用户名: 密码: 验证码:
重金属Cd污染土壤毒性的复合指标的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验选用小白菜(Brassica chinensis)为材料,在盆栽试验条件下,研究了外源添加不同处理Cd对土壤的植物指标、微生物指标、土壤酶指标、土壤化学指标、发光菌指标的影响,并综合分析Cd污染土壤的毒性大小。主要结论如下:
     1、不同浓度的Cd条件下,植物株高,生物量,根部质量,地上部分质量,根冠比,根茎中金属Cd的含量都存在明显差异,且与添加Cd的浓度呈负相关。以植物株高,生物量,根部质量,地上部分质量为研究对象,以减产10%为指标。重金属Cd毒害土壤的临界浓度分别为:20.19mg·kg~(-1),18.52mg·kg~(-1),15.63mg·kg~(-1),19.29mg·kg~(-1)。
     2、盆栽试验中,土壤中有效态Cd和全Cd的含量与添加的Cd浓度显著相关,相关系数分别为:r=0.9994~(**);r=0.9846~(**)。按照国家卫生标准蔬菜中Cd含量0.20mg·kg~(-1)为限量标准,依据土壤有效态Cd与小白菜茎根中有效态Cd的含量回归方程,求出Cd污染土壤的临界浓度分别为3.34mg·kg~(-1),3.68mg·kg~(-1)。
     3、土壤细菌,真菌,放线菌的数量及土壤呼吸强度随着Cd浓度的增加而降低。以细菌数量、真菌数量、放线菌数量、土壤呼吸强度的抑制率的50%为准,其临界浓度分别为:5.08mg·kg~(-1);2.59mg·kg~(-1);5.89mg·kg~(-1);3.20mg·kg~(-1)。
     4、高浓度的Cd对蔗糖转化酶和脲酶有较强的抑制作用,但是低浓度的Cd却有轻微的刺激作用。按抑制率25%为指标,则土壤脲酶,蔗糖转化酶的临界浓度分别为:2.81mg·kg~(-1),3.68mg·kg~(-1)。
     5、土壤添加重金属Cd会抑制T3明亮发光杆菌的发光程度,且抑制率与添加Cd的浓度呈正相关,由此计算出得出Cd的EC_(50)值为2.43mg·kg~(-1)。添加Ca~(2+)、K~+、Mg~(2+)后,Cd对T3明亮发光杆菌的毒性减弱,且K~+>Mg~(2+)>Ca~(2+)。添加有机酸后,T3明亮发光杆菌的相对发光强度与对照相比显著增强。说明添加有机酸减弱Cd对细菌的生物毒性,且解毒能力为酒石酸>草酸。
     6、各指标体系对土壤Cd的敏感程度为:发光菌>土壤酶类>土壤植物Cd的含量>土壤微生物>小白菜的农艺性状。由于发光菌,真菌和脲酶对Cd的毒性比较敏感,且这三个指标之间相关性比较好,因此,可以综合应用土壤中Cd的总量,发光菌指标,真菌数量指标,脲酶活性指标作为土壤重金属Cd污染程度的评价指标,来指示土壤中Cd的污染状况。
This study was performed by using the cabbage(Brassica chinensis) as material under the pot experiment to investigate the effects of external addition of different cadmium levels on the soil biomass,soil microbial, soil enzymes,soil chemical and soil bioluminescence bacteria indicators, and to comprehensively analyze the greatness of the toxicity of cadmium in the contaminated soil.The main results were as follows:
     1、Under the different concentrations of cadmium,the plant height,the biomass,the root quality,the aerial part quality,the root/shoot ratio has a negative correlation with the increasing of cadmium concentration.As the objective of the study,with reduces the production by 10%as the indicators, The critical concentrations for the heavy metal cadmium to contaminate the soil are 20.19mg·kg~(-1),18.52mg·kg~(-1),15.63mg·kg.(-1),19.29mg·kg~(-1) respectively.
     2、In the pot experiment,the soil effective cadmium and the totalcadmium content have a significant correlation with the increasing of cadmium concentration,the coefficients of the correlation were: r=0.9994~(**);r=0.9846~(**)respectively.According to the National Unified health Standard vegetables cadmium content 0.20mg·kg~(-1)is limited for the standard,basing on the soil effective cadmium,the regression equation with the content of the cabbage stem and root in cadmium,considering the soil contamination in cadmium the critical concentration were 3.34 mg·kg~(-1), 3.68mg·kg~(-1)respectively.
