用户名: 密码: 验证码:
钙对根际淹水胁迫下辣椒幼苗生长及生理代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然条件下某些排水不良或地下水位过高的土壤和低洼、沼泽地带,发生洪水或暴雨之后,常会出现因水分过多而对植物造成危害,影响植株正常生长发育,成为困扰农业生产的限制性因子。提高植株在水淹胁迫下的耐性和抗性对农业生产具有重要意义。Ca~(2+)作为植物生长所必需的大量元素和偶联胞外信号与胞内生理反应的第二信使,在逆境胁迫下细胞内含量显著提高,能够将外界环境胁迫信号转导到细胞内,与胞内CaM形成Ca~(2+)·CaM复合物,通过调节基因表达诱导一些生理和生化代谢途径的改变,可缓解逆境胁迫对植物的伤害。所以,研究钙对根际淹水胁迫下辣椒幼苗生长及生理代谢的影响具有重要的理论价值和实践意义。
     本文以贵州省地方品种花溪党武辣椒(Capsicum frutescent L.)为试材,通过浸种和叶面喷施不同浓度Ca~(2+)处理,研究根际淹水胁迫下Ca~(2+)对辣椒幼苗生长的影响,探索最佳Ca~(2+)处理方法,以期最大程度上减轻水淹胁迫对辣椒植株的伤害。然后以筛选出的最佳Ca~(2+)处理方法(10mmol·L~(-1)Ca~(2+)浸种),来研究Ca~(2+)对水淹胁迫下辣椒幼苗根系呼吸代谢,叶片活性氧代谢,根、茎、叶碳水化合物代谢的影响及其与水淹耐性的关系,探讨Ca~(2+)在辣椒植株适应水淹胁迫过程中的生理调节功能。主要研究结果如下:
     钙素对水淹胁迫下辣椒幼苗的调控效应具有两面性,一定浓度范围内成正效应,过高反而成负效应。本试验结果表明:Ca~(2+)减轻水淹对辣椒幼苗伤害的最佳处理方法为:10mmol·L~(-1) Ca~(2+)浸种处理。
     耐涝性指标测定结果表明外源Ca~(2+)处理能有效抑制水淹胁迫对叶绿素的破坏,膜透性的升高和根系活力的减弱,相对提高了幼苗地上部、地下部干鲜重,减轻水淹胁迫下根系的损伤,表明了外源Ca~(2+)处理能提高辣椒幼苗的耐涝性。
     抗氧化酶活性及非酶抗氧化剂含量测定显示Ca~(2+)处理后的辣椒幼苗叶片具有维持较高水平活性氧代谢作用,有利于诱导SOD等抗氧化酶在细胞内的生物合成以及在水淹处理过程中有助于保持其酶活性的作用,对ASA和GSH等非酶抗氧化剂也有明显的保护作用。从而提高植物对自由基的清除能力,减轻了膜系统的过氧化损伤,这可能是Ca~(2+)提高辣椒幼苗耐涝性生理生化基础之一。
     外源Ca~(2+)对水淹胁迫下辣椒幼苗的伤害有显著的缓解效应,可改善根系的生长状况,显著地提高水淹胁迫下辣椒幼苗的鲜重和干重;与单纯水淹胁迫相比,外源Ca~(2+)处理能够提高ADH活性,降低LDH活性,避免乳酸和乙醛的积累,同时使植株保持较高的MDH和SDH活性,进行一定的有氧呼吸代谢。表明外源Ca~(2+)可通过调节辣椒幼苗根系内呼吸代谢来缓解水淹胁迫对植株的伤害。
     外源Ca~(2+)处理能够提高辣椒幼苗根系、茎部和叶片可溶性糖、蔗糖和果糖含量,降低根系淀粉和葡萄糖的含量,能够改善辣椒植株地上部和地下部碳水化合物的比例,进而促进辣椒幼苗形成新的碳水化合物代谢,来适应水淹逆境。表明在水淹胁迫下,Ca~(2+)参与调节辣椒幼苗碳水化合物的含量,对提高幼苗对水淹胁迫的适应性起着重要作用。
Under natural condition, after having the flood or the rainstorm, certain low-lying soil and bog region of imperfectly drained or high subsoil water level, because of the excessive water contents are often leading to harm to the plant, and affecting the normal growth of plants, and becoming the restrictive factor. So it is very significant to enhance plant's patience and the resistance under flooding stress to the agricultural production. As a major element necessary for plant growth and a second messenger of coupling extra-cellular signal and intracellular physiological reactions, calcium (Ca~(2+)) plays a crucial role in regulating physiological reactions under environment stress. It has been known that [Ca~(2+)]_(cyt) increase rapidly under environmental stress and Ca~(2+)·CaM compound formation after Ca~(2+) combined with target enzyme CaM. It could relieve the harm of stress to the crops by regulating gene expression and inducing change of physiological and biochemical metabolism under environmental stress. Plants have evolved mechanisms for flood stress and adjusting their cellular metabolism to adapt for environmental stress. Therefore, it has the important theory value and the practice significance to research the effect of calcium on growth and physiological metabolism of pepper seedlings under root-zone flood stress.
     The research used HuaxiDangwu hot pepper of Guizhou Province as the material, through soaking seeds and spurting the leaf of the different consistence Ca~(2+), researching the effect of Ca~(2+) on growth of pepper seedlings under root-zone flood stress, exploration the best Ca~(2+) processing method, reduced the injury of pepper seedling under flooding stress . Then useing the best processing method of Ca~(2+) (10mmol·L~(-1) Ca~(2+) soaking seeds), studing the influence about Ca~(2+) to the hot pepper seedling root system respiratory metabolism, leaf ROS metabolism, the carbohydrate metabolism of roots, stems, leaves and the relation under the flood stress, discussing the physiological regulation function about Ca~(2+) in the adaptation flooding stress process of pepper plant. Main research results were as follows:
     The regulative effect of calcium element to pepper seedling under flood stress has tow sides. On the one hand it is advantage in the certain consistence scope; on the other hand it is negative when the consistence is excessively high. This test result indicated: the best processing method of Ca~(2+) reduces the injury of flood to the hot pepper seedling is: 10mmol·L~(-1) Ca~(2+) soaking seeds processing.
     The measuration's result indicated that the extraneous Ca~(2+) processing can suppress effectively to the chlorophyll destruction, membrane penetrable elevation and root activity being weaken under flood stress, and relatively enhanced the fresh weight and dry weight of seedling, reduced root system's damage. These indicated the extraneous Ca~(2+) processing could enhance the resistance of hot pepper seedling to overhead flooding injury.
     The measuration about oxidation resistance enzyme activity and the non-enzyme oxidation inhibitor content demonstrate that after the Ca~(2+) processing, the hot pepper seedling leaf has the function maintain high level ROS metabolism, its mechanism possibly is advantageous to induce biosynthesis and keep activity about anti-oxidase enzyme of SOD et al., and non-enzyme oxidation inhibitor of ASA and GSH. Thus enhances the ability of plant to eliminate the free radical, reduced the membrane system's peroxidation damage. This possibly is a physiology biochemistry foundation of Ca~(2+) could enhance the resistance of hot pepper seedling to overhead flooding injury.
     Exogenous Ca~(2+) application in nutrient solution could relieve the harm caused by flood stress and result in improved growth of roots, increased fresh and dry weight of pepper seedlings. Compared with the seedlings with flood alone treatment, the activities of SDH, MDH and ADH were promoted, while LDH activity was inhibited, accumulations of lactate and acetaldehyde in pepper seedling roots under exogenous application Ca~(2+) treatment. It indicated that Ca~(2+) could relieve the harm of flood stress, through regulating respiratory metabolism of roots.
     Exogenous Ca~(2+) application treatment could increase the contents of and solubility sugar, cane sugar and fruit sugar in roots, stems and leaves of pepper seedlings, decreased the content of starch and glucose in pepper seedling roots, which could improve in the ratio of root carbohydrate concentration to leaves carbohydrate concentration, and promote the appearance of carbohydrate metabolism; adapting the flood stress. It indicated that Ca~(2+) could adjust carbohydrate contents and relieve the harm of flood stress.
引文
1. 上海植物生理学会编.植物生理学实验手册.上海:上海科学技术出版社.1985.
    
