用户名: 密码: 验证码:
杨树与溃疡病菌(Botryosphaeria dothidea)互作机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树溃疡病是引起杨树枝干皮层局部坏死的病害,目前已成为我国杨树人工林发展的主要障碍之一。有关杨树的抗病机制,一些学者进行了大量的研究,在寄主诱导抗病机制和病原菌的致病机制研究取得了一系列研究成果。但鉴于互作系统本身的复杂性,要想深入探究植物与病原菌互作的响应机制,阐明其中蕴含的分子机理,需要进一步深入开展关于基因调控机理、蛋白质表达模式和功能、及次生代谢种类和变化等方面的研究。
     次生代谢产物是基因和蛋白质表达变化的最终体现和放大,次生代谢物的种类和含量反映机体系统的生理和病理状态。大量研究也表明,植物的抗病性决定于体内抗病基因的存在和这些基因表达的速度、程度以及基因表达所产生的抗病物质的量,而蛋白质的差异表达和次生代谢产物的种类和含量变化正是基因表达的速度、程度的体现。为了进一步阐明杨树与溃疡病菌互作分子机制,本文对感、抗因杨树受溃疡病菌侵染后次生代谢产物和蛋白质表达差异进行了研究,主要研究结果如下:
     (1)用高效液相色谱对毛白杨和北京杨接种溃疡病菌后的次生代谢产物进行定性分析,结果表明其次生代谢产物的种类存在显著差异。毛白杨接种溃疡病菌后与对照相比,检测出增加6个差异峰;北京杨相反在接种溃疡病后峰数量减少6个;毛白杨与北京杨之间共检测出55个差异峰,其中包括仅在毛白杨中出现的33个、北京杨中出现的22种;按照接种与对照来分,完全不接种条件下检测出30个、在接种培养基后出现的11个,在接种溃疡病菌后出现的14个。
     (2)用标准物作对照,毛白杨中鉴定出15种次生代谢产物,北京杨中鉴定出13种,其中毛白杨和北京杨都存在的有11种次生代谢产物,其分别是香豆酸、苯甲酸、没食子酸、阿魏酸、儿茶酸、对羟基苯基酸、邻苯二酚、苯酚、芦丁、桑色素、槲皮素;寄主专化性的为6种,包括毛白杨中4种(咖啡酸、绿原酸、水杨酸、肉桂酸)和北京杨中的2种(异鼠李素、山奈酚)。
     (3)为进一步了解上述10种主要差异次生代谢产物(香豆酸、苯甲酸、没食子酸、阿魏酸、儿茶酸、对羟基苯基酸、邻苯二酚、苯酚、芦丁、桑色素)在杨树与溃疡病菌互作中的作用,对其在毛白杨和北京杨接种溃疡病菌0、24、48、72、96、120、144、168h的含量变化进行了测定分析,结果表明这10种物质在毛白杨和北京杨之间的变化差异很大,毛白杨中没食子酸、儿茶酸、对羟基苯基酸、阿魏酸含量迅速积累达到高峰值,苯酚、邻苯二酚和香豆酸的含量积累相对较慢,苯甲酸含量变化不明显;感病北京杨与之相反,邻苯二酚、阿魏酸、苯甲酸变化幅度相对较大。同一树种内,毛白杨中除桑色素接菌与对照之间变化差异不明显,其他变化差异都很大,北京杨中阿魏酸和香豆酸在接种溃疡病菌后低于对照,其余苯甲酸、没食子酸、儿茶酸、对羟基苯基酸、邻苯二酚、苯酚、芦丁7种产物都高于对照呈波动变化,总体上表现为接种溃疡病后这几种产物含量积累快于对照。
     (4)对上述10种主要差异次生代谢产物含量变化进行差异显著性分析。结果表明,同一树种内接菌与对照间及两树种之间其含量都存在显著差异。同一树种内,毛白杨受溃疡病菌感染后除邻苯二酚外,其他几种酚类物质的含量均有所提高,其中苯酚的含量与对照相比差异达到极显著水平,阿魏酸与香豆酸的含量与对照相比差异达到显著水平。北京杨受溃疡病菌侵染后与对照相比,阿魏酸和香豆酸的含量显著降低;其余几种酚类物质含量都有不同程度的升高。两树种之间,接种溃疡病菌后,毛白杨中苯酚、没食子酸、儿茶酸的含量极显著高于北京杨中的含量;其邻苯二酚、阿魏酸、苯甲酸和桑色素的含量极显著低于北京杨中的含量;其对羟基苯甲酸的含量显著低于北京杨的含量,其香豆酸和芦丁含量也低于北京杨但差异不显著。
     (5)用半制备色谱对感染后在两种杨树上具有明显峰值变化的未知物差异峰进行了分离,通过核磁(NMR)和高分辨质谱(HRMS)的结构鉴定、图谱解析和文献对照确认了5种差异化合物,其分别水杨苷(Salicin)、2'-O-乙酰基杨皮质素(2'-O-Acetylsalicorti)、甲酰水杨苷(Tremuloidin)、白杨苷(Populin)、特里杨苷(Tremulacin),这5种物质都是酚苷类化合物,是毛白杨和北京杨之间差异显著的化合物,其中2'-0-乙酰基杨皮质素(2'-O-Acetylsalicorti)和甲酰水杨苷在毛白杨和北京杨之间的相对差异达100%,即同样条件下在北京杨上没检测到。另外,以已鉴定的5种化合物的结构及其质谱裂解规律为基础,通过HRMS又推测了其他10种同系列物质,这10种差异物质中的9种化合物的相对差异达100%。
     (6)用双向凝胶电泳技术,对毛白杨和北京杨受溃疡病菌侵72h后蛋白质表达差异进行了初步研究。结果得到了良好的电泳图谱,有较高的重复性,说明蛋白提取效果较好。用ImageMaster 2D Platinum软件比较双向凝胶电泳图谱,两树种之间检测到35个3倍差异的蛋白质点。同一树种内,毛白杨接种溃疡病菌后与对照相比检测到14个3倍蛋白质差异点;北京杨接种溃疡病菌后与对照相比检测到18个3倍蛋白质差异点。
     (7)为了鉴定出较多的杨树溃疡病菌抗性相关蛋白质,用无标记(Label-free)定量方法对杨树受溃疡病菌侵染后蛋白质的差异表达进一步分析研究。结果共鉴定出了606个差异蛋白,并对其进行了功能分类,其中包括毛白杨接种溃疡病后上调蛋白205个、下调蛋白186个;北京杨接种溃疡病菌后上调蛋白84个、下调蛋白302个。毛白杨与北京杨之间,对照毛白杨含量显著高于对照北京杨的蛋白190个、低于对照北京杨的蛋白192个;接种溃疡病后毛白杨含量显著高于北京杨的蛋白352个、低于北京杨的蛋白153个。这些即在种内存在又在种间存在的差异蛋白中包括18个植物与病原菌互作相关蛋白、10个过氧化蛋白、苯丙氨酸合成与代谢相关蛋白31个,最后对在植物与病原菌互作中和苯丙氨酸合成代谢相关蛋白进行了通路分析,得到了这些蛋白的功能位置和途径。
     总之,本研究首次对杨树受溃疡病菌感染后的差异次生代谢产物和蛋白质的差异表达进行了相对系统而全面的研究。针对次生代谢产物,首先通过定性分析找出了毛白杨和北京杨受溃疡病菌侵染后次生代谢产物的种类;然后用标准物作对照鉴定了其中一部分次生代谢产物并对其进行了定量分析;根据定量分析结果,对在两种杨树受溃疡病菌感染后变化比较大和两种杨树之间差异又比较大的10次生代谢产物进行了含量变化分析;最后对感染后在两种杨树上具有明显峰值变化的未知物差异峰进行了分离鉴定,确定了主要差异峰所代表的物质。通过这些研究不但找出了一些差异次生代谢产物的种类和含量及其变化规律,而且反映了杨树受溃疡病菌侵染后生理和病理状态。另外对未知差异次生代谢产物的分离和鉴定,更是杨树与溃疡病菌互作研究中的一个突破性进展,根据文献推断这类物质很可能是杨树对溃疡病菌的抗性物质。对杨树受溃疡病菌侵染后差异蛋白组学的研究,首先用双向电泳技术对蛋白质进行了提取和初步分析,然后在此基础上用无标记定量法进行了高通量差异蛋白的研究,最后鉴定出了大量的差异蛋白并进行了功能分类,这些不同功能差异蛋白代表了基因表达的种类和程度,同时也反映了次生代谢产物种类和含量变化的原因所在。最后又通过信号通路分析将互作中的基因-差异蛋白表达-次生代谢产物有机联系起来,这在一定程度上揭示了杨树抗溃疡病的分子机制,同时这些研究结果为进一步开展研究奠定了基础并带来了广阔的思路,将可能大大推进杨树与溃疡病菌机制的研究。
Poplar canker is one of disease which caused the stems cortical necrosis, the disease is one of the main obstacles for the development of poplar plantation in our country. There has been a large amount of research about the disease-resistant mechanism of poplar to canker and get a series of research progress in the induced resistant mechanism of host and pathogenic mechanism of pathogens. But the mechanism of interaction of plant-pathogen is very complexity. For probing the response mechanism of poplar to Botryosphaeria dothidea, there are lots of further research needed to do, especially in the regulation mechanism of gene, the expression mode and functional classification of protein, the type and content changes of secondary metabolites.
     Secondary metabolites are the ultimate products resulted of the genes and proteins expression. The various contents of secondary metabolites reflect the physiological and pathological state of plants. A number of research also indicated that the plant resistance depends on the existence of resistant genes, the speed and extension of gene expression, and the amount of disease-resistant substances which produced from the gene expression. And the different expression proteins and the contents and varieties reflect the speed and level of gene expression. In order to further understand molecular mechanism of the interaction between poplar-B. dothidea, this paper researched vary contents of secondary metabolites and different expression proteins of poplars infected with B. dothidea, the main results are as follows:
