Li, C. Wang et al. A novel Fiber-optic Sensor Used for Small Internal Curved Surface Measurement. Sensors and Actuators. 2000,86:211~215
    159 Y. Zhao, Y. Liao. Single-mode Fiber-based Reflex Sensor for Internal Surface In-line Measurement of Small Products. Sensors and Actuators. 2002, A 101:30~36
    160江毅编著.高级光纤传感技术.科学出版社,2009:2,3
    161 J. Guild. An Optical Smoothness-Meter for Evaluating the Surface Finish of Metals. Journal of Scientific Instruments. 1940, 17:178~182 162 R. S. Hunter. A Glossmeter for Smoothness Comparrisons of Machine-Finished Surfaces. Journal of the Optical Society of America. 1946, 36(3):178~181
    163 J. Halling. A Reflectometer for the Assessment of Surface Texture. Journal of Scientific Instruments. 1954, 31:318~320
    164 W. E. K. Middleton and G. Wyszecki. Colors Produced by Reflection at Grazing Incidence from Rough Surfaces. Journal of the Optical Society of America. 1957, 47(11):1020~1023
    165 H. E. Bennett, J. O. Porteus. Relation between Surface Roughness and Specular Reflectance at Normal Incidence. Journal of the Optical Society of America. 1961, 51(2):123~129
    166 W. T. Welford. Optical Estimation of Statistics of Surface Roughness from Light Scattering Measurements. Optical and Quantum Electronics. 1977, 9:269~287
    167 P. Beckmann, A. Spizzichino. The Scattering of Electromagnetic Waves from Rough Surfaces. Pergamon Press, 1963:3~8, 25~28, 87, 91~93
    168 P. Beckmann. The scattering of waves by a periodic surface.Цех.ФИЗ.Ж.Β11.1961:863~870
    169 P. Beckmann. Shadowing of Random Rough Surfaces. IEEE Transaction on Antennas and Propagation. 1964:384~388
    170 P. Beckmann. Scattering by Composite Rough Surfaces. Proceedings of the IEEE. 1965:1012~1015
    171 P. Beckmann. Scattering by Non-Gaussian Surfaces. IEEE Transactions on Antennas and Propagation. 1973, AP-21(2):169~175
    172 D. H. Hensler. Light Scattering from Fused Polycrystalline Aluminum Oxide Surfaces. Applied Optics. 1972, 11(11):2522~2528
    173 P. J. Chandley, W. T. Welford. A Re-Formulation of Some Results of P. Beckmann for Scattering from Rough Surfaces. Optical and Quantum Electronics. 1975, 7:393~397
    174 Balagurunathan Yoganand, Dougherty Edward R. MorphologicalMeasurement of Surface Roughness. Proceedings of SPIE—The Internaltional Society for Optical Engineering. 1998,3521:65~103
    175 H. Ragheb, E. R. Hancock. The Modified Beckmann-Kirchhoff Scattering Theory for Rough Surface Analysis. Pattern Recognition. 2007,40:2004~2020
    176 L. H. Tanner. The Use of Laser Light in the Study of Metal Surfaces. Optics and Laser Technology. 1976, 8:113~116
    177 R. Silvennoinen, K. E. Peiponen, T. Asakura et al. Specular Reflectance of Cold-Rolled Aluminum Surfaces. Optics and Lasers in Engineering. 1992, 17:103~109
    178杨华勇,吕海宝,徐涛等.RIM型光纤传感器光强补偿方法的分析及实验研究.仪表技术与传感器.2001,5:4~6
    179罗武胜,徐涛,吕海宝等.强度型光纤传感测试系统的稳定性研究.计算机应用.2002,10:15~17
    180马裕民.反射漫射比光纤传感器.仪表技术与传感器.1994,1:11~12
    181金远强,马惠萍,周岩.强度调制型光纤传感器综合控制补偿系统的设计.大庆石油学院学报.2008,32(3):81~84,113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700