    2. 中国科学院上海植物生理研究所、上海植物生理学汇编.现代植物生理学实验指南.北京::科 学出版社.1999.
    
    3. 孔海燕,贾桂霞,温跃戈.钙在植物花发育过程中的作用.植物学报,2003,20(2):168-177.
    
    4. 王文泉,张福锁.高等植物厌氧适应的生理及分子机制.植物生理学通讯,2001,37(1):63-70.
    
    5. 王文泉,郑永战,梅鸿献,张福锁.不同耐渍基因型芝麻在厌氧胁迫下根系的生理与结构变化. 植物遗传资源学报,2003,4(3):214-219.
    
    6. 王荣富.植物抗寒指标的种类及其应用.植物生理学通讯,1987(3):49-55.
    
    7. 韦朝领,袁家明.植物抗逆境的分子生物学研究进展.安徽农业大学学报,2000,27(2): 20 4-2 08.
    
    8. 叶勇,卢昌义,谭凤仪.木榄和秋茄对水渍的生长与生理反应的比较研究.生态学报,2001, 12(10): 1654.
    
    9. 由继红,陆静梅,杨文杰.钙对苜蓿幼苗抗寒性及相关生理指标影响的研究.草业学报,2003, 12:1-4.
    
    10.任雪萍,吴诗光,牛明功.湿涝害对灌浆期冬小麦叶片脯氨酸含量的影响.周口师专学报,1998, 15(5):72-74.
    
    11.伍莲,刘伟,秦利,刘理裙,徐阿支.钙和锌对意大利黑麦草种子活力和萌发过程中酶活性的 影响.中国草食动物,1998,4:16-17.
    