     3、The activity of the soil bacteria,soil fungi soil actinomyces and the soil respiration intensity decreased with the increasing of cadmium concentration.The standard suppress rate of the soil bacteria,soil fungi,soil actinomyces activity and the soil respiration intensity was 50%.Their critical concentrations were:5.08 mg·kg~(-1),2.59 mg·kg~(-1),5.89 mg·kg~(-1)and 3.20 mg·kg~(-1)respectively.
     4、The high concentration of cadmium had the strong inhibitory action on the sucrase and the urease,but low concentration of cadmium had the slight stimulatory action.According to the inhibition rate 25%as indicator,the critical concentration for the inhibition of soil urease and soil sucrase were: 2.81 mg·kg~(-1)and 3.68mg·kg~(-1)respectively.
     5、Addition of the heavy metal cadmium in a soil can inhibit the illumination intensity of T3 bioluminescence bacteria,and the inhibition rate had a positive correlation with the cadmium added concentration,thus the EC_(50)value of cadmium is 2.43 mg·kg~(-1).After addition of the inorganic ions the toxicity of cadmium on T3 bioluminescence bacteria weakens and K~+>Mg~(2+)>Ca~(2+).After addition of organic acids,the relative illumination intensity of the T3 bioluminescence bacteria compared to the control significantly improves.That explains that addition of organic acids weaken the biological toxicity of cadmiumon the bacteria and the disintoxication ability was tartaric acid>oxalic acid.
     6、The sensitivity of each indicator system on the soil cadmium was: bioluminescence bacteria>soil enzymes>soil plant biomass>soil microbial>soil agricultural status.As bioluminescence bacteria,fungi and urease were comparatively sensitive the toxicity of cadmium and the relation between these three indicators was better,so bioluminescence bacteria indicator,fungi number indicator,urease vital activity indicator can be comprehensively applied as the indicator to assess the toxicity of the soil heavy metal cadmium contamination,to indicate the situation of the contamination of the soil by cadmium
引文
陈志良,仇荣亮.重金属污染土壤的修复技术.环境保护.2001,6(8):17-19
    陈莹莹,王金花,陆贻通.丁草胺与Cd复合污染对土壤呼吸强度的影响.环境污染与防治.2006,28(10):32-36
    陈苏,孙丽娜,孙铁珩,等.钾肥对镉的植物有效性的影响.环境科学.2007,28(1):56-59
    陈莹莹,王金花,陆贻通.丁草胺与镉复合污染对土壤呼吸强度的影响.环境污染与防治.2006,28(10):81-86
    丁中元.重金属在土壤-作物中分布规律研究.环境科学,1989,10(5):78-84
    杜宗军,王祥红,李海峰,等.发光细菌的研究和应用.高技术通迅.2003,(12):103-106
    段云青,雷焕贵.小白菜富集Cd能力及对土壤Cd污染修复的能力研究.农业环境科学学报.2006,25(增刊):476-479
    段学军,闵航.Cd胁迫下稻田土壤生物活性与酶活性综合研究.农业环境科学学报.2004,23(3):422-427
    方学智,朱祝军,孙光闻.不同浓度Cd对小白菜生长及抗氧化系统的影响.农业环境科学学报 2005,(4):64-67
