用户名: 密码: 验证码:
分层防护层对爆炸波的衰减和弥散作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成层式防护结构是当前我国人防工程的主要形式,在以空袭为主要打击手段的高科技战争背景下,如何改进成层式防护结构对各种导弹或航弹等武器爆炸后产生的冲击波的防护效果,是当前防护工程领域研究的重点课题。其中,利用应力波在分层介质中的传播原理对成层式防护结构的分层结构进行改造,进而分析爆炸波在结构中的传播规律以及结构的毁伤效应是本文的重点所在。其研究成果不但能够给成层式防护结构的改进和优化提供有益的理论和实践依据,而且对各种军事和民用中防护层的设计和推广有很大的参考价值,是一项极具学术意义和应用前景的课题。本文的主要研究内容如下:
     运用应力波在分层介质界面上的透反射原理,推导出弹性波在多层介质中的应力峰值和能量随材料波阻抗变化的传递规律,指出按照材料波阻抗软硬相间的排列顺序可以达到将透射波峰值和能量降低的最佳效果。利用一维差分程序模拟的分层介质中弹塑性应力波的传播规律表明,从硬材料到软材料的界面可以起到削弱应力波峰值和降低波的能量以及增加波形弥散的作用,其效果与界面两边材料的力学性能如波阻抗比、屈服强度比有关。
     通过对混凝土、黄土、沙土、泡沫混凝土等工程材料以及由它们构成的不同分层组合试件的SHPB冲击实验,在不同加载速率下,对各种材料或组合件的入射和透射应力峰值、能量进行了对比。结果显示,在一维应力或一维应变条件下,泡沫混凝土的抗冲击性能最好,黄土次之,混凝土和沙最差。多层组合试件的实验表明,分层材料中加入泡沫混凝土后其抗冲击吸能效果显著增加。采用国际通用动力学软件LSDYNA对SHPB实验进行数值模拟,计算结果和实验结果取得了一致,同时进一步研究了材料的本构对应力波传播的影响。
     以现行人防指挥工程为基准,采用1:4相似比,进行了几种不同分层防护结构的大比尺野外爆炸相似模拟试验,研究分层防护结构对爆炸波的衰减、阻尼和导向作用。试验分别采用平面装药加载和集团装药加载两种形式来模拟核爆和普通爆破航弹爆炸条件下防护结构所承受的冲击载荷。试验结果显示,平面装药加载下加入泡沫混凝土的多分层设置的人防工程对爆炸波峰值应力、应力冲量和震动加速度的衰减效果要明显优于分配层仅为沙的单层设置的人防工程。
     通过LSDYNA软件对集团装药加载下的模拟试验进行了数值模拟,进一步对现场爆炸试验进行了必要的补充分析,并采用数值模拟分析了相同冲量但强度和持续时间不同的载荷下,不同分层方式对人防结构的毁伤效应的影响。结果表明,分层总厚度相等的条件下,适当增加分层数目可以有效减小冲击载荷对结构的压、剪损伤和拉伸破坏,降低结构所受的冲击能量,尤其对于高强度、持续时间短的脉冲载荷,多分层防护结构的抗毁伤能力优势更为明显。
At present, it forms a major project in the field of protection research how to improve the protection of layered protective structure, which is an important form of Civil Defense Construction in our country, against shock waves resulting from the explosion of some weapons, such as missiles, bombs and so on, under the background of high-tech war which is based mainly on attacking means of air raid. This dissertation emphasizes reforming the distribution layers of layered structure by making use of new energy-absorbing materials and transmission principles of stress waves in layered media, and further analyzing the transmission principles of explosive waves in construction and the destruction effect. As a project of great academic significance and application prospect, the research not only provides beneficial theory and practice so as to improve and optimize layered structure, but also can be used as reference while protection layers of both military and civil use are designed and popularized. The major contents of the dissertation are as following:
     By applying transmission and reflection principles of stress waves on the interface of layered media, it is derived mathematically that the peak value and energy of flexible waves change as wave impedance of material changes. It is also pointed out that the peak value and energy of transmission stress waves will reach an optimal decrease if different materials are arranged with the soft and hard wave impedance alternating with each other. As is showed by transmission principles of elastic and plastic stress waves in layered media, which is calculated by using finite difference method, the media interface of the soft and hard materials can exert effects on weakening the peak value and energy of stress waves, and strengthening the dispersion of stress waves. In addition, the effects relate to the mechanic performance of materials, such as ratio of wave resistance and yield stress, on both sides of the interface.