    12.刘友良.水分逆境生理.北京:农业出版社,1992.
    
    13.吕军.渍水对冬小麦生长的危害及其生理效应.植物生理学通报,1994,20(3):221.
    
    14.朱晓军,杨劲松,梁永超,娄运生,杨晓英.盐胁迫下钙对水稻幼苗光合作用及相关生理特性 的影响.中国农业科学,2004,37(10):1497-1503.
    
    15.许大全主编.光合作用效率.上海:上海科学技术出版社,2002.
    
    16.何嵩涛,刘国琴,樊卫国.银杏对水涝胁迫的生理反应.山地农业生物学报,2000,19(4): 272-275
    
    17.吴国荣,陆长梅,陶明煊.百草枯和H_2O_2预处理提高盐泽螺旋藻对铅的耐受性.湖泊科学,2000, 12(3):240-246.
    
    18.吴林,黄玉龙,李亚东等.越桔对淹水的耐受性及形态生理反应.吉林农业大学学报,2000, 24(4):64-69.
    
    19.张华云,牟其云,孙风兰,李全宏,王善广.叶片喷钙对梨果实生长及果实PPO和POD活性 的影响.莱阳农学院学报,1995,12(4):265-267.
    
    20.张宗申,利容千,王建波.外源Ca~(2+)、La~(3+)和EGTA处理对辣椒叶片热激反应的影响.武汉 大学学报,2000(2):257-256.
    
    21.张燕,方力,李天飞,姚照兵,蒋金辉.钙对烟草叶片热激忍耐和活性氧代谢的影响.植物学 通报,2002,19(6):721-726.
    
    22.李合生.植物生理生化实验原理和技术.第1版.北京:高等教育出版社,2000.
    
    23.李阳生.淹水胁迫下水稻根尖细胞中Ca~(2+)和Ca~(2+)-ATP酶的分布冲国水稻科学,2001,15(3): 237-240.
    
    24.李和旺,韩启德.细胞外Ca~(2+)内流入胞质的机制.生理科学进展,1996,27(4):307-312.
    
    25.李金才,董琦,余叔文.不同生育期根际土壤淹水对小麦品种光合作用产量的影响.作物学报, 200 1,27(4):434-442.
    
    26.李美如,刘鸿先,王以柔,曾韶西,郭俊彦.钙对水稻幼苗抗冷性的影响.植物生理学报,1996, 22(4):379-384.
    
    27.李璟,郭世荣,胡晓辉.外源亚精胺对低氧胁迫下黄瓜根系多胺含量和呼吸代谢酶活性的影响. 西北植物学报,2006,26(1):0092-0097.
    
    28.杨文钰,李青苗,马文波.烯效唑浸种对黄瓜的壮苗效应.中国蔬菜,2003(1):6-8.
    
    29.杨弘远.钙在有花植物受精过程中的作用.植物学报,1999,41:1027-1035.
    
    30.杨根平,高向阳,荆家海.水分胁迫下对大豆叶片光合作用的改善效应.作物学报,1995,35: 51-56.
    
    31.杨根平,盛宏大,赵彩霞,王韶唐钙素和水分亏缺对大豆幼苗某些生理过程的影响.西北农业 大学学报,1990,18(2):84-87.
    
    32.邹学校.杂交辣椒高效益栽培.北京:中国农业科技出版社,1993.
    
    33.陈立松,刘星辉.渗透胁迫下Ca离子对龙眼叶片光合色素及膜质过氧化的影响.园艺学报, 1998,25(1):87-88.
    
    34.陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社.2000,10
    
    35.陈贵林,贾开志.钙和钙调素拮抗剂对高温胁迫下茄子幼苗抗氧化系统的影响.中国农业科学, 2005,38(1):197-202.
    
    36.陈贵林,高洪波,乜兰春,尚庆茂,刘中笑.钙对茄子嫁接苗生长和抗冷性的影响.植物营养 与肥料学报,2002,8(4):478-482.
    
    37.苗琛,尚富德.热胁迫下小结球白菜耐热感热品种超微结构的差异.河南科学,1996,14(1):9-13.
    
    38.金万学.仙人掌中钙的研究.中国中药杂志,1993,18(12):742.
    
    39.姜华武,张祖新.玉米的厌氧代谢和耐涝性.湖北农学院学报,1999,19(1):79-84.
    
    40.段咏新,宋松泉,傅家瑞.钙对杂交水稻叶片中活性氧防御酶的影响.生物学杂志,1999,16 (1):18-20.
    
    41.洪法水,周谋文,董振吉.钙和聚乙二醇浸种对小麦幼苗水分胁迫的缓和效应.植物生理学通??讯,1995,3:202.
    
    42.胡田田,康绍忠.植物淹水胁迫响应的研究进展.福建农林大学学报(自然科学版),2005,34 (1):18-24
    
    43.郝建军,康宗利,于洋.植物生理学实验技术.北京:北京工业出版社.2006,12
    
    44.钟雪花,杨万年,吕应堂.淹水胁迫下对烟草、油菜某些生理指标的比较研究.武汉植物学研 究,2002,20(5):395-398.
    