     (1) We have a qualitative analysis on the secondary metabolites of Populus tomentosa and P. beijingensis infected with B. dothidea using high performance liquid chromatography (HPLC). The results showed that there were significant differences in the second metabolites species. Compared with control 6 peaks were increased in P. tomentosa after inoculation with B. dothidea tomentosa,22 in P. beijingensis; and it could be found,30 peaks in completely not inoculation,11 peaks appeared only after inoculation with the medium,14 only peaks appeared only after inoculation with B. dothidea which divided on inoculation or not.
     (2) Standard content as a control,15 secondary metabolites were identified in P. tomentosa and 13 were identified in P. beijingensis, among which 11 secondary metabolites were identified in P. tomentosa and P. beijingensis, which respectively were coumaric acid, benzoic acid, gallic acid, ferulic acid, catechin, p-hydroxybenzoic acid, o-dihydroxybenzene, phenol, rutin, morin; and 6 species were identified that of resistance to the host, including 4 kinds only in P. tomentosa which were coffee acid, chlorogenic acid, salicylic acid and cinnamic respectively; 2 kinds only in P.×beijingensiswhich were isorhamnetin and kaempferol.
     (3) The quantitative analysis on the 10 main differential secondary metabolites In order to further understand the roles of the 10 main different secondary metabolites in interactions of poplar-B. dothidea, we investigated the content changes of the 10 main different secondary metabolites in 0,24,48,72,96,120,144,168h after inoculation with B. dothidea. The results showed that the difference of the variations of the 10 substance changed very significantly. In P. tomentosa, the contents of gallic acid, catechin, p-hydroxybenzoic acid, ferulic acid were accumulated quickly to peak value, the content of phenol, catechol and coumaric acid accumulated relatively slowly, the content benzoic acid didn't not change significantly in P. tomentosa after inoculation with B. othidea, while these changes in P. beijingensis were contrary. In one species of poplar, the content of the above phenolic compounds but morin in P. tomentosa changed very significantly. The contents of ferulic acid and coumaric acid in P. beijingensis were lower than the controls, and the contents of other phenolic compounds accumulated more quickly than the controls.
     (4) The variation analysis of the 10 main differential secondary metabolite (coumaric acid, benzoic acid, gallic acid, ferulic acid, catechin, p-hydroxybenzoic acid, o-dihydroxybenzene, phenol, rutin, morin) that identified in P. tomentosa and P. beijingensis showed that there were significant differences after inoculation in the same species or between P. tomentosa and P. beijingensis. Among which the contents of the other phenolic substances except o-dihydroxybenzene were improved in P. tomentosa after inoculation. The contents of coumaric acid and ferulic acid were reduced and the other phenolic substances were all increased in different degrees. Between the P. tomentosa and P. beijingensis, the contents of phenol, gallic acid, catechin P. tomentosa were significantly higher than in P. beijingensis; the content of o-dihydroxybenzene, ferulic acid, benzoic acid and p-hydroxybenzoic acid were significantly lower in P. tomentosa than in P. beijingensis; the content of morin and coumaric acid in P. tomentosa were also lower than in P. beijingensis but the difference was not obvious.
     (5) The different peaks of unknown compounds which changed significantly in P. tomentosa but not in P. beijingensis after inoculation with B. dothidea, were separated by semi-preparative chromatography, then were identified by magnetic resonance imaging (NMR) and high resolution mass spectrometry (HRMS), as well as confirmed 5 different compounds through comparing the structure with documentation. These compounds were determined as salicin,2'-O-Acetylsalicorti, Tremuloidin, Populin, Tremulacin respectively. These 5 substances belong to phenolic nucleoside compounds and showed the important different between P. tomentosa and P. beijingensis. Furthermore, the 2'-O-Acetylsalicorti and Tremuloidin were100% in the relative difference of between P. tomentosa and P. beijingensis, it was to say that 2'-O-Acetylsalicorti and Tremuloidin were not found in P.×beijingensisunder the same conditions. In additional, we speculated the other 10 derivatives of same series substances based on the structure and mass spectrometry of the five compounds. Nine different compounds of the ten speculated compounds were 100% of the relative difference between P. tomentosa and P. beijingensis.