    高怀友,赵玉杰,师荣光,等.非连续时空统计条件下土壤中Cd有效态含量与全量的相关性分析.农业环境科学学报,2005,24(增刊):165-168
    郭平,高红杰,王瑾,等.不同环境条件对固定化细菌吸附低浓度Cd规律的影响.吉林大学学报(地球科学版).2007,37(2):55-60
    顾宗濂.用生物发光计测定污染水体生物毒性.环境科学,1983,4(5):30-34
    黄德乾,王玉军,周东美,等.三种不同类型土壤上水稻对Cu、Pb和Cd单一及复合污染的影响.农业环境科学学报.2008,27(1):46-49
    黄玉霞,李俊华,褚贵新,等.施肥对菜地土壤微生物和土壤酶活性的影响.石河子大学学报(自然科学版).2007 25(5):121-126
    胡超,付庆灵.土壤重金属污染对蔬菜发育及品质的影响之研究进展.中国农学通报.2007,26.(6):21-23
    龙健,黄昌勇,腾应,等.矿区废弃地土壤微生物及其生化活性.生态学报.2003,23(3):496-503
    卢瑛,冯宏,甘海华.广州城市公园绿地土壤肥力及酶活性特征.水土保持学报.2007,21(1): 159-72
    李博文,郝晋珉.土壤镉、铅、锌污染的植物效应研究进展.河北农业大学学报.2002,5(25):33-39
    李彬,李培军,王晶,等.重金属污染土壤毒性的发光菌法诊断.应用生态学报.2001,12(3):443-446
    李彬,李培军,王晶,等.污染土壤毒性研究方法进展.环境污染治理技术和备.2003,5(4):42-46
    李霞,潘开文,高平,等.农药对土壤微生物和酶活性的影响.安徽农业科学.2007,35(21):6510-6512
    李程峰,刘云国,曾光明,等.PH值影响Cd在红壤中吸附行为的试验研究.农业环境科学学报.2004,2(5):35-38
    李廷强,朱恩,杨肖娥,等.超积累植物东南景天根际土壤酶活性研究.水土保持学报.2007,21(3):85-90
    李彦文.生物传感器及其在环境监测方面的应用.环境保护科学.2004,2(30):35-38
    李宗义,邵强,郭伟云,等.用于环境监测的生物传感器.环境保护.2005,8(4):95-99
    李元.镉、铁复合污染对烟草叶片氨基酸含量的影响.生态学报.1998,18(6):640-647
    廖敏,黄昌勇,谢正苗.pH对Cd在土水系统的迁移和形态的影响.环境科学学报.1999,19(1):81-86
    林琦,陈英旭,陈怀满,等.有机酸对pb~(2+)、Cd的土壤化学行为和植株效应的影响.应用生态学报.2001,12(4):65-69
    林志芬,于红霞,许士奋,等.发光菌生物毒性测试方式的改进.环境科学.2001,22(2):114-117.
    刘和,王晓云.Lux基因及其在环境检测中的应用.环境与健康杂志.2001,18(4):253-256
    刘玉荣,党志,尚爱安.污染土壤中重金属生物有效性的植物指示法研究.环境污染与防治.2003,25(4):77-81
    刘俊华,张天红,薛澄泽.黑麦幼苗法对污泥中元素生物有效性的研究.陕西环境.1994,1(1):1-4
    刘恩玲,王亮.土壤中重金属污染元素的形态分布及其生物有效性.安徽农业科学.2006,34(3):547-548
    孟昭福,张增强.替代黑麦幼苗测定土壤中重金属生物有效性的研究农业环境保护.2001,20(5):337-340.
    秦波,白厚义,陈秀娟,等.南宁市郊菜园土壤重金属污染评价.农业环境科学学报.2006,25(增刊):45-47
    邱莉萍,张兴昌.Cu~(2+)Zn~(2+)Cd和EDTA对土壤酶活性影响的研究.农业环境科学学报.2006,25(1):30-33
    沈振国,陈怀满.土壤重金属污染生物修复的研究进展.农村生态环境.2000,16(2):39-44
    史静,李正文,李恋卿,等.外源Cd对小白菜吸收与分配的影响.生态与农村环境学报.2007,23(4):57-61
    宋玉芳,周启星,孙铁珩,等.土壤整体重量的生态毒性评价.环境科学.2005,26(1):85-89
    王代长,蒋新,贺纪正等.酸性土壤中Cd的吸附与运移特性.环境化学.2007,19(1):80-86.
    王丽莎,魏东斌,胡洪营.发光细菌毒性测试条件的优化与毒性参照物的应用.环境科学研究.2004(17):61-63
    王玉军,周东美,孙瑞娟,等.土壤中草甘膦与Cd的交互作用对3种土壤酶活性的影响.生态毒理学报.2006,1(1):51-53
    王学锋,朱桂芬.重金属污染研究新进展.环境科学与技术.2003,1(26):41-45
    韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报.2001(7):85-89
    薛澄泽,刘俊华.用黑麦幼苗法测定土壤中污染元素的生物有效性.环境化学.1995,14(1):34-39
    夏增禄.士壤环境容量及其应用.北京气象出版社,1991:85-95
    夏增禄,穆从如,李森照,等.北京东郊作物对重金属的吸收及其与重金属在土壤中的含量和存在形态的关系.生态学报.1983,3(3):277-287
    谢丹,徐仁扣,蒋新,等.有机酸对Cu~(2+)、pb~(2+)、Cd在土壤表面竞争吸附的影响.农业环境科学学报.2006,25(3):704-710
    谢思琴,顾宗镰,吴留松.砷、Cd对土壤酶活性的影响.环境科学,1987,8(1):19-32
    谢晓梅.Cd污染对红壤微生物生态特性的影响.广东微量元素科学,2002,9(9):54-57
    杨林书,王宏康.用小麦幼苗毒性指标标征土壤Cd污染的研究.农业环境保护.1996,15(2):81-85
    杨景辉.土壤污染与防治.北京:科学出版社.1995 78-80.