    45.宰学明.Ca~(2+)对花生幼苗耐热性和活性氧代谢的影响.中国油料作物学报,2001,23(1):46-50.
    
    46.晏斌,戴秋杰,刘晓忠等.玉米叶片涝渍伤害过程中超氧自由基的积累.植物学报,1995,37(9): 73 8-744.
    
    47.郭世荣,橘昌司,李谦盛.营养液温度合溶解氧浓度对黄瓜植株氮化合物含量的影响.植物生 理与分子生物学学报,2003,29(6):593-596.
    
    48.郭世荣.无土栽培学.北京:中国农业出版社,2003.125-129.
    
    49.郭世荣. 营养液溶氧浓度对黄瓜和番茄根系呼吸强度的影响. 园艺学报,2000,27(2):: 141-142.
    
    50.郭礼坤,徐萌,山仑.干旱条件下钙与赤霉素混合处理种子的增产效应.华北农学院报,1990, 增刊:118
    
    51.郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响.植物学报,2000,42(7):673-678
    
    52.高洪波,刘艳红,郭世荣,孙艳军.低氧胁迫下钙对网纹甜瓜幼苗多胺含量及多胺氧化酶活性 的影响.植物生态学报,2005a,29(4):652-658.
    
    53.高洪波,陈贵林.钙调素拮抗剂与Ca~(2+)对茄子幼苗抗冷性的影响.园艺学报,2002,29(3): 243-246.
    
    54.高洪波,郭世荣,刘艳红,汪天,孙艳军,胡晓辉.低氧胁迫下Ca~(2+)、La~(3+)和EGTA对网纹甜 瓜幼苗活性氧代谢的影响.南京农业大学学报,2005b,28(2):17-21.
    
    55.高洪波,郭世荣,汪天.根际低氧胁迫对网纹甜瓜硝态氮、铵态氮和蛋白质含量的影响.园艺 学报,2004b,31(2):236-238.
    
    56.高洪波,郭世荣.外源γ-氨基丁酸对营养液低氧胁迫下网纹甜瓜幼苗活性氧代谢的影响.植物 生理与分子生物学学报,2004a,30(6):651-659.
    
    57.高洪波.根际低氧胁迫下网纹甜瓜幼苗生理代谢的特征及Ca~(2+)、GABA生理调节功能.南京农 业大学博士学位论文.2005.
    
    58.梁建生,曹显祖,徐生,朱庆森,宋平.水稻籽粒库强与其淀粉积累之间关系的研究.作物学 报,1994,20:685-691.
    
    59.龚明,李英,曹宗易.植物体内钙信使系统.植物学报,1990,7(3):19-29.
    
    60.龚明,杨兴富.钙对玉米幼苗抗盐性的效应.植物生理学通讯,1994,30(6):429-432.
    
    61.曾韶西,王以柔,李美如.不同胁迫处理提高水稻幼苗抗寒性期间膜保护系统的变化.植物学??报,1997,39(4):308-314.
    
    62.程林海.钙处理对土壤干旱下棉花幼苗生理生化指标的影响.植物学通报,1998,15(6):70-72.
    
    63.董建国,余叔文.细胞分裂素对渍水小麦衰老的影响.植物生理学报,1984,10:55.
    
    64.樊明寿,张福锁.植物通气组织的形成过程和生理生态学意义.植物生理学通讯,2002,38 (6): 611-615.
    
    65.戴高兴,彭克勤,皮灿辉.钙对植物耐盐性的影响.中国农学通报,2003,19(3):97-101.
    
    66.戴雄泽,刘志敏.论我国辣椒产业的现状及发展趋势.辣椒杂志,2005,2:1-6.
    
    67.魏凤珍,李金才,董琦.孕穗期至抽穗期湿害对耐湿性不同品种冬小麦光合特性的影响.植物 生理学通讯,2000:36(2):199.
    
    68.魏和平,利容千,王建波.淹水对玉米叶片细胞超微结构的影响.植物学报,2000,42(8):811-817.
    
    69.魏和平,利容千.淹水对玉米不定根形态结构和ATP酶活性的影响.植物生态学报,2000,24(3): 293-297.
    
    70. Albrecht G, Mustroph A., Fox TC. Sugar and fructan accumulation during metabolic adjustment between respiration and fermentation under low oxygen conditions in wheat root. Physiol Plant, 2004, 120:90-105.
    
    71. Allen GJ., Schrocder JI. Combining genetics and cell biology to crack the code of plant cellcalcium singnaling. Sci STKE, 2000,102:13.
    
    72. Apart L, Got A, Deleseny M, et al .Adaptation of ribonucleic acid metabolism to anoxia in rice embryos. Plant Physiol, 1983,(72): 115-121.
    
    73. Barmberg JB, Palta JP., Peterson LA., Martin M., Krueger AR. Fine screening potato species germplasm gor tnber calcium. American Journal of Potato Research, 1998,75: 181-186.
    
