用户名: 密码: 验证码:
外爆加载下分层金属管膨胀破裂过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文第一部分主要关注外爆过程中壳体内界面对驱动过程和破裂过程的影响,研究内界面对破片形成过程的作用。为此本文设计了分层结构金属管,用硝基甲烷从内部加载分层管。由于与单层管相比,经过分层后的金属管在内界面处的边界、约束、应力状态、加载方式等方面都存在差异,这必然导致同厚度单层管与分层管在相同加载条件下的宏观表现行为(破裂时间、破片尺寸及数目、碎片初速等)存在差异,由于这一问题的复杂性,本文以实验观察为主,理论分析结合数值模拟为辅对这一问题进行了初步探讨。
     采用高速分幅摄影技术来记录动态破裂发展过程,得到了清晰的过程图片。观察到了单、双、三层管起裂,出现贯穿性破裂及出现大规模产物泄露所对应的时刻。双层管出现贯穿性破裂最晚及其所具有的最大破片速度说明内界面的存在使贯穿性破裂推迟发生,内压加挤压阻止了爆轰产物的过早泄露,使更多的爆炸能量传递给了管壁,同时也说明存在最佳内界面数及最佳位置问题。三,双层管表面裂纹密度较单层管大,分布也较单层管均匀,这说明内界面能均匀爆炸压力,延迟由于材料固有缺陷而导致破裂局域化过早发生,使破裂均匀发展,破片数目增多。
     用LS-DYNA3D非线性三维有限元程序对过程进行了数值模拟,计算得到的位移历史,破片速度等典型物理量都和实验观测符合得很好,通过分析双、三层管接触面两侧的径向应力历史发现此过程双、三层内部各壳层发生过一系列碰撞。并根据径、环向单元应力演变过程结合管壁裂纹形成及分布特性初步解释了实验所观察到的现象
     本文第二部分对长杆弹侵彻脆性材料的数值模拟作了一些探索。混凝土靶采用JH-2本构模型,ANSI 4140钢使用Johnson—Cook本构模型和Mie-Gruneisen状态方程对文献[45]中带空腔长杆弹侵彻半无限混凝土靶的实验进行了数值模拟,计算得到的侵深历史、速度历史、侵彻持续时间、临界侵彻速度及最大侵深都和文献给出的实验结果相当符合。这说明这里所选取的材料模型及参数都是可取的,将这一方法应用于对混凝土这一类脆性材料侵彻问题的预估是有效的。
In the first part of this paper, we paid our main attentions to the effects of the interior interface to the driving and fracturing process of the cylindrical shells under inside-explosive loading. Study the effects of the interior interface to the forming of the fragments. We designed layered metal cylinders for this purpose. In contrast to the one-layer cylinders, there are obvious differences of boundaries, the constraints and the state of the stress lying in the layered cylinders. This will in turn cause the differences of the layered cylinders and the one-layer cylinders with the same thickness under the same level of loading. Because of the complexities of this problem, based on the experiments, also by the use of the theoretical analysis and the numerical simulation, we took quite primary study to this problem.
    We recorded the dynamic fracture process by the high speed camera. And we got clear photos of the processes. Through reading the pictures, we got the cracking, fracturing and rupturing time of the one-, two- and three-layer cylinder. The two-layer cylinder fractured lately and got the largest initial fragment velocity. This showed that the existing of the interior interface slower the fracture process. The interior pressure along with the crush pressure prevents the leakage of the detonation gas products.
    We conducted the 3D numerical simulation of the experiments with the nonlinear dynamic analysis software. The computated time history curves of the displacement and the velocity is in good agreement with the experimental results. We have also founded that series of impacts had taken place within the layered cylinders by analyzing the time history of the radial stress of the elements attached to the interior interfaces. According to the development of the cracks and the evolvement of the states of the radial and hoop stress, we gave some primary explains to the observed phenomena of the experiments.