     With SHPB experiment on engineering materials such as concrete, soil, sand, foam and concrete, and different layered specimens made of them, comparing the stress peak value and energy of the input and transmission of different materials and combined specimens under different velocity loading, it is showed that foam concrete is the most impact-resistant, soil the second, and concrete and sand the worst. As also showed in the experiment of layered specimens, after a layered specimen is filled with foam concrete, the impact-resistance and energy-absorption will strengthen strikingly. Meanwhile, the dispersion of stress waves of layered materials strengthens as layers increase in number, which is more striking with high rate of strain. After numerical simulation of SHPB experiment via LSDYNA, international general dynamic software, the calculation result goes consistently with that of the experiment. Meanwhile, the experiment in this dissertation further studies effects the model of material constitution may exert on the peak value and energy of stress waves on transmission.
     Based on the actual Civil Defense Construction, applying the analogy ration of one to four, several analogy simulation experiments of large scale outdoor explosion with different layered forms protection construction are conducted, aiming at studying the weakening, resistance and directing effects of explosive waves resulting from layered protection construction. Applying plane and mass explosive load respectively, the experiment simulates the impact load on protection construction under the condition of nuclear and ordinary bomb explosion. It is showed that if a Civil Defense Construction with layered distribution in plane explosive load is inserted with foam concrete, it will be superior to which only with one distribution layer of sand in the weakening effect on the peak value stress, stress impulse and quake acceleration.
     After numerical simulation under mass explosive load via LSDYNA software, the explosion experiment on the spot is further supplemented and analyzed. In addition, applying numerical simulation, the experiment analyzes how different methods of layer forms affect the destruction of Civil Defense Construction with the same impulse intensity but different duration of load. The result shows that, under the condition of the same thickness of material, increasing the number of layers properly can weaken the press, the cutting damage and the destruction due to extension, and lower the impact energy on the construction effectively. In particular, multi-layered protection construction is rather striking in its advantage of destruction-resistance under high stress and low impulse load.
引文
[1].张进法,姚永信.空军93688部队装备部.精确制导炸弹JDAM及其抗击方法.地面防空武器.2004年第3期.pp17-18;
    [2].周忠良,施延华.浅议防护工程在高技术局部战争中的作用及发展对策.中国土木工程学会防护工程学会第六次学术年会论文集,昆明.1998;
    [3].周丰峻,王仁立.总参工程兵科研三所.高技术武器力学破坏效应极其防护技术的发展趋向.中国土木工程学会防护工程学会第四届理事会暨第七次学术年会论文集.井冈山.2000;
    [4].潘人俊,陈贵堂.空袭与反空袭战中的南联盟民防作用及其对我国人防工作的启示.中国土木工程学会防护工程学会第四届理事会暨第七次学术年会论文集.井冈山.2000;
    [5].孟宪清.北约空袭南联盟给人民防空的几点启示.中国土木工程学会防护工程学会第四属理事会暨第七次学术年会论文集.井冈山.2000;
    [6]. G.C.Hoff, "Shock-Aborbing Materials; Backpacking Materials for Deeply Buried Protective Structures", Technical Report NO.6-763 Report, Mark 1967
    [7]. G.C.Hoff, W.F Mecleese, and J.M.Holzer; "Shock-Absorbing Materials; Aging of Backpacking Materials, Technical Report NO.6-763, Report 4, November 1968
    [8]. G.C.Hoff, "Shock-Absorbing Materials; Selection of a Suitable Low-Density Concrete for Backpacking for a Proposed Field Test", Technical Report NO.6-673, Report 3 April 1968