     (6) The preliminary research on the different protein expression of P. tomentosa and P. beijingensis after 72h inoculation with B. dothidea by two-dimensional gel electrophoresis. A result from gel electrophoresis maintained high reproducibility. This indicated that quality of protein extraction were better. Compared the two-dimensional gel electrophoresis profiles with the software of imageMaster 2D Platinum,35 different protein spots with 3 folds were obtained between P. tomentosa and P. beijingensis. In the same species,14 different protein spots with 3 folds were observed in the P. tomentosa while 18 different points with 3 folds were found in P. beijingensis compared with the control.
     (7) To identify more resistant related proteins, we analyzed the different proteins by the quantitative methods of Label-free. The results showed that a total of 606 different proteins were identified, and classified according to their functions. Among them included 205 up-regulated proteins and 186 down-regulated proteins in P. tomentosa,84 up-regulated proteins and 302 down-regulated proteins in P. beijingensis after inoculating with B. dothidea. Between the P. tomentosa and P. beijingensis, there also were 190 proteins which contents in P. tomentosa were higher than in P. beijingensis,192 proteins which contents in P. tomentosa were lower than in P. beijingensi; and there were 352 proteins which contents in P. tomentosa were higher than in P. beijingensis,153 proteins which contents in P. tomentosa were lower than in P. beijingensis infected with B. dothidea. In these different proteins, there were 18 proteins of plant-pathogen interaction procession,10 proteins of peroxidation,31 proteins relative with phenylpropanoid biosynthesis and phenylalanine metabolism. Finally, we got functional positions and pathways through analyzing the pathway of the proteins relative with plant-pathogen interaction procession, phenylpropanoid biosynthesis and Phenylalanine metabolism.
     In conclusion, these studies were first the systematic and comprehensive study about the differential secondary metabolites and protein expression in the poplar after which were infected with B. dothidea. First qualitative analyzed on secondary metabolites of P. tomentosa and P. beijingensis, and quantitative analyzed a part of them used standard as control, then determined the changes of ten secondary metabolites which varied in P. tomentosa and P. beijingensis after inoculation with B. dothidea; Finally, isolated and identified the peaks of different and unknown compounds between P. tomentosa and P. beijingensis, and confirmed the structure. Through these studies not only identified a number the kinds, contents and their variations of some different secondary metabolites, but also reflected physiological and pathological state of P. tomentosa and P. beijingensis after inoculation with B. dothidea. Another the isolation and identification of the unknown secondary metabolites was a breakthrough progress, and the phenolic nucleosides had been identified were inferred as resistant compounds of P. tomentosa according to the literature. To the different proteomics research, on the basis of the preliminary analysis with a two-dimensional electrophoresis technology, we achieved a high-throughput different protein analysis with label-free quantitative methods, got a lots of different proteins and made functional classification of these proteins, which represent different functions of different types and extents of genes expression, and which also explains the content changes of the secondary metabolites that previous statement. Finally made the genes, differential protein expression, differential secondary metabolites come together through the signal pathways analysis of the plant-pathogen interaction, the phenylpropanoid biosynthesis and phenylalanine metabolism, which revealed the molecular mechanism of poplar resistance to B. dothidea, while the results of these studies laid the foundation for further research and brought a broad idea, which may greatly promote the studies the mechanism of interaction between poplar and B. dothidea.
引文
[1]张联中,庞守潭.杨树溃疡病发病情况的调查[J].林业科技开发,1997,(6):53-54
    [2]苏晓华,张冰玉,黄秦军,等.我国林木基因工程研究进展和关键领域[J].林业科学,2003,39(5):111-118
    [3]黄烈健,苏晓华.我国杨树溃疡病研究进展[J].世界林业研究,2003,16(4):49-53
    [4]Johal G S, Briggs S P. Reductase activity encoded by the Hml disease resistance gene in maize[J]. Science,1992,258(5084):985-987.
    [5]Martin G B, Brommonschenkel S H, Chumwongse J, et al. Mapbased cloning of a protein kinase gene conferring disease resistance in tomato[J]. Science,1993,262(5138):1432-1436.
    [6]Martin G B, Bogdanove A J, Sessa G. Understanding the functions of plant disease resistance proteins[J]. Annual Review Plant Biology,2003,54:23-61.
    [7]Hoch H C, Staples R C, Whitehead B, et al. Signaling for growth orientation and cell differentiation by surface topology in Uromyces [J]. Science,1987,235:1659-1662
    [8]Correa A, Hoch H C. Identification of thigmoresponsive loci for cell diferentiation in Uromyces germlings [J]. Protoplasma,1995,186:34-40
    [9]阙友雄,宋弦弦,许莉萍,等.植物与病原真菌互作机制研究进展[J].生物技术通迅,2009,2(20):282-285
    [10]Jun Fan, Lionel Hill, Casey Crooks2, Peter Doerner, and Chris Lamb. Abscisic Acid Has a Key Role in Modulating DiversePlant-Pathogen Interactions [J]. Plant Physiology, August 2009, Vol.150, pp. 1750-1761
    [11]Beckers GJM, Spoel SH. Fine-tuning plant defence signalling:salicylate versus jasmonate. Plant Biol, 2006,8:1-10
    [12]贾显禄,王振中,王平.水稻与稻瘟病菌非亲和性互作中重要防御酶活性变化规律研究[J].植物病理学报,2002,32(3):206-213
    [13]阙友雄,宋弦弦,许莉萍,等.植物与病原真菌互作机制研究进展[J].生物技术通讯,2009,20(2):282-285
    [14]江昌俊,余有本.苯丙氨酸氨酶的研究进展[J].安微农业大学学报,2001,28(4):425-430
    [15]Flor H H. Current status of the gene-for-gene concept[J]. Annual Review of Phytopathology,1971(9): 275-296.