    In the second part of this paper, we explored the numerical simulation of the long rod projectile penetration into brittle materials. By the use of the JH-2 constitute model to the concrete targets, the Johnson-Cook strength model along with the EOS of the Mie-Gruneisen, we modeled the long rod projectile with hollow penetration into the semi-infinite concrete targets, a experiment which had been carried out by LIU Cangli et al. The computated time history curves of the depth of penetration (DOP), the penetration velocity, the penetration duration and the final penetration depths all fit well with the document. This showed that the methods we have taken can be used to estimate the rigid body penetration into the brittle materials.
引文
[1] R.M.Loyd,ed..,Conventional Warhead Systems Physics and Engineer Design,Progress in Aeronautics and Astronautics,vol.179,American Institute of Aeronautics and Astronautics, 1998.
    [2] C.R.Hoggatt and R.T.Recht, "Fracture Behavior of Tubular Bombs",Journal of Applied Physics, vol.39,no.31968
    [3] R.L. Martimeau and Chuck Anderson, and Fred, A visoplastic model of expanding cylindrical shells subjected to high explosive detonations, Los Alamous National Laboratories, CONF-981009, 1998.
    [4] Gurney, R.W., The Initial Velocity of Fragments from Bombs, Shells and Grenades, BRL Report, pp.450,1943.
    [5] Mott,N.R., Fragmentation of Shell Cases, Proc.R.Soc.London, Vol. 189, pp.300-308, 1947
    [6] Held M. Berecbnung der Splittermassenverteilung. Explosivstoffe, 1968,16:241~244
    [7] Helie,F, "Traite de Blistique Expetimentle" Dumaine, Paris(1840)
    [8] Taylor.G.I. Fragmentation of Tubular Bombs, Science Papers of Sir G.I.Tayor, Vol.3, No.44 Cambridge University Press, London, pp387-390,1963.
    [9] Banks,E.E.J.Appl.phys. 40(1969), pp.437-438
    [10] AL-Hassani, S.T.S. and Johnson,W., 1969a, "The Dynamics of the Fragmentation Process for Spherical Shells Containing Explosives".Int.J.Mech.Sci.,Vol. 11, pp.811-823
    [11] Wesenberg,D.L.,and Sagartz,M.J.,Dynamic Fracture of 6061-T6 Aluminum Cylinders, J.Appl.Mech.,Vol.44,643,1977.
    [12] Beetle,J.C. et al ,SEM/1971(Part Ⅰ), Proceedings of the fourth annual SEM Symposium Ⅲ Research Institute, Chicago,Illinois, 60616, U.S.A. April, 1971, pp. 137-144
    [13] Lamborn.P.A. et al, Mechanical Propetties at High Rates of Strain, J.Harding, eds, Inst.Phys.conf. Ser. No.21, 1974, pp.251-261
    [14] Bedford, A.J. NASA73-26915 (1973)
    [15] Weimer, R.J. et al, AD-A072004 (1979)
    [16] Weimer, R.J. et al, J.Appl.Phys. 50(12), 1979, pp.8025-8030
    [17] D.E.Grady and M.M.Hightower, Sandia National Laboratories Report, CONF-9008125-2, 1990.
    
    
    [18] Warren D.Reid, Strain rate dependent deformation and fracture of titanium alloy cylinders under explosive loading conditions, AD-A268811,1993
    [19] R.L. Martimeau and C.A.Anderson, An explicit model of expanding cylindrical shells subjiected to high explosive detonation, Los Alamous National Laboratories, CONF-990504,1999.
    [20] R.L. Martimeau and C.A.Anderson, Expansion of cylinder shells subjiected to internal explosive detonations, Experimental Mechanics Vol.40,No.2,pp.219-225,2000.