    [9]. G.C.Hoff, "Operation Flint Lock, Shot Pile Driver; Grouting and Materials Control", Miscellaneous Paper C-68-7, March 1969
    [10]. Gibson L J, Ashby M F. Cellular Solids: Structure and Properties. Oxford: Pergamon Press. 1997
    [11]. Ashby M F. The mechanical properties of cellular solids. Metallic Trans, 1983, 14A, 1755-1769
    [12]. Christenson R M. Mechanics of cellular and other low-density materials, Int J Solids Struct, 2000, 37: 93-104
    [13]. Lorna J.Gibson & Michael F.Ashby, Cellelar solids: Structure and Properties,Cambridge University Press (1997), pp.203-208
    [14].徐光,《金属泡沫材料的生产方法和研究现状》,武汉冶金科技大学学报,Vol.21,Dec,1998,pp.401-404
    [15].李晓军,张殿臣,安媛媛,1996,“国外工程复合材料的发展现状”,中国防护工程科技报告
    [16]. A.H.Shan and S.K.Datta, "Harmonic waves in a periodically laminated medium", Int. J. Solids Structures, Vol. 18, No.5,397-410, 1982
    [17]. T.J.Delph, G..Herrmann and R.K.Kanl, "Harmonic waves propagation in a periodically layered, in-finite elastic body: antiplane strain", J. Appl. Mech. 45.343, 1978
    [18]. T.J.Delph, G..Herrmann and R.K.Kanl, "Harmonic waves propagation in a periodically layered, in-finite elastic body: plane strain, numerical results", J. Appl. Mech. 47.531, 1980
    [19]. W.Karunasena and A.H.Shan, "Wave Propagation in a multilayered laminated cross ply composite plate", ASEM J. Appl. Mech, Vol.58, 1028-1032, 1991
    [20]. Y.Wang, R.K.N.D.Rajapakes, "An exact stiffness method for elastodynamics of layered orthotropic half-plane, "ASEM J. Appl. Mech, Vol.61,339-348, 1994
    [21]. Israil, A.S.M., and Banerjee.P.K, "Two-dimensional transient wave propagation problems by time-domain BEM", Int. J. Sloids structure, Vol.26, 851-864, 1990
    [22]. Rajapakse, P.K.N.D, and Wang.Y, "Elastodynamic Green's functions of an orthotropic half plane", J. Engrg. Mech, Vol.117, 558-604, 1991
    [23]. T.H.Ju, and S.K.Datta, "pulse propagation in a laminated composite plate and nondestructive evaluation", Composites Engineering, Vol.2, 55-56, 1992
    [24]. C.T.Sun and S.Li, "Three-dimensional effective elastic constants for thick laminates", Journal of Composite Materials, Vol.22, 629-639, 1988
    [25]. Post.D, Dai.F.L, and Guo.Y, "Interlaminar shear module of cross ply laminates: An experimental analysis", Journal of Composite Materials, Vol.23,264-279,1989
    [26]. Ajit K.Roy and Stephen W.Tsai, "Three-dimension effective module of orthotropic and symmetric laminates", ASEM Journal of Applied Mechanics, Vol.59, 39-47, 1992
    [27]. Pagano.N.J., "Exact module of anisotropic laminates", Mechanics of Composite Materials, Vol.2, G.P.Sendeckyj,ed, Academic press.
    [28]. Nemat-nasser.S and Yamada.M, "Harmonic wave in layered transversely isotropic composites", Journal of Sound an Vibration, Vol.79, 161-170, 1981
    [29]. Cagniard, L. Reflection and Refraction of Progressive Seismic Waves (1939), (English trans) by E A Flynn and C H Dix., New York: McGraw-Hill, 1962
    [30]. Ewing E, Jardetzky W S and Press F. Elastic Waves in Layered Media. New York: McGraw-Hill, 1957
    [31]. Muller, G. Theoretical seismograms for some types of point-sources in layered media, Part Ⅰ: theory, Part Ⅱ: numerical calculation, Part Ⅲ: Single force and dipole sources of arbitrary orientation. Geophysik Zhurnal,1969, 34: 15~35, 147~162; 1969, 35: 347~271
    [32]. Gilbert F and Backus G E. Propagator matrices in elastic wave and vibration problems. Geophysics, 1966, 31: 326~332
    [33]. Pao Y H & Gajewski R. The Generalized Ray Theory and Transient Response of Layered Elastic Solids. In: Physical Acoustics, (ⅩⅢ, Chapter 6, ed by Mason W P). New York: Academic Press, 1977