    杨万勤,王开运.土壤酶研究动态与展望.应用与环境生物学报.2002,8(5):564-571
    杨翠芬,李彬,王晶,等.重金属Cd污染土壤毒性的发光菌法评价.应用与环境生物学报.1999,5(4):49-51
    孙光闻,朱祝军,方学智.不同Cd水平对白菜生长及抗氧化酶活性的影响.园艺学报.2004,31(3):378-380
    孙雅董,周宜开.细菌发光的分子生物学及其发光基因的应用.国外医学分子生物学分册.1996,18(5):197-201
    周青,彭方睛.Cd对小白菜生长的影响与LaGly的防护效应.农业环境保护.1997,16(6):251-253
    宋玉芳,周启星.土壤整体重量的生态毒性评价.环境科学.2005,26(1);55-59
    宋玉芳,许华夏,任丽萍,等.土壤重金属污染对蔬菜生长的抑制作用及其生态毒性.农业环境科学学报.2003,22(1):13-15
    宋菲.土壤中重金属镉锌铅复合污染的研究.环境科学学报.1996,16:431-435
    山本宏基·连山,江川·古田敏行.重金属对土壤微生物的影响.日本肥料科学杂志.1981,52(2):34-37
    吴燕玉.土壤砷复合污染及其防治研究.农业环境保护,1994,13(3):109-114
    许光辉,郑洪元.土壤微生物分析方法手册.农业出版社.1986,11:102-107
    张超兰,白厚义.南宁市郊部分菜区土壤和蔬菜重金属污染评价.广西农业生物科学2001,9Vol.120,13-15.
    张咏梅,周国逸,吴宁.土壤酶学的研究进展.热带亚热带植物学报.2004,12(1):83-90.
    张书贵.土壤重金属污染评价与研究.安徽技术师范学院学报.2001,15(4)::23-24
    赵春燕,孙军德,宁伟,等.重金属对土壤微生物酶活性的影响.土壤通报,2001,32(2):93-95.
    余剑东,倪吾钟,杨肖娥.土壤重金属污染评价指标的研究进展.广东微量元素科学.2002,9(5):54-59
    尹君,高如泰.土壤酶活性与土壤Cd污染评价指标.农业环境保.1999,18(3):130-132
    余剑东,倪吾钟,杨肖娥.土壤重金属污染评价指标的研究进展.广东微量元素科学.2002,9(5):98-102
    俞芸芸,朱克寅.Cd胁迫下油菜土壤生物活性和酶活性的研究.绍兴文理学院学报(自然科学).2006,26(7):44-48
    曾路生,廖敏,黄昌勇,等.Cd污染对水稻土微生物量、酶活性及水稻生理指标的影响.应用生态学报.2005,16(11):2162-2167
    曾军,黄巧云,陈雯莉,等.基于luxAB标记菌株的发光定量分析及其在镉毒性检测方面的应用.应用与环境生物学报.2007,13(1):135-139
    郑春荣.复合污染对水稻生长的影响.土壤.1989,21(1):10-14
    宗良纲,孙静克,沈倩宇,等.Cd、Pb~(2+)污染对几种叶类蔬菜生长的影响及其毒害症状.生态毒理学报.2007,2(1):63-68
    Angela I,Matthieu F,Anne K,et.al.Recombinant luminescent bacterial sensors for the measurement of bioavailability of Cd and lead in soils polluted by metal smelters.Chemosphere.2004,(55):147-156
    Bontidean I,Mortari A,Suzanne S,et.al.Biosensors for detection of mercury in contaminated soils.Environmental Pollution.2004,131:255-262
    Bemhand J.Effect of heavy metal contamination of soils on micmnucleus induction in tradescantion and on microbialenzy activities:a comparative investigation.Mutation Research.2002,515:111-124
    Corbisier P,Thiry E,Diels L.Bacterial biosensors for the toxicity assessment of solid wastes.Environmental Toxicology and Water Quality.1996,11:171-177.