    [16]Barber PA, Treena J. Burgess, Giles E, et al. Botryosphaeria species from Eucalyptus in Australia are pleoanamorphic, producing Dichomera synanamorphs in culture., Mycological Research,2005,109 (12): 1347-1363
    [17]B. Slippers, T. Bugess, B. Wingfield, et al. Development of simple sequence repeat markers for Botryosphaeria spp. With Fusicoccum anamorphs [J]. Molecular Ecology Notes,2004,4 (4):675-677
    [18]J.M. van Niekerk, Pedro W. Crous, Paul H. Fourie et al. DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on grapevines [J]. Mycologia,2004,96(4):781-798
    [19]Pedro W. Crous, Bernard Slippers, Michael J. Wingfield, et al. Phylogenetic lineages in the Botryosphaeriaceae [J], Stud Mycol,2006,55 (1):235-253
    [20]Juanita De Weta, b, Bernard Slippers, Oliver Preisig et al. Phylogeny of the Botryosphaeriaceae reveals patterns of host association [J]. Molecular Phylogenetics and Evolution,2008,46(1):116-126
    [21]B. Slippers, W. A. Smit, P. W. Crous, et al. Taxonomy, phylogeny and identification of Botryosphaeriaceae associated with pome and stone fruit trees in South Africa and other regions of the world [J]. Plant Pathology,2007,56(1):128-139
    [22]Treena]. Burgess, Paul A. Barber, Sari Mohali et al. Three new Lasiodiplodia spp. from the tropics, recognized based on DNA sequence comparisons and morphology [J], Mycologia,2006,98(3):423-435
    [23]Alan Phillips, Artur Alves, Antonio Correia et al. Two new species of Botryosphaeria with brown, 1-septate ascospores and Dothiorella anamorphs [J]. Mycologia,2005,97(2),513-529
    [24]陈海燕.杨树溃疡病病原菌分类及营养体亲和性[M].西北农林科技大学.2006
    [25]黄征宇,李传道.杨树溃疡病菌致病力分化及杨树抗性评价[J].南京林业大学学报,1987,1:25-33
    [26]刘会香,朱玮,胡景江,等.杨树溃疡病菌三菌系及诱导物对寄主两种酶活性的影响[J].西北林学院学报,1997,12(3):29-34
    [27]赵仕光.杨树溃疡病寄主组织病理学和病菌分子生物学研究[D].东北林业大学1998
    [28]Milholland, R.D. Histopathology and pathogenicity of Botryosphaeria dothidea on blueberry stems [J]. Phytopathology,1972,62:654-660
    [29]Hildebrand. E. M. Varital susceptibility of currants to the cane blight organism, and to currant mosaic virus [J]. Plant Dis. Report,1984,28 (43):1031-1034。
    [30]陈捷,唐朝荣,邹庆道,等.玉米纹枯病致病因子的研究[J].沈阳农业大学学报,1999,30(3):189-194
    [31]Friend J, Regnolds SB, Aveyard WA. Phenylalanine ammonialyase, chlorogenic and lignin in potato tuber tissue inoculated with Phytophthom infestans [J]. Physiologic Plant Pathology,1973,3(4): 495-507
    [32]Gabriel DW. Why do pathogens carry avirulence genes [J]. Physiol Mol Plant Pathol,1999,55:205-214
    [33]朱玮,胡景江,马希汉,等.杨树与溃疡病菌相互作用的生理病理化学研究——Ⅰ渍疡病菌代谢产物对寄主的影响[J].西北林学院学报,1997a,12(3):1-6
    [34]朱玮,胡景江,马希汉,等.杨树与溃疡病菌相互作用的生理病理化学研究——Ⅱ溃疡病菌毒素粗提物对寄主的影响初探[J].西北林学院学报,997b,12(3):7-13.
    [35]王媛.杨树与溃疡病菌(Botryosphaeria dothidea)互作中的细胞生物学、活性氧代谢及细胞过敏性反应[D].中国林业科学研究院,2007
    [36]魏淑花.杨树溃疡病菌(Botryosphaeria dothidea)毒素及其性质的研究[M].南京林业大学2007
    [37]Dean Oelofse, Ian A. Dubery, Riaan Meyer, et al. Apple polygalacturonase inhibiting proteinl expressed in transgenic tobacco inhibits polygalacturonases from fungal pathogens of apple and the anthracnose pathogen of lupins [J]. Phytochemistry 2006,67:255-263
    [38]T.G. BECKMAN, C.C. REILLY. Relative Susceptibility of Ornamental Peach Cultivars to Fungal Gummosis (Botryosphaeria dothidea) [J]. Journal of the American Pomological Society,2006,60 (3): 149-154
    [39]A. Taylor, G. E. St J. Hardy, P. Wood and T. Burgess. Identification and pathogenicity of Botryosphaeria species associated with grapevine decline in Western Australia. Australasian Plant Pathology,2005,34,187-195
    [40]JanM.van Niekerk, Pedro W. Crous, J. Z. (Ewald) Groenewald, et al. DNA phylogeny, morphology and pathogenicity of Botryosphaeriaspecies on grapevines [J]. Mycologia,96(4),2004, pp.781-798
    [41]Ma, Z., Boehm, E. W. A., et al. Population structure of Botryosphaeria dothidea from pistachio and other hosts in California [J]. Phytopathology,2001,91:665-672
    [42]Ahimera N., Driever, G. F., et al. Relationships among propagule numbers of Botryosphaeria dothidea, latent infections, and severity of panicle and shoot blight in pistachio orchards [J]. Plant Dis.,2003,87: 846-853
    [43]Sanchez, M. E., Venegas, J., Romero, M. A., Phillips, A. J. L., and Trapero, A. Botryosphaeriaand related taxa causing oak canker in southwestern Spain [J]. Plant Dis.,2003,87:1515-1521
    [44]Stout MJ, Thaler JS, Thomma B. Plant mediated interactions between pathogenic microorganisms and herbaceous arthropods [J]. Annual Review of Entomology,2006,51:663-89
    [45]Franceschi VR, Krokene P, Christiansen E, Krekling T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests [J]. New Phytologist,2005,167:353-375
    [46]Blodgett JT, Eyles A, Bonello P. Organ-dependent induction of systemic resistance and systemic susceptibility in Pinus nigra inoculated with Sphaeropsis sapinea and Diplodia scrobiculata [J]. Tree Physiology,2007,27:373-382
    [47]Bonello P, Gordon TR, Herms D, Wood DL, Erbilgin N. Nature and ecological implications of pathogen-induced systemic resistance in conifers:a novel hypothesis [J]. Physiological and Molecular Plant Pathology,2006,68:95-104
    [48]Enebak S, Carey W.. Evidence for induced systemic protection to fusiform rust in loblolly pine by plant growth-promoting rhizobacteria. Plant Disease,2000,84:306-308
    [49]Christiansen E, Krokene P, Berryman AA, et al. Mechanical injury and fungal infection induce acquired resistance in Norway spruce [J]. Tree Physiology,1999,19:399-403
    [50]Swedjemark G, Karlsson B, Stenlid J. Exclusion of Heterobasidion parviporum from inoculated clones of Picea abies and evidence of systemic induced resistance [J]. Scandinavian Journal of Forest Research, 2007,22:110-117
    [51]Zeneli G, Krokene P, Christiansen E, et al.2006.Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus [J].Tree Physiology 26:977-988
    [52]钟兆康,高雅.不同杨树品种对杨树水泡型溃疡病菌的抗病性测定简报[J].林业科技通讯,1981,1:25-26
    [53]赵仕光,景耀.杨树对溃疡病的抗性研究(Ⅰ)对龄及形态结构与抗病性[J].西北林学院学报,1997,12(3):35-40
    [54]向玉英,花晓梅,赵经周.杨树溃疡病的发生及病原菌的生物学特性的研究[J].植物病理学报,]981,]1(4):27-33
    [55]阳传和.树皮内酚类物质的含量及苯丙氨酸的活性与杨树抗溃疡病的关系[J].林业科学,1989,25(4):311-3]6
    [56]钟兆康,高雅.不同杨树品种对杨树水泡型溃疡病菌的抗病性测定简报[J].林业科技通讯,1981,1:25-26
    [57]景耀,朱玮.杨树树皮中化学成份与溃疡病关系的初步研究(1)一常量营养元素与溃疡病的关系[J].林业科学,1989,25(4):393-311.