    [34]. Pao Y H, Howard S M and Keh D C. Dynamic Response and Wave Propagation in Plane Trusses and Frames. AIAA Journal, 1999, 37(5): 594~603
    [35]. Pao Y H., Su X Y and Tian J Y. Reverberation Matrix Method for propagation of sound in a multilayered liquid. Journal of Sound and Vibration, 2000, 230(4): 743~760
    [36]. Kennett B L N. Seismic Wave Propagation in Stratified Media. Cambridge: Cambridge University Press, 1983
    [37]. Su X Y, Tian J Y & Pao Y H. Application of the Reverberation-Ray Matrix to the Propagation of Elastic Waves in a Layered Solid. MMC2001 at San Diego. 2001, 26~29
    [38]. T.C.T.Ting and I.Mukunoki., "A theory of viscoelastic analogy for wave propagation nomal to the layering of a layered medium", Journal of Applied Mechanics, Vol.46, 329-336, 1979
    [39].陈立,李永池,“瞬态波在层合板中传播的粘弹比拟方法”,中国科学技术大学研究生论文,1988
    [40]. E.Cosserat and F.Cossert, "Theorie des corps de'formables", Hermann, Paris
    [41]. J.L.Ericksen and C.Truesdell, "Exact theory of stress and strain in rods and shells", Arch. Rat. Mech. Anl. 16,51,1964
    [42]. S.J.Allen and K.A.Kline, "A mixture theory with microstructures", ZAMP, 20,145, 1969
    [43]. R.J.Twiss and A.C.Eringen, "Theory of Mixture for micromorphic materials", Balance laws, Int. J. Engng Sci, 9, 1019, 1971
    [44]. A.E.Green and P. M. Naghdi, "On basic equations for mixtures", Quart. J. Mech. Appl. Math. 9,329, 1970
    [45]. R.M.Bowen, "Theory of Mixture, in continuum physics", Academic Press, New York, 1976
    [46]. Hugh D. Meniren and Yalcin Mengi, "Amixture theory for elasticlaminated composites", Int. J, Solids Structures, Vol. 15, 281-302, 1979
    [47]. H.Murakami and A.Maewal, "A mixture theory with a director for elastodynamics of periodically laminated media", Int. J. Solids Structures, Vol. 17, 155-173, 1979
    [48]. H.Murakami, "A mixture theory for wave propagation in angle-ply laminates, part 1: Theory", ASME Journal of Applied Mechanics, Vol. 52, 331-337, 1985
    [49]. H.Murakami, "On mixture theories for diffusion and wave propagation in composite materials", PH.D, Dissertation, University of Califomia, San Diego.1978
    [50]. H.Murakami, A.Maewal and G.A.Hegemier, "Mixture theory for propagation of longitudinal waves in unidirectional composites with fibers of arbitrary cross section Ⅰ: Formulation", Int. J. Solids Structures, 15, 325-334, 1979
    [51]. H.Murakami and G.A.Hegemier, "A mixture theory for wave propagation in anisotropic angle-ply laminates", Mechanics Today, Vol.5, 329-349, 1980
    [52]. H.Murakami and A.Akiyama, "A mixture theory for wave propagation in angle-ply laminates, Part 2: Application", ASME Journal of Applied Mechanics, Vol.52, 337-344, 1985
    [53]. E.Reissner, "On a certain mixed variation theory and proposed application", Int. J. for Numerical methods in Engng, Vol. 20, 1366-1368, 1984
    [54]. Zhi-Jing Tang and T.C.T.Ting, "Transient waves in a layered anisotropic elastic medium", Proc.R.Soc.Lond,.A, 397,67-85, 1985
    [55]. Y.R.Wang and T.W.Chou, "First-order perturbation analysis of transient interlaminar thermal stress in composites", ASME Journal of Applied Mechanics, Vol.60, 561-563, 1993
    [56]. Every. A.G., and Kim.K.Y., "Time domain dynamic response functions of elastically anisotropic solids", J. Acoust. Soc. Am, Vol.95, No.5, 2505-2516, 1994
    [57]. R.L.Weaver, W.Sachse and Kwang Yulkim, "Transient elastic waves in a transversely isotropic plate", ASEM Journal of Applied Mechanics, Vol.63,337-346, 1996
    [58]. Datta.S.K, Ju.T.H, and Shah.A.H, "Scattering of an impact wave by a crack in a composite plate", ASEM Journal of Applied Mechanics, Vol.59, 596-603, 1992