    74. Bennet-Clark TA. Salt accumulation and mode of action of auxin. A preliminary hypothesis. In Chemistry and Mode of Action of Plant Growth Substances, RL Wain and F Wightman, eds(London :Butterwoths), 1956, 284-291.
    
    75. Bergmeger HU. Methods of enzymatic analysis,3~(rd),vol.III.Verlag Chemse: weinhein Press, 1983a,118-125.
    
    76. Bergmeger HU. Methods of enzymatic analysis,3rd,vol.III.Verlag Chemse: weinhein Press,. 1983c, 183-190.
    
    77. Bergmeger HU. Methods of enzymatic analysis,3~(rd) ,VolumeVI.Verlag Chemse: weinhein Press, 1983b,598-616.
    
    78. Bertrand A., Castonguay Y.,Nadeau P. Oxygen deficiency affects carbohydrate reserves in overwingteing forage crops. J Exp Bot, 2003,54:1721-1730.
    
    79. Biemelt B., Keetman U., Albrecht G Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defease system in roots of wheat seedlings. Plant Physiol, 1998, 116: 651-658.
    
    80. Bokiga KL., Femie AR., Leisse A. A bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers. Plant Physiol, 2003, 132: 2058-2072.
    81. Bouny JM., Saglio PH. Glycolytic flux and hexokinase activities in anoxic maize root tips acclimated by hypoxic pretreatment. Plant physiol, 1996,111:187-194.
    82. Bush DS. Calcium regulation in plant cell and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol, 1995,46:95-122.
    83. Charles SA., Halliwell B. Action of calcium ions on spinach (Spinacia oleracea) chloroplast fructose bisphosphatase and other enzymes of the Calvin cycle. Biochem J, 1980,188: 775-779.
    84. Chen HJ. Quails RG. Blank RR. Effect of soil flooding on photosynthesis , carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquatic Botany. 2005,82:250-268.
    85. Cheng SH., Willmann MR., Chen HC.,Sheen J. Calcium signaling through protein kinases.The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol, 2002,129:469-485.
    86. Chung H J., Ferl RJ. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiol, 1999,121:429-436.
    87. Clarkson DT. Calcium transport between tissues and its distribution in the plant. Plant Cell Env, 1980, 7:449-456.
    88. Dennis ES. Dolferus R.,Ellls M. Rahma M. Wu Y. Hoeren FU., Grover A., Ismond KP., Good AG., Peacock WJ. Molecular Strategies for Iimproving Waterlogging Tolerance in Plants. J Exp Bot, 2000, 51:89-97.
    89. Dhindsa RS., Plumb-Dhindsa P., Thorpe TA. Leaf senescence: Correlated with increased of membrane permeability and lipid peroxidation and decreased levels dismutase and Catalase. J Exp Bot, 1981,32:93-101.
    90. Dordas C.,Hasinoff BB., Rivoal J., Hill R. Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures. Planta, 2004,219:66-72.
    91. DordasS C., Rivoal J., Hill RD. Plant haemoglobins, nitric oxide and hypoxic stress. Ann Bot, 2003b, 91:173-178.
    92. Drew MC. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48:223-250.
    93. Ellis MH., Dennis ES., Peacock WJ. Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance. Plant Physiol, 1999, 119:57-64.
    94. Else MA., Hall KC., Arnold GM., Davies WJ, Jackson MB. Export of abscisic acid. 1-aminocyclopropane-1-carboxylic acid phosphate and nitrate from roots to shoots of flooded tomato plants. Plant Physiol,1995,107:377-384.
    95. Evans NH., McAinsh MR., Hetherington AM. Calcium oscillations in higher plants. Curr Opin Plant 5/0,2001,4:415-452.
    96. Fennoy SL., Nong T, Bailey-Serres J. Transcriptional and post-transcriptional processes regulate gene expression in oxygen-deprived roots of maize. Plant J, 1998,15:727-73 5.
    97. Foyer C H,Descourvieres P, Kunert K J, 1994.Protection against oxygen radicals; an important defense mechanism studied in transgenic plants. Plant Cell and Environment, 17(5):507-523.
    98. Fridovich I.The biology of oxygen radica. Science, 1978,201: 875-880.
    
    99. Fukao T., Kennedy RA.,Yamasue Y., Rumpho ME. Genetic and biochemical analysis of anaerobically induced enzymes during seed germination of Echinochloa crus-galli varieties tolerant and intolerant of anoxia J Exp Botany 2003,54(386): 1421-1429.
    
    100. Gao H B, Chen G L. Calcium influence on chilling resistance of grafting eggplant seedlings. Journal of Plant Nutrition, 2004, 27(8)
    
    101. Geigenberger P. Response of plant metabolism to too little oxygen. Curr Opin Plant Biol, 2003, 6: 247-256.
    
    102. Germain V., Ricard B., Raymond P., Saglio PH. The Role of Sugars, Hexokinase, and Sucrose synthase in the Determination of Hypoxically Induced Tolerance to Anoxia' in Tomato Roots, Plant physiol, 1997,114:167-175.
    