    [21] Magis, S.F. NWL-T-24/65 (1965)
    [22] Walsh,B. DSL-Report-533 (1973)
    [25] Pearson,.J. et al, Shock-Waves and High Strain-rate Phenomena, L.E.Murr, et al, eds, Plenum Press, NY,1981, pp.205-218
    [26] Seaman.L. et al, J.Appl.Phys. 47(1976), pp.4814-4820
    [27] Growse, C.R. et al, AD-A038306
    [28] Johnson, J.N., 1983, "Ductile Fracture of Rapidly Expanding Rings". J.Appl.Mech., Vol.50, 593-600
    [29] Nash, M.A. et al, "Mech. Prop. High Rates of Strain". Inst. Phys. Conf.Ser.No70, Oxford 1984, pp.307-314
    [30] Anderson,C.E., Predebon, W.W., and Karpp,R.R., 1985 "Computational Modeling of Explosive-Filled Cylinders" Int. J. Eng. Sci.,Vol.23,pp.1317-1330
    [31] Hao,S., and Brocks, W., 1997, "The Gurson-Tvergaard-Needleman-Model for Rate and Temperature-Dependent Materials With Isotropic and Kinematic Hardening". Comp. Mech., Vol.20,pp.34-40
    [32] 陈大年、王德生,双向一维流计算,1980年全国计算会议文集,北京大学出版社
    [33] 王德生等,管内爆轰产物压力测量,爆炸与冲击,Vol.14(3),pp.74,1984
    [34] 封加波、经福谦等,对薄层柱壳爆炸膨胀断裂过程研究,高压物理学报,2(2),1988,pp.97-103
    [35] 胡八一,金属圆筒在内部爆轰加载下的膨胀断裂机理[硕士论文],中国工程物理研究院研究生部,1992.
    [36] 鲁宇、周兰庭,兵工学报,1(1991),pp.86-90
    [37] 韩长生,内部科研报告(1990)
    [38] 陈军等,爆轰波对碰区产物驱动金属园管的研究,私人通讯
    [39] 汤铁钢等,爆轰加载下金属柱壳膨胀破裂过程研究,私人通讯
    [40] 工程材料实用手册,中国标准出版社(1989)
    
    
    [41] 汤铁钢等.爆轰加载下金属柱壳膨胀破裂过程研究,私人通讯(2003)
    TANG Tie-gang et al. Expanding fracture of steel shell by detonation driving. Personal communication(2003)
    [42] 谭成文等.内爆炸加载条件下圆筒的膨胀、破裂规律研究[J].爆炸与冲击,2003,23(4):305-308.
    TAN Cheng-wen, et al. Deformation and fracture of cylindrical tube under inside-explosive loading[J]. Explosion and shock Waves, 2003,23(4): 305-308
    [43] 邵乃林等.整体壳杀伤战斗部破片初速度及有效破片形状观测,爆轰会议文集,1988:237
    SHAO Nai-lin et al. The initial velocity and the effective dimensions of the fragments from the integral case warhead. Collected Papers on Detonation, 1988: 237
    [44] 冯民贤收集 中国工程物理院 私人通讯
    [45] LIU Cang-li, 1996, "Rigid Body Penetration into Brittle Materials: Experimental and Theoretical Study", the dissertation required for the doctor degree, California Institute of Technology, USA.
    [46] 碰撞动力学 张志云等译
    [47] G.R.Johnson and T.J.Holmquist in High Pressure Science and Technology-1993, S.C. Schmidt, J.W. Shaner, G..ASamara, and M.Ross(eds),(AIP Press, New York, 1994), p981
    [48] G.R.Johnson and W.H.Cook, Engng Fract Mech, 1985; 21(1): 31
    [49] G.R.Johnson and W.H.Cook,in Proceedings of the 16th international symposium on ballistics (Hague, Netherlands, 1983), p.541
    [50] 经福谦,实验物态方程导引(第二版),(科学出版社,北京,1999),pp.25-29
    [51] Autodyna user manual, Revision 3.3 (Century Dynamics Inc. 1997)
    [52] 胡玉龙,蒋凡,兵器材料科学与工程,1996,19(5):37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700