    [59]. Liu.G.R and Achenbach.J.D, "Strip element method to analyze wave scattering by cracks in anisotropic laminated plates", ASEM Journal of Applied Mechanics, Vol.62, 607-613, 1995
    [60]. Karim.M.R and Kundu.T, "Transient surface response of layered isotropic and anisotropic half spaces with interface crack", Int. J. Fracture, vol.37, 245-262, 1988
    [61]. Franssens.G.R and Lagasse.P.E, "Scattering of elastic waves by cylindrical obstacle embedded in a multi layered medium", J. Acoust. Soc. Am, Vol.76, 1535-1543, 1984
    [62]. Karim.M.R, Kundu.T, and Desai.C.C, "Detection of delamination crack in layered fiber-reinforced composite plates", Journal of Pressure Vessel Technology, Vol.111, 165-171, 1998
    [63]. Nour-Omid.D and Taylor.R.L, "An Algorithm for Assembly of the Stiffness Matrices into a Compacted Data Structure", Eng. Comput. Vol. 1, 312-316, 1984
    [64]. Joubert.W.D and Manteuffel.T.A, "Interactive Method for Nonsymmetric Liner Systems, in Iterative Methods for Large Liner Systems", Academic Press, Boston 149-171, 1990
    [65]. Lanczos.C, "An Iteration Method for the Solution of the Eigen value Problem of Liner Differential and Integral Equation", J.Res.Nat.Bureau Standard, Vol.45, 255-282, 1950
    [66]. Al-Nassar, Y.N., Datta.S.K and Shan.A.H, "Scattering of Lamb Waves by a Normal Rectangular Strop Weldment", Ultrasonics, Vol.29, 125-132, 1991
    [67]. Medick.M.A, "On classical plate theory and wave propagation", ASEM Journal of Applied Mechanics, Vol. 28, 223-228, 1961
    [68]. Chow.T.S, "On the propagation of flexural wave on an orthortropic laminated plate and its respone to an impulse load", J. Composite Materials, Vol. 5, 306-319, 1971
    [69]. Lal.K.M, "Cofficients of restitution for low velocity transverse impact on thin graphite-epoxy laminates", Composite Technology Review, Vol.6, 112-117, 1984
    [70]. Wu.H.Y.T and Springer.G.S, "Measurements of matrix cracking and delamination coused by impact on composite plates", J. Composite Materials, Vol. 22, 518-532, 1988
    [71]. Sun.C.T, and Tan.T.M, "Wave propagation in a graphite-epoxy laminate", J. Astro. Sci., Vol. 32, 269-284, 1984
    [72]. Kundu.T and Mal.A.K, "Elastic waves in a multilayered solid due to a dislocation source", Wave Mdtion, Vol.7, 459-471, 1985
    [73]. Xu.P.C and Mal.A.K, "Calculation of the Green's functions for layered viscoelastic solid", Balll. Seism. Soc. Am., Vol. 77, 1823-1837, 1987
    [74]. Mal.A.K, "Wave propagation in layered composite laminates under periodic surface loads", Wave Motion, Vol. 10, 257-266
    [75]. Karm.M.R, Mal.A.K and Bar-Cohen.Y, "Inversion of leaky lamb wave data by simplex algorithm", J. Acoust. Soc. Am., Vol.88, 482-491, 1990
    [76]. Mal. A.K, Yin.C and Bar-Cohne.Y, "Analysis of acoustic pules reflected from the fiber-reinforced composite laminates", ASME Journal of Applied Mechanics, Vol.59, 5136-5144, 1991
    [77]. Mal.A.K and Shyh-Shiuh lih, "Elastondynamic response of a unidirectional composite laminate to concentrated surface loads: part Ⅰ", ASME Journal of Applied Mechanics, Vol.59, 878-885, 1992
    [78]. Shyh-Shiuh Lih, Mal.A.K, "Elastondynamic response of a unidirectional composite laminate to concentrated surface loads: part Ⅱ", ASME Journal of Applied Mechanics, Vol.59, 887-892, 1992
    [79]. Green.E.Rhian, "Response of a fiber composite laminate to a time-varying surface line load", ASME Journal of Applied Mechanics, Vol. 60, 217-220, 1993
    [80]. Green.E.Rhian, "Transient impact response of a fiber composite laminate", Acta Mech., Vol. 86, 153-165, 1991
    [81]. Gibson.L.J. and Ashby.M.F, Cellular Solids, Structure and Properties. Second edition. Cambridge University Press, Cambridge, UK.