    Chen T B,Wong J W C.Assessment of trace metal distribution and contamination in surface soils of Hong Kong.2003,32:55-58
    Ferrier V.Evaluation of toxic and genotoxic potentialof stabilized industrial waste and contaminated solid.Waste Management,2002,22:241-247
    Han F.X.,Banin A.,Kingery W.L.et.al.New approach to studies of heavy metal redistribution in soil.Advances in Environmental Research.2003,5(8):113-120
    Heitzer A,Applegate B,Kehrmeyer S,Pinkart H,Webb O F,Phelps Y J,White D C,Sayler G S.Physiological considerations of environmental applications of lux reporter fusions.Journal of Microbiological Methods.1998,33:45-57.
    Ivask A,Francois M,Kahru A,Dubourguier H C,Virta M,Douay F.Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters.Chemosphere.2004,55:147-156.
    Ivask A,Virta M,Kahru A.Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium,zinc,mercury and chromium in the soil.Soil Biology and Biochemistry.2002,34:1439-1447.
    Ivask A,Hakkila K,Virta M.Detection of organomercurials with sensor bacteria.Analytical chemistry.2001,73(21):5168-5171
    Lewis J C, Feltus A, Ensor C M, et. al. Application of reporter genes. Analytical chemistry. 1998, 70(17): 579-585
    Mitchell R J, Gu M B. Construction and characterization of novel dual stress-responsive bacterial biosensors. Biosensors and Bioelectronics. 2004,19: 977-985.
    Moreno J. L, Garcia C, Land I L, et al. The ecological dosevalue ( ED_(50)) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil. Soil Biology and Biochemistry, 2001, 33:483-489.
    Pongratz R. Arsenic speciation in environmental samples of contaminated soil. The Science of the Total Environment. 1998,224: 133-141
    Petancn T., Romantschuk, M.. Toxicity and bioavailability to bacteria of particle-associated arsenite and mercury. Chemosphere 2003.50 (3), 409-413.
    Petanena T. Lyytika" inenb M., J. Lappalainenc, M et al. Assessing sediment toxicity and arsenite concentration with bacterial and traditional methods. Environmental Pollution. 2003, (122) :407-415
    Pfeifer F. Toxicity assessment of Pail in aqueolm model systems an contaminated soils using the biolomineacencetest. International symptom sium soil decontamination using biological processes, 1992:102:231-234
    Quevauviller P, Rauret G, Lopez-Sanchez, J-F, et. al., Certification of trace metal extractable contents in a sediment reference material (CRM601) following a three-step sequential extraction procedure. The Science of the Total Environment. 1997,205,223-234.
    Sabine K, Shimshon B, Rolf D. et. al. Reporter gene bioassays in environmental analysis. 2000 (366):769-779
    Scott. F, et al. Toxicity of nickel to a soil-Dwelling springtail. Ecotoxicology and Environmental Safety. 1999, 43(1): 57—61
    Stephanie C. Hamel U, Kristie M,. The estimation of the bioaccessibility of heavy metals in soils using artificial biofluids by two novel methods:mass-balance and soilrecapture. The Science of the Total Environment 1999(243):273-283
    
    Sunahnra G. et al. toxicological characterization of energetic substances using a soil extraction procedure. Ecotoxicology and Environmental Safety, 1999, 43(2): 138-148
    Tiina P,Martin R,Toxicity and bioavailability to bacteria of particle-associated arsenite and mercury.Chemosphere.2003(50):409-413
    Tiina P,Martin R.Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extracts.Analytica Chimica Acta.2002(456):55-61
    Tessier,A.,Campbell,P.G,Bisson,M.Sequential extraction procedure for the speciation of particulate trace metals.Analytical Chemistry.1979,51(7),844-851.
    Tamar B,Mark G,Ralph R.Effects of dissolved organic carbon and salinity on bioavailability of mercury.Applie and Environmental Microbiology,1997,63(11):98-102
    Tibazarwa C.,Corbisier P,Mench M.,et.al.A microbialbiosensor to predict bioavailable nickel and its transfer to plants.Environmental Pollution.2001,113:19-26.
    Tibazarwa P.A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants.Environmental pollution 2001,113:19-26
    Wang W S,Shan X Q,Wen B.Relationship between the extractable metals from soils and metals taken up by maize roots and shoots.Chemosphere.2003(53):523-530
    Ma Y B,Uren N C.Transformations of heavy metals added to soil - application of a new sequential extraction procedure.Geoderma.1998,84:157-168
    Youn-JooAn.Soil ecotoxicity assessment using Cd sensitive plants Environmental Pollution2004,(127):21-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700