    [58]Ryals JA, Neuenschwander UH, Willits MG, et al. Systemic Acquired Resistance [J].1996 October; 8(10):1809-1819.
    [59]刘爱新,梁元存,张博,等.植物诱导抗病性研究进展[J].山东农业大学学报,1998,29(3):410-414
    [60]李雄彪,杨中汉.伸展蛋白的结构、功能、交联和生物合成[J].植物生理学通讯,1990,26(3):7-10
    [61]Ye X S, Jarlfors U, Tuzun S,et al. Biochemical change in cell walls and cellular responses of tobacco leaves related to systemic resistance to blue mold(Peronospora tobacina) induced by tobacco mosaic virus [J].Can. J. Bot.,1992,70:49-54
    [62]胡景江,朱玮,文建雷.杨树细胞壁HRGP和木质素的诱导积累与其对溃疡病抗性的研究[J].植物病理学报,1999,29(2):151-156
    [63]胡景江,朱玮,袁雪丽.溃疡病菌对杨树细胞壁中HRGP和木质素的诱导作用[J].西北林学院学报,1997a,12(3):14-17
    [64]胡景江,朱玮.溃疡病菌对杨树几丁酶、B-N-乙酰氨基葡萄糖基酶的诱导作用[J].植物病理学报, 1997b,27(2):181-185
    [65]唐明,陈辉,商鸿生.V菌根真菌提高杨树抗溃疡病机制的研究[J].林业利学,2000,36(2):87-92
    [66]陈辉,刘贤德,李志芳.外生菌根真菌对杨树抗溃疡病的影响[J].植物病理学报,1996,26(4):370
    [67]梁军,张颖,贾秀贞,等.外生菌根菌对杨树生长及抗逆性指标的效应[J].南京林业大学学报,2003.27(4):39-43
    [68]Chen Z, SilveH, Klessig D F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid [J]. Science,1993,262:1883-1886
    [69]Peng M, Kuc J v. Feroxidase-generated hydrogen peroxideas as source of antifungal activityin vitroand on tobacco leaf disk [J]. Phytopathology,1992,82:696-699
    [70]董金皋,韩建民.植物与病原物互作中的活性氧代谢及其作用[J].沈阳农业大学学报,2000,31(5):427-431
    [71]余潮,唐伟中,涂志辉,等.植物抗病过程中的活性氧代谢(一)——植物抗病过程中活性氧的产生及相关酶[J].江西植保,2000a,23(2):63-65
    [72]余潮,朱友林,葛刚.植物抗病过程中的活性氧代谢(二)——植物抗病过程中活性氧的作用与引起活性氧产生的信号传导[J].江西植保,2000b,23(3):94-97
    [73]J曼.曹日强译.次生代谢作用[M].北京:科学出版社,1983
    [74]Murch SJ, Haq K, Rupasinghe HPV, et al. Nichel contamination affects growth and secondary metabolites composition of St. John's wort (Hypericum perforatum L.) [J]. Environ. Exp.Bot,2003,49, 251-257
    [75]王强,刘岩,白中文,等.次生代谢产物的研究进展[J].农业与技术,2008,28(6):66-69
    [76]孙立影,于志晶,李海云,等.植物次生代谢物研究进展[J].吉林农业科学,2009,34(4):4-10
    [77]Li RZ, Li CX, Gan LF, Man X. Studies on the biochemical mechanism of Cotton resistance to aphids. In: wang LZ, Dai JR (eds) [M]. Proceedings of National Crop Breeding SymPosium. Beijing:China Agricultural. Sci-Tech Press.1998,286-290
    [78]Li RZ, Mao X, Li CX, et al. The relationship between activities of Secondary metabolism-related enzymes and induced resistance to aphids in cotton plants [J]. Shanxi AgrUniv,1998,18 (2):165-168
    [79]Mao X, Li CX, Li RZ, Nan JF. Temporaland spatial Characteristic of induced defense to Aphis gossyypii feeding suppression in cotton Plants [M]. Beijing:China Agriculture press,1999:232-235
    [80]Zhao J, Davis LC, Verpoorte R. Elictor signal transduction leading to production of plant secondary metabolites [J]. Biotechnol. Adv.,2005,23,283-333.
    [81]Xu MJ, Dong JF. O2 from elicitor-induced oxidative burst is necessary for triggering phenylalanine ammonia-lyase activation and catharanthine synthesis in Catharanthus roseus cell culture [J]. Enzyme Microd Tech.,2005,36:280-284
    [82]Jabs T, Tschuoumlope M, Colling C, et al. Elicitor-stimulated ion fluxes and O2 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley [J]. Proc. Natl. Acad. Sci. USA,1997,94,4800-4805
    [83]Rogers KR, Albert F, Anderson A. Lipid peroxidation is a consequence of elicitor activity [J]. Plant Physiol,1988,86:547-553
    [84]邱金龙,金巧玲,王钧.活性氧与植物抗病反应[J].植物生理学通讯,1998,34(1):56-63
    [85]马忠华,叶钟音.植物-病源物互作过程中的活性氧[J].生命科学,1999,11增刊:107-110
    [86]Yu LJ, Lan WZ, Chen Ch. Glutathione levels control glucose-6-phosphate dehydrogenase activity during elicitor-induced oxidative stress in cell suspension cultures of Taxus chinensis [J]. Plant Science,2004, (167):329-335
    [87]Yuan YJ, Li C, Hu ZD, et al. Singnal transduction pathway for oxidative burst and taxol production in suspention culture of Taxus chinensis var.mairei induced by oligosaccharide from Fusarium oxysprum [J]. Enzyme Microb Tech.,2001,29:372-379.
    [88]Yuan YJ, Li JC, Ge ZQ, et al. Superoxide anion burst and taxol production induced by Cell suspension cultures of Taxus cuspidate [J]. Mol Catal. B:Enzym,2002,18,251-260.
    [89]阎秀峰,王洋,李一蒙.植物次生代谢及其与环境的关系[J].生态学报,2007,27(6):2554-2562.