    [82].方秦,张亚栋,柳锦春,吴平安.冲击爆炸条件下钢筋混凝土结构动态响应及破坏形 态的数值分析,中国土木工程学会防护工程学会第七次学术年会论文集.井冈山:2000.9:270-277
    [83].方秦,柳锦春,张亚栋等.爆炸荷载作用下钢筋混凝土梁破坏形态有限元分析,《工程力学》,2001,18(2):1-8
    [84]. Krauthammer, T.,Shallow-Buried RC Box-Type structures, Journal of Strucural Engineering, ASCE[J], 110(3), 1984:637-651
    [85]. Krauthammer, T.,Assadi-Lamouki, A. and Shanaa, H. M.,Analysis of Impulsively Loaded Reinforced Concrete Elements-Ⅰ.Theory, Computers and Structures, 1993,48(5):851-860
    [86]. R.P.Dhakal,T.-C.Pan.Response characteristics of structures subjected to blasting-induced ground motion,2003,28,813-828
    [87]. Chengqing Wu,Hong Hao.Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions,2005,31,699-717
    [88].海勒施·耶玛古赤(王颖译).爆炸荷载作用下地下钢筋混凝土构件的破坏评估,《防护工程》,2001,(1):104-110
    [89].赫尔曼·帕尔(李其超译).结构和结构构件抗常规武器效应的设计(四),《防护工程》,1988,36(2):72-92
    [90]. Michael B. Gott, Alan J. Watson, The Applicability of the SDOF Method for Modeling Global Structural Response to the Pressures Produced by Charges at Short Stand-Off Distances, the 9th International Symposium Interaction of the Effects of Munitions with Structures, Germany, 1999
    [91]. Lok, T.S., Pei, J.S. and Heng, L.Steel fiber reinforced concrete panels subjected to blast loading, Proc. of 8th Int. Symp. on Interaction of the Effects of Munitions with Structures, McLean, VA, USA, April, 1997, Vol. IB, p701-711.
    [92]. Tat-Seng Lok and Jin-Song Pei, BLAST AND IMPACT RESISTANCE OF CONCRETE PANELS REINFORCED WITH EXTERNALLY-BONDED GLASS FIBREMAT, the 9th International Symposium Interaction of the Effects of Munitions with Structures, Germany, 1999
    [93]. Ruprecht K. Zimbeimann, DEVELOPMENT OF HIGH STRENGTH CONCRETE FOR ROTECTION ELEMENTS, 9th International Symposium Interaction of the Effects of Munitions with Structures, Germany, 1999
    [94]. Dietmar CARL, Measured and Computed Pressures in Concrete Targets Subjected to Close in Detonations, the 9th International Symposium Interaction of the Effects of Munitions with Structures, Germany, 1999
    [95]. Alain Rouquand, SHOCK PROPAGATION THROUGH A CONCRETE PLATE TO A BONDED EXPLOSIVE CHARGE, the 9th International Symposium Interaction of the Effects of Munitions with Structures, Germany, 1999
    [96]. Jaap Weerheijm, Ans van Doormaal, New data for concrete at high loading rates-Instrumented spalling tests, the 11th International Symposium on Interaction of the Effects of Munitions with Structures, Mannheim, Germany, May5-9, 2003
    [97]. Harald Schuler, Christoph Mayrhofer, Klaus Thoma, Experimental determination of damage parameter and implementation into an new damage law, the 11th International Symposium on Interaction of the Effects of Munitions with Structures, Mannheim, Germany, May5-9, 2003