    103. Gong M, Li Z G.Calmodulin-binding proteins from zea mays germs. Phytochemistry, 1995,40(5): 1335-1339.
    
    104. Gong M., Li YJ., Chen SZ. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J Plant Physiol, 1997,153:488-496.
    
    105. Gravatt DA., Kirby CJ. Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiol, 1998,18:411-417.
    
    106. Grichko,Varvara P,Bernard R Glick.Plant Physiology and Biochemistry Paris,2001,39(1): 1-9.
    
    107. Guo SR., Nada K, Katoh H., Tachibana S. Differences between Tomato and Cucumber in Ethanol, lactate and Malate Metabolisms and Cell Sap pH of Roots under Hypoxia. Japan Soc Hort Sci, 1999, 68(1):152-159.
    
    108. Guo SR., Tachibana S. Effect of Dissolved O_2 Levels in a Nutrient Solution on the Growth and Mineral Nutrition of Tomato and Cucumber Seedlings. Japan Soc Hort Sci, 1997,66(2):331-337.
    
    109. Hanson JB. The functions of calcium in plant nutrition. In Advances in Plant Nutrition,P.B. Tinker and A. Lauchli, eds (New York: Praeger Pubishiers), 1984, pp. 149-208.
    
    110. Harmon AC, Gribskov M., Harper JF. CDPKs- a kinase for every Ca~(2+) signali? Trends Plant Sci, 2000,5:154-159.
    
    111. He CJ., Drew MC, Morgan PW. Induction of enzyme associated with lysigenous aerenchyma formation in roots of Zea may during hypoxia or nitrogen-starvation. Plant Physiol, 1994,105: 861-865.
    
    112. He CJ., Morgan PW., Drew MC. Transduction of an ethylene signal is required for all death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol, 1996,112:463-472.
    
    113. He YW. Loh CS. Cerium and lanthanum promote floral initiation and reproductive growth of Arabidopsis thaliana.Plant Sci, 2000, 159:117-124.
    
    114. Igamberdiev AU., Seregelyes C, Manac h N., Hill RD. NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta,2004, 219:95-102.
    
    115. Ismond K P,Dolferus R, Pauw M D. Dennis ES,Good AG. Enhanced low oxygen survival in arabidopis through increased metabolic flux in the fermentative pathway. Plant Physiol, 2003, 132: 1292-1302.
    116. Jackson M B, Fenning T M, Drew M C,Stimulation of ethylene production and gas space formation in adventitious roots of zeamays L by small partial pressures of oxygen.Plant,1995,16(5):486-492.
    117. Jackson MB., Ricard B. Physiology,biochemistry and molecular biology of plant root systems subjected to flooding of the soil. Ecological Studies 168, Springer. Hans de Kroon and Eric J.W.Visser(Eds). 2003,193-213.
    118. Jiang YW., Huang BR. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J Exp Bot, 2001, 35: 341-349.
    119. Johnson JR., Cobb BG., Drew MC. Hypoxic induction of anoxia tolerance in roots of adh1 null Zea mays L. Plant Physiol, 1994, 105:61-67.
    120. Kennedy RA., Rumpho ME., Fox TC. Anaerobic metabolism in plants. Plant Physiol, 1992,100:1 -6.
    121. Knlukisaoglu U., Weinl S., Blazevic D., Dragica Blazevic, Batistic O., Kudla J. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling net works. Plant Physiol, 2004,134(1):43-58.
    122. Li HB., Li ZR., Sun D. Effect of calmoduline antagonists on the activity of mitochondrial succinate dehydrogenase in the angelica. Chinese J Bot. 1994,6:188-192.
    123. Liu HP., Dong BH., Zhang YY., Liu ZP., Liu YL. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci, 2004, 166 (5): 1261-1267.
    124. Liu HT., Li B., Shang ZL., Li XZ., Mu RL., Sun DY., Zhou RG. Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol, 2003,132: 1186-1195.
    125. Luan S., Kudla J., Rodriguez-conception M., Yalovsky S., Gruissem W. Calmodulins and calcineurin B-like proteins: calcium sensors for specific singal respinse coupling in plamts. Plant Cell, 2002,14:5389-5400.
    126. Marschner H. Mineral nutrition of higher plants, Acad Press, London, 1995,232-239.
    127. Mckevlin M R , Hook D D,Rozelle A A. A daption of plants to flooding and soilwaterlogging (A).In: Messina MG and Conner W Heds(C).Southrn Foresled Wellands Ecology and Management Lew is publish, 1998, 173-204.
    128. Morard P., Lacoste L., Silvestre J. Effect of oxygen deficiency on uptake of water and mineral nutrients by tomato plants in soilless culture. J Plant Nutr, 2000,23(8): 1063-1078.
    129. Muench DG., Archibold OW., Good AG.Hypoxic metabolism in wild rice (Zizania Plaustris): enzyme induction and metabolite production. Physiol Planta, 1993,89:165-171.
    130. Mustroph A., Albrecht G.Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol Planta, 2003,117:508-520.
    131. Noguch HK. Sugar utilization and anoxia tolerance in rice roots acclimated by hypoxic pretreatment. J Plant Physiol, 2004,161:803-808.
    132. Okimoto R., Sachs MM., Porter EK., Freeling M. Patterns of polypeptide synthesis in various maize organs under anaerobiosis. Planta,1980,150: 89-94.
    133.Pandey OP., Asha K., Haque H. NAD-alcohol dehydrogenase and superoxide dismutase activity in Zea mays under hypoxic and post-hypoxic stress regime. J Plant Biol, 2000a, 27(1): 71-73.
    