    [90]Karban R, Myers J H. Induced plant responses to herbivory [J]. Annual Review of Ecology Systematics, 1989,20:331-348
    [91]Wink M.Wounding-induced increase of quinolizidine alkaloid accumulation in lupin leaves [J]. Zeitsch Naturforsch,1983,38:905-909
    [92]Langenheim JH. Higher plant terpenoids:A phytocentric overview of their ecological roles [J]. Journal of Chemical Ecology,1994,20:1223-1280
    [93]Boddu J, Svabek C, Sekhon R, et al. Expression of a putative flavonoid 3'-hydroxylase in sorghum mesocotyls synthesizing 3-deoxyanthocyanidin phytoalexins [J]. Physiological and Molecular Plant Pathology,2004,65:101-113
    [94]Grayer RJ, Harborne JB. A survey of antifungal compounds from higher plants 1982-1993[J]. Phytochemistry,1994,37:19-42
    [93]Amany KI, Sherief K, Ishrak K, et al. Stimulation of oleandrin production by combined Agrobacterium tumefaciens mediated transformation and fungal elicitation in Nerium oleander cell cultures [J]. Enzyme and Microbial Technology,2007,41:331-336
    [94]Zhao J, Zhu WH, Hu Q. Selection of fungal elicitors to increase indole alkaloid accumulation in Catharanthus roseus suspension cell culture [J]. Enzyme and Microbial Technology,2001,28,666-672
    [95]Zhao J, Zhu WH, Hu Q. Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors [J]. Enzyme and Microbial Technology,2001, 28:673-681
    [96]Yuan YJ, Li Ch, Hu ZD, et al. Signal transduction pathway for oxidative burst and taxol production in suspension cultures of Taxus chinensis var.mairei induced by oligosaccharide from Fusarium oxysprum [J]. Enzyme and Microbial Technology,2001,29:372-379
    [97]Zhang CH, Wu JY. Ethylene inhibitors enhance elicitor-induced paclitaxel production in suspension cultures of Taxus spp.Cells [J]. Enzyme and Microbial Technology,2003,32:71-77
    [98]Luis FR, Conceico FF, Rui MT, et al. Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation [J]. Phytochemistry,2006,67:149-155
    [99]徐茂军,董菊芳,朱睦元.NO通过水杨酸(SA)或者茉莉酸(JA)信号介导真菌诱导子对粉葛悬浮细胞中葛根素生物合成的促进作用[J].中国科学(C辑:生命科学),2006,36(1):66-75
    [100]Chong TM, Abdullah MA, Lai OM. Effective elicitation factors in Morinda elliptica cell suspension culture [J]. Process biochemistry,2005,40:3397-3405
    [101]Qin WM, Lan WZ. Fungal elicitor-induced cell death in Taxus chinensis suspension cells is mediated by ethylene and polyamines [J]. Plant Science 2004,166:989-995
    [102]Norbert O, Boldizsar I, Zoltan S, et al. Influence of different elicitors on the synthesis of anthraquinone derivatives in Rubia tinctorum L. cell suspension cultures [J]. Dyes and Pigments 2007,1-9
    [103]Dicke M, Ludeking D, Posthumus M A, et al. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants [J]. Journal of Chemical Ecology,1999,25: 1907-1922
    [104]Arimura G, Ozawa R, Shimoda T, et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves[J]. Nature,2000,406:512-515
    [105]Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature [J]. Science,2001,291:2141-2144
    [106]苗志奇,未作君,元英进.水杨酸在紫杉醇生物合成中诱导作用的研究[J].生物工程学报,2000,16(4):509-514
    [107]杨英,郑辉,李赞,等.茉莉酸甲酯与二氢茉莉酮酸甲酯对悬浮培养的甘草细胞生长和黄酮积累的影响[J].植物生理通讯,2008,44(5):903-906
    [108]杨莜静.水杨酸在植物逆境胁迫中的作用综述[J].安徽农学通报,2009,15(17):47-51
    [109]薛仁镐,金圣爱.茉莉酸甲酯:一种重要的植物信号转导分子[J].生物技术通讯,2006,17(6):985-988
    [110]Zhu ZB, Liang ZS, Han RL. Saikosaponin accumulation and antioxidative protection in drought-stressed Bupleurum chinense DC.Plants [J]. Environ Exp Bot,2009,66:326-333
    [111]Janas K M, Cvikrova M, Palagiewicz A, et al. Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature [J]. Plant Science,2002,163:369-373
    [112]Zhao J, Hu Q, Zhu W. Effects of light and plant growth regulators on the biosynthesis of vindoline and other indole alkaloids in Catharanthus roseus callus cultures [J]. Plant Growth Regulation,2001, 33:43-49
    [113]张檀,白明生.几种矿质元素对杜仲叶次生代谢物的影响初探[J].西北农林科技大学学报,2002,30(1):119-122
    [114]许国旺,路鑫,杨胜利.代谢组学研究进展[J].中国医学科学院学报,2007,29(6):701-711
    [115]Dettmer K, Aronov PA, Hammock BD.Mass spectrometry based metabolomics [J]. Mass Spectrum Rev,2007,26(1):51-78
    [116]Govi. Metabonomics:a new frontier of nuclear magnetic resonance (NMR) [J]. NatlAcad Sci Lett India, 2004,27 (9-10):289-299
    [117]Ramautar R, Demirci A, de Jong GJ. Capillary electrophoresis in metabolomics [J]. Trac Trends Anal Chem.,2006,25 (5):455-466
    [118]Britz-McKibbin P, Terabe S.On-line preconcentration strategies for trace analysis of metabolites by capillary electrophoresis[J], J ChromatogrA,2003,1000 (1-2):917-934
    [119]Lasch P, BoeseM, PacificoA, et al. FT-IR spectroscopic investigations of single cells on the subcellular level [J]. Vib Spectrosc,2002,28 (1):147-157
    [120]Gam ache PH, Meyer DF, GrangerMC, et al. Metabolomic applications of electrochemistry/mass spectrometry [J]. J Am SocMass Spectrom,2004,15(12):1717-1726
    [121]Ackermann BL, Hale JE, Duff in KL. The role of mass spectrometry in biomarker discovery and measurement [J]. Curr Drug Metab,2006,7(5):525-539
    [122]Dunn W B, Ellis DI. Metabolomics:current analytical platforms and methodologies [J]. Trac Trends Anal Chem.,2005,24 (4):285-294
    [123]Hollywood K, Brison DR, Good acre R. Metabolomics:current technologies and future trends [J]. Proteomics,2006,6(17):4716-4723
    [124]Dunn W B, Bailey NJC, Johnson HE. Measuring the metabolome:current analytical technologies [J]. Analyst,2005,130 (5):606-625
    [125]N icholson JK, Lindon JC, Holmes E.'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stmiuli via multivariate statistical analysis of biological NMR spectroscopic data [J]. Xenobiotica,1999,29 (11):1181-1189
    [126]Fiehn O, Kopka J, Dormann P, et al. Metabolite profiling for plant functional genomics [J]. Nat Biotechno,2000,18(11):1157-1161
    [127]Ma C, Wang H, Lu X, et al. Analysis of Artemisia annual volatile oil by comprehensive two-dmiensional gas chromatography time of flight mass spectrometry [J]. J Chrom atogrA,2007, and 1150(1-2):50-53
    [128]Ma C, Wang H, Lu X, et al. Metabolic fingerprinting investigation of Artem isia annual in different stages of development by gas chromatography and gas chromatography mass spectrometry [J]. J. Chromatogra,2007,09-17
    [129]P JoseP, L Joan. Effects of Carbon Dioxide, waters Supply, and seasonally on Terpene Content and Emission by Rosmarinus officinalis [J]. Journal of Chemical Ecology,1997,23:979-993
    [130]ALShelton.Variable Chemical Defences in Plants and Their Eeffects on Herbivore Behaviour.Evolutionary [J]. Ecology Research,2000,2:231-249
    [131]Solecka, D., Kacperska, A.. Phenylpropanoid deficiency affects the course of plant acclimation to cold [J]. Physiol. Plantarum,2003,119:253-262
    [132]Sgarbi, E., Fornasiero, R.B., Lins, A.P., Bonatti, P.M., Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sci.2003,165:951-957