    [98]. Frank Landmann, Engineering tool for the computation of the effects of near and contact detonations on conventional and fiber reinforced concrete, the 11th International Symposium on Interaction of the Effects of Munitions with Structures, Mannheim, Germany, May5-9, 2003
    [99].曹国庆.喷锚支护抗爆性能与设计,《防护工程》,1979,2(2):34-51
    [100].任辉启.砂砾地层中坑道喷锚支护在项爆和侧爆条件下的抗爆性能,《防护工程》,1986,27(1):12-18
    [101].曾宪明,曹长林,肖峰.黄土坑道喷锚网支护的抗爆性能(Ⅰ破坏形态),《防护工程》,1990,(3):20-27
    [102].刘兆富.对离壁被复结构抗爆性能的剖析,《防护工程》,1984,21(3):21-25
    [103].胡再龙,朱伯龙.爆炸作用下坑道三铰拱衬套在支承运动下的非线性反应分析,《爆炸与冲击》,1986,6(4):337-342
    [104].方秦,吴平安.爆炸荷载作用下影响RC梁破坏形态的主要因素分析,《计算力学学报》,2003,20(1):39-42
    [105].方秦,吴平安.爆炸荷载作用下影响RC梁破坏形态的主要因素分析,《计算力学学报》,2003,20(1):39-42
    [106].张素梅,田志敏.爆炸荷载作用下钢板混凝土复合结构的塑性动力响应,中国土木工程学会防护工程学会第六次学术年会论文集.昆明:1998.11:271-276
    [107].董军,李聚轩,张光文等.常规武器作用下浅埋地下工程整体破坏的概率分析,中国土木工程学会防护工程学会第七次学术年会论文集.井冈山:2000.9:303-306
    [108].吴祥云,赵玉祥,王振宇.大幅度提高岩体中结构防护能力的基本方法,中国土木工程学会防护工程学会第七次学术年会论文集.井冈山:2000.9:320-325
    [109]. Shiming Zhuang, Guruswami Ravichandran and Dennis E. Grady, An experimental investigation of shock wave propagation in periodically layered composites, Journal of the Mechanics and Physics of Solids, 51(2003) 245-265
    [110]. Y.M. Gupta, J.L. Ding, Impact load spreading in layered materials and structures: concept and quantitative measure, International Journal of Impact Engineering, 27(2002) 277-291
    [111].董永香,黄晨光,段祝平,多层介质对应力波传播特性影响分析,高压物理学报,Vol.19,No.1,2005.3
    [112].董永香,夏昌敬,应力波在多层介质中传播特性数值分析,弹道学报,Vol.16,No.3,2004-9
    [113].胡金生等,接触爆炸时遮弹层对底部介质应力波传播影响的试验研究.防护工程.2004(3)7-12.
    [114]. Tedesco J W, Hayes J R, Landis D W. Dynamic response of layered structures subject to blast effects of non-nuclear weaponry. Computers & Structures, 1987, 26(1/2): 79-86.
    [115].连志颖,“动光弹性法研究材料引入的分配层对应力波传播的影响”,实验力学,Vol 18(4),2003.12。
    [116].王礼立.应力波基础(第2版),国防工业出版社,2005,8.
    [117].胡时胜,SHPB实验技术新进展.西安:第一届爆炸力学实验技术学术交流会.2000.
    [118].吴家璧等,平面波加载技术试验规程.中国人民解放军总参谋部.1993.
    [119]. Ares J. Rosakis, G. Ravichandran. Dynamic failure mechanics. International Journal of Solids and Structures, 2000, 37: 331-348
    [120]. LS-DYNA keyword user's manual 970, Livermore Software Technology Corporation, 2003.
    [121]. Lee E L, Finger M, Collins W, JWL equation of state coefficient for high explosive[R]. Lawrence Livermore Laboratory Report, UCID16189, 1973
    [122].商霖,宁建国,强冲击载荷下混凝土动态本构关系,工程力学,2005,22(2):116-119
    [123].Kinra.V.K.ACTA MECHANICA SOLIDA SINIC.固体力学学报,1983,(2),197.
    [124].刘殿书.不同密度泡沫混凝土动态力学性能试验研究.中国科技论文在线.
    [125].J.亨利奇,爆炸动力学及其应用[M],科学出版社,北京,1987
    [126].杨绍林等.新编混凝土配合比实用手册.北京:中国建筑工业出版社,2002
    [127].中华人民共和国人民防空办公室.GB 50225-95人民防空工程设计规范.北京:中国标准出版社,1995;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700