    134. Panedy S., Tiwari SB., Upadhyayaya KC., Sopory SK. Calcium signaling: linking environmental signals to cellular functions. Critical Rev Plant Sci, 2000,19(4):291-318.
    
    135. Perata P,,Loreti E., Guglielminetti L., Alpi A. Carbohydrate metabolism and anoxia tolerance in cereal grains. Acta Botanica Neerlandica,1998,47:269-283.
    
    136. Perata P., Alpi A. Plant response to anaerobiosis. Plant Sci, 1993,93:1-7.
    
    137. Perata P., Vernieri P., Armellini D.,Massimo B., Toqnoni F., Alpi A. Immunological determination of acetaldehyde-protein adducts in ethanol-treated carrot cell. Plant Physiol, 1992, 98, 913- 918.
    
    138. Pezeshki SR,Delaune RD and Mecder J F.Carbon assimilation and biomass partitioning in Auicennia germinans and Rhziophora mamgle seedlings in response to soil redox condition.Environmental and Experimental Bolaty,1997(37):161.
    
    139. Poovaiah BW., Leopold AC. Deferral of leaf senescence with calcium. Plant Physiol, 1973b 52: 236-239.
    
    140. Poovaiah BW., Leopold AC. Inhibition of abscission by calcium.Plant Physiol,1973a,51,848-851.
    
    141. Powles S B, Osmond C B. Inhibition of the capacity and efficiency of photosynthesis in bean leaflets illumimated in a CO_2 free atmosphere at low oxygen: a posible role for photo respiration. Aust J Plant Physiology, 1978,5:619-629
    
    142. Pradet A., Mocquot B., Raymond P., Morisset C., Aspart L., Delseny M. Energy metabolism and synthesis of nucleic acids and proteins under anoxic stress. In: Key JL., Kosuge T., eds. Cellular and molecular biology of plant stress. New York: Alan R. Liss,1985,227-245.
    
    143. Praodo FE. Lazaro JJ., Gorge JL. Regulation by Ca~(2+) of a Cytosolic fructose-1,6-bisphosphatease from spinach leaves. Plant Physiol, 1991,96: 1026-1033.
    
    144. Ricard B., Rivoal J., Spiteri A., Pradet A. Anaerobic stress induces the transcription and translation of sucrose synthase in rice. Plant Physiol, 1991,95: 669-674.
    
    145. Ricard B., VanToai T., Chourey P., Saglio P. Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. Plant Physiol,1998,116:1323-1331.
    
    146. Rivol J., Hanson AD. Metabolic control of anaerobic glycolysis-overexpression of lactate dehydrogenase in transgenic tomato roots supports the Davies-Roberts hypothesis and points to a critical role for lactate secretion. Plant Physiol, 1994,106:1179-1185.
    
    147. Roberts JKM., Callis J., Jardetzky D., Walbot V., Freeling M. Cytoplasmic Acidosis as a Determinant of Flooding in Tolerance in Plants. Proc Natl Acad Sci USA, 1984a, 81: 6029-6033.
    
    148. Roberts JKM., Callis J., Wemmer D., Walbot V., Jardetzky D. Mechanism of Ctoplasmic pH Regulation in Hypoxic Maize Root Tips and Its Role in Survival under Hypoxia., Proc Natl Acad sci USA, 1984b,81:3379-3383.
    