    [133]Dixon, R.A., Paiva, N.L.. Stress-induced phenylpropanoidmetabolism [J]. Plant Cell,1995, 7:1085-1097
    [134]Solecka, D., Kacperska, A.. Phenylpropanoid deficiency affects thecourse of plant acclimation to cold. Physiol [J]. Plantarum.2003,119:253-262
    [135]孙立影,于志晶,李海云,等.植物次生代谢物研究进展[J].吉林农业科学,2009,34(4):4-10
    [136]王忠猛,谢江辉,杨晓红,等.植物多酚的分离、检测及其在抗性领域的应用进展[J].广东农业科学,2007(6):69-72
    [137]Liu Z J. Drought-induced in vivo synthesis of camptothecin in Camptothecaacuminata seedlings [J]. Physiologia Plantarum.2000,110:483-488
    [138]廖建雄,王根轩.甘草酸在甘草适应荒漠生境中的可能作用[J].植物生理学通讯,2003,39(4):367-370
    [139]Moghaieb R E A, Saneoka H, Fujita K. Effect of salinity on osmotic adjustmen, glycinebetanie accumulation and the betaine aldehyde dehydrogenase gene expression in Two halophytic plants, Salicornia europaea and Suaeda maritima [J]. Plant Science,2004,166:1345-1349
    [140]朱玮,景耀.杨树树皮中化学成份与溃疡病关系的初步研究[J].西北林学院学报,1989,4(2):45-54
    [141]朱玮,景耀.杨树树皮中化学成份与溃疡病关系的研究(Ⅲ)[J].陕西林业科技,1990,3:33-35
    [142]阳传和.树皮内酚类物质的含量及苯丙氨酸解氨酶的活性与杨树溃疡病的关系[J].林业科学,1989,(4):5]1-515
    []43]胡景江,文建雷,景耀,等.杨树苯丙烷代谢与其对溃疡病抗性的关系[J].植物病理学报,1992,22(2): 185-188
    [144]向玉英,魏舜明,侯艳.杨树溃疡病与树皮酚化物关系的研究[J].森林病虫通讯,1993(1):5-7
    [145]W1LK1NS M R, WILLIAMS K L, SANCHEZ J C, et al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it [J]. Biotechnology& Genetic Engineering Reviews,1996,13(2):19-50
    [146]KAISER L. Plant genetics. From genome t o functional genomics [J]. Science,2000,288(5472):1715
    [147]PANDEY A, MANN M. Proteomics to study genes and genomes [J]. Nature,2000,405:837-846
    [148]GUO Y M, SHEN S H, JING Y X, KUANG TY. Plant proteomics in the post genomic era [J]. Acta Botanic a Sinica,2002,44(6):631-641
    [149]HE D CH, XIAO X Y. Differential proteomics and it s applications [J]. Journal of Beijing Normal University (Nat. Sci. Edi.),2002,38(4):558-562
    [150]Ahmed F. El-Bebany, Christof Rampitsch, Fouad Daayf. Proteomic analysis of the phytopathogenic soilborne fungus Verticillium dahliae reveals differential protein expression in isolates that differ in aggressiveness [J]. Proteomics 2010,10,289-303
    [151]Aihong Zhang, Qingtao Lu, Yan Yin, et al. Comparative proteomic analysis provides new insights into the regulation of carbon metabolism during leaf senescence of rice grown under field conditions [J]. Journal of Plant Physiology.2010,167:1380-1389
    [152]Ze Yun, Wenyun Li, Zhiyong Pan, et al. Comparative proteomics analysis of differentially accumulated proteins in juices of ponkan (Citrus reticulata) fruit during postharvest cold storage [J]. Postharvest Biology and Technology.2010,56:189-201
    [153]Christin Christina, Rainer Bischoff, Peter Horvatovich. Data processing pipelines for comprehensive profiling of proteomics samples by label-free LC-MS for biomarker discovery Talanta [J].2011,83: 1209-1224
    [154]B.F. Quirino, E.S. Candido, P.F. Campos, et al. Proteomic approaches to study plant-pathogen interactions[J]. Phytochemistry.2010,71:351-362
    [155]A. Matros, S. Kaspar K. Witzel, H.-P. Mock. Recent progress in liquid chromatography-based separation and label-free quantitative plant proteomics [J]. Phytochemistry,2011,72 (10):963-974
    [156]Thiellement H, Zivy M, Damer val G, et al. Plant Proteomics:Methods and Protocols [M]. Totow a: Humana Press Inc,2007
    [157]Gygi S P, Rochon Y, Franza B R, et al. Correlation between protein and mRNA abundance in yeast [J]. Mol Cell Biol,1999,19(3):1720-1730
    [158]Lilley K S, gazzaq A, Dupree P. Two-dimensional gel electrophoresis:recent advances in sample preparation, detection and quantitation[J]. CurrOpin ChemBiol,2002,6(1):46-50
    [159]Shiio Y, Aebersold R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry [J]. Nat. Protoc,2006,1 (1):139-145
    [160]Dean R A, Overall C M. Proteomics discovery of metal loproteinase substrates in the cellular context by iTRAQTM labeling reveals a diverse MMP-2 substrate degradome [J]. Mol Cell Proteomics,2007, (4): 611-623
    [161]Nelson C J, Hegem an AD, Harms A C, et al. A quantitative analysis of arabidopsis plasma membrane using trypsin catalyzed 18O labeling [J]. Mol Cell Proteomics,2006,5(8):1382-1395
    [162]ConradsTP, Alving VeenstraT D, et al. Quantitative analysis of bacterial and mammalian proteomes using acombination of cysteine affinity tags and 15N-metabolic labeling[J]. Anal Chem,2001,73(9): 2132-2139
    [163]Grifm T J, Lock C M, Li X et al. Abundance ratio dependent proteomics analysis by mass spectrometry [J]. Anal Chem,2003,75(4):867-874
    [164]欧阳曙光,贺福初.生物信息学:生物实验数据和计算技术结合的新领域[J].科学通报,1999,44(14):1457-1468
    [165]KIM S T, KIM S G, HWANG D H. Proteomic analysis of pathogen responsive proteins from rice leaves induced by rice blast fungus, Magnap or the grisea [J]. Proteomics,2004,4:3569-3578
    [166]KIM S T, CHO K S, YU S, et al. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicit or in suspension cultured rice cells [J]. Proteomics,2003,3:2368-2378
    [167]KIM S T, KANG Y H, WANG Y, et al. Secretome analysis of differentially induced proteins in rice suspension cultured cell striggered by rice blast fungus and elicitor[J]. Proteomics,2009,9:1302-1313
    [168]Fior ani Celedon PA, de Andrade A, Meir eles KG, et al. Proteomic analysis of the cambial region in juvenile Eucal yptus grandis at three ages. Proteomics,2007,7:2258-2274
    [169]Hebeler R, Oe ljek laus S, Reide geld KA, et al. Study of early leaf senescence in Arabidopsis thal iana by quantitative proteomics using reciprocal 14N/15N labeling and difference gelelectrophores is. Mol Cell Proteomics,2008,7,108-120
    [170]ZHOU W, EUDES F, LAROCHE A. Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum [J]. Proteomics,2006,6:4599-4609
    [171]CHEN F, YUAN Y, LI Q, et al. Proteomic analysis of rice plasma membrane reveal s proteins involved in early defence response to bacterial blight [J]. Proteomics,2007,7:1529-1539
    [172]GEDDES J, EU DES F, LAROCH E A, SELINGER L B. Differential express ion of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare [J]. Proteomics,2008,8:545-554
    [173]NDIMBA B K, CH IVASA S, HAMILT ON J M, et al. Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures indu ced by fungal elicitors [J]. Proteomics, 2003,3:1047-1059
    [174]CHIVASA S, H AMILTON J M, PRINGLE R S, et al. Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures [J]. Journal of Experimental Botany,2006,57: 1553-1562
    [175]ANDRADE A E, SILVA L P, PEREIRA J L, et al. In vivo proteome analysis of X anth omonas campestris pv. campestris in the interaction with the host plant B rassicaoleracea[J]. FEMS Microbiology Letters,2008,281:167-174
    [176]OH I S, PARK A R, BAE M S, et al. Secretome analysis reveals an Arabidopsis Lipase involved in defense against Alternaria brassicicola [J]. The Plant Cell,2005,17:2832-2847.
    [177]MARRA R, AMBROSINA P, CARBONE V, et al. Study of the three-way int-eraction between Trichoder maatroviride, plant and fungal pathogens by using a proteomic approach [J]. Current Genetics, 2006,50:307-321
    [178]Litao Yang, Hong Lin, Yuri Takahashi, et al. Proteomic Analysis of Grapevine Stem in Response to Xylella fastidiosa Inoculation. Physiological and Molecular Plant Pathology.2011,75(3):90-99
    [179]沈瑞祥.5406细胞分裂素混合剂对杨树溃疡病抑制作用的研究[J].植物病理学报,1988,18(4):251-253
    [180]杜建玲,项蔚华,沈瑞祥.诱导杨树抗溃疡病机理的研究[J].林业科学研究,1995,8(1):78-81
    [181]杜建玲,沈瑞祥,项蔚华.4种诱导剂诱导杨树抗溃疡病效果研究[J].河北林学院学报,1994,9(4):327-331
    [182]胡景江,刘志龙,文建雷.溃疡病菌低聚糖激发子诱导杨树细胞抗病机制的初步研究[J].西北农林科技大学学报(自然科学版),2003,31(4):145-148
    [183]陈晓亚.植物次生代谢研究[J].世界科技研究与发展,2006,28(5):1-4
    [184]Wurms K V, George M P, Lauren D R. Involvement of phenolic compounds in host resistance against Botrytis cinerea in leaves of the two commercially important kiwifruit(Actinidia chinensis and A. deliciosa)cultivars [J]. New Zealand Journal of Crop and Horticultural Science,2003,31:221-233.
    [185]Singh R, Sawhney SK. Advances in frontier areas of plant biochemistry [M]. New Delhi:Prentice-Hall of India Private Ltd.1988:487-510
    [186]Macheix J J, Fleurie A, Bittot J. Fruit phenolics. Florida:CRC Press,1990,251-255
    [187]李传道,周仲铭,鞠国柱.森林病理学通论[M].北京:中国林业出版社,1984
    [188]Prusky D, Kobiler l, Jacoby B. Involvement of epicatechin in cuLtivar susceptibility of avocado fruits to Colletotrichum gloeos prioides after harvest. J Phytopathal,1988,183:140-145
    [189]薜应龙,欧阳光察.植物抗病的物质代谢基础[M].植物生理与分子生物学.北京科学出版社,1992,417-430
    [190]周浩,陈伟,叶明志,等.水稻感染细菌性条斑病后叶片中酚类物质的变化[J].福建农业大学学报,1997,250-255
    [191]李建辉,金则新,陈波,等.濒危植物夏蜡梅叶片次生代谢产物含量的动态分析[J].西北林学院学报,2008,23(2):28-30
    [192]Higuchi T. Biochemistry and molecular biology of wood [M]. Berlin:Springer-verlag,1997,131-236
    [193]邱永祥,柯玉琴,代红军,等.甘薯抗蔓割病的酚类物质代谢的研究[J].中国生态农业学报,2007,15(5):167-170
    [194]邹忠杰,杨峻山.泥胡菜化学成分研究[J].广东药学院学报,2007,23(5):492-493
    [195]林茂,李守珍.毛白杨化学成分的研究[J].药学学报,1993,28(6):437-441
    [196]ROGER A. DOMMISSE, LUCIA VAN HOOF and ARNOLD J. VLIETINCK. STRUCTURAL ANALYSIS OF PHENOLIC GLUCOSIDES FROM SALICACEAE BY NMR SPECTROSCOPY [J]. Phytochemistry,1986,25 (5):1201-1204
    [197]PAUL B. REICHARDT, HOWARD M. MERKEN, THOMAS P. CLAUSEN. PHENOLIC GLYCOSIDES FROM SALIX LASIANDRA [J]. Journal of Natural Products,1992,55 (7):970-973.
    [198]I Saracoglu, M Inoue, I Calis,et al. Studies on constituents with cytotoxic and cytostatic activity of two Turkish medicinal plants Phlomis armeniaca and Scutellaria salviifolia[J]. Biol Pharm Bull,1995; 18(10):1396-1400
    [199]M Inoue, M Ueda, Y Ogihara, et al. induction of cytokines by a phenylpropanoidglycoside acteoside [J]. Biol Pharm Bull, Dec 1998,21(12):1394-1395
    [200]MR Kernan, A Amarquaye, et al. Antiviral phenylpropanoid glycosides from the medicinal plant Markhamia lutea [J]. J Nat Prod,1998,61 (5):564-570
    [201]P Bermejo, MJ Abad, AM Diaz, et al.Antiviral activity of seven iridoids, three saikosaponins and one phenylpropanoid glycoside extracted from Bupleurum rigidum and Scrophularia scorodonia [J]. Planta Med,2002,68(2):106-111
    [202]F Martin-Nizard, S Sahpaz, et al. Natural phenylpropanoids protect endothelial cells against oxidized LDL-induced cytotoxicity [J]. Planta Med,2003,69(3):207-211
    [203]P Wang, R Zheng, J Gao,et al. Reaction of hydroxyl radical with phenylpropanoid glycosides from Pedicularis species:a pulse radiolysis study [J]. Sci China C Life Sci,1996,39(2):154-158
    [204]P Wang, J Kang, R Zheng, et al. Scavenging effects of phenylpropanoid glycosides from Pedicularis on superoxide anion and hydroxyl radical by the spin trapping method [J]. Biochem Pharmacol,1996,51(5): 687-691
    [205]J Li, RC Ge, RL Zheng,et al. Antioxidative and chelating activities of phenylpropanoid glycosides from Pedicularis striata[J]. Zhong guo Yao Li Xue Bao,1997,18(1):77-80
    [206]KH Kang, SK Jang, BK Kim, et al. Antibacterial phenylpropanoid