    149. Sacha MM., Subbaiah CC.,Saab IN. Anaerobic gene expressing and flooding tolerance in maize. J ExpBot, 1996,47:1-15.
    150. Saglio P., Germain V., Ricard B. The response of plants to oxygen deprivation. Role of enzyme incuction in the improvement of tolerance to anoxia. In: Lerner HR, editor. Plant responses to environmental stresses, from phytohormones to genome reorganization. New York, NY:Marcel Dekker; 1999,373-393.
    151. Sanders D., Pelloux J, Brownlee C, Harper JF, Calcium at the crossroads of signaling. Plant Cell, 2002,14:401-417.
    152. Sathayanarayanan PV., Poovaiah BW. Decoding Ca~(2+) signal in plants.Crit Rev Plant Sci, 2004, 23: 1-11.
    153. Scandalios JG.Oxygen stress and superoxide dismutases. Plant Physiol,1993,101:7-12.
    154. Sij JW., Swanson CA. Effect of petiole anoxia on phlowem transport in squash. Plant Physiol, 1973, 51:368-3741.
    155. Subbaiah CC., Bush DS., Sachs MM. Mitochondrial contribution to the anoxic Ca~(2+) signal in maize suspension-cultured cells. Plant Physiol, 1998,118: 759-771.
    156. Subbaiah CC., Bush DS., Sachs MM. Elevation of Cytosolic calcium precedes anoxic gene expression in maize suspension cultured cells. Plant Cell, 1994, 6:1747-1762.
    157. Subbaiah CC., Sachs MM. Altered patterns of sucrose synthase phosphorylation and localization precede callose induction and root tip death in anoxic maize seedlings. Plant Physiol, 2001, 125: 585-594.
    158. Subbaish CC., Sachs MM. Molecular and cellular adaptations maize to flooding stress. Annu Bot, 2003,91: 119-127.
    159. Sukar R, Chinta S, Ramanjulu S, et al. Alleviation of NaCl salinity stress by calcium is partly related to the increased proline accumulation in mulberry (Morus alba L.) callus. Journal of Plant Biology, 2001, 28: 203-206.
    160. Sulochana C., Rao TFVS., Savithramma N. Effect of calcium on water stress amelioration through calmodulin and scavenging enzymes in groundnut. Indian J Plant Physiol, 2002, 7: 152-158.
    161. Tagawa T., Bonner J. Mechanical properties of the Avena coleoptile as related to auxin and to ionic interactions. Plant Physiol,1957,32:207-212.
    162. Tao WJ., Zhao YE., Lu YT. The caldium dependent protein kinase in plant. J Wuhan Univ (Nat Sci Ed), 1999,45:83-87.
    163. Tewari A K, Tripathy B C. Temperature-stress-induced impairment of chlorophyll biosyntlietic reactions in cucumber and wheat. Plant Physiol, 1998. 117: 851-858.
    164. Tolbert N E. Microbedies-peroxismes and gly-oxysmes . Annu Rev Plant Physiology, 1971, 22: 4574.
    165. Topa MA., Cheeseman JM. Carbon and phosphorus partitioning in Pinus serotina seedlings growingunder hypoxic and low-phosphorus conditions. Tree Physiol, 1992,10:195-207.
    166. Tsuji H., Nakazono M., Saisho D., Tsutsumi N., Hirai A. Transcript levels of the nuclear-encoded respiratory genes in rice decrease by oxygen deprivation: evidence for involvement of calcium in
    ??expression of the alternative oxidase 1a gene. FEBS Letters, 2000,471:201-204.
    
    167. Ushimaru T., Kanematsu S., Katayama M. Antioxidative enzymes in seedlings of Nelumbo nucifera germinated under water. Physiol Plant, 2001, 112: 39-46.
    
    168. Wample RL., Davies RW., Effect of flooding on starch accumulation in chloroplasts of sunflower (Helanthus annuus L.). Plant Physiol,1983,73: 195-198.
    
    169. Wang Q., Sjolund R., Shih MC. Involvement of calcium in the anoxia-signaling pathway of Arabidopsis thaliuma. J Plant Physiol Mol Bio (植物生理与分子生物学报), 2002,28(6): 441-448.(in English)
    
    170. Waters I., Morell S., Greenway H., Colmer TD. Effects of anoxia on wheat seedlings. II Influence of O_2 supply prior to anoxia on tolerance to anoxia,alcoholic fermentation, and sugar levels. J Exp Bot, 1991,42:1437-1447.
    
    171. Wei ML., Sung JM. Carbohydrate metabolism enzymes in developing grains of rice cultured in solution with calcium supplement. Crop Sci, 1993,33:174-177.
    
    172. White PJ. Calcium channels in higher plants. Biochim Biophys Acta, 2000.1465:171-189.
    
    173. White PJ. The pathways of calcium movement to the xylem. J Exp Bot, 2001,52: 891-899.
    
    174. Wyn JRG, Lunt OR. Free Ca~(2+) and cytoplasmic streaming in Chara: A cell model activated by ATP and inhibited by cytoplasmic steaming in the alga Chara. Nature, 1982,296:647-651.
    
    175. Wyn JRG., Lunt OR. The function of calcium in plants. Bot Rev, 1967, 33:407-426.
    
    176. Xiong LM., Schumaker KS., Zhu JK. Cell signaling during cold, drought, and salt stress. Plant cell,2002, 14:165-183.
    
    177. Xu Y., Huystee RB., Assciation of calcium and calmodulin to peroxidase secretion and activation. J Plant Physiol,1993,141(2):141-146.
    
    178. Yang T., Poovaiah BW. Calcium/calmodulin-mediated signal network in plants. Trends in Plant Sci,2003, 8:505-512.
    
    179. Zeng Ying., Wu Yong., Avigne WT., Karen EK. Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential, and seedling survival. Plant Physiol, 1999,121(2): 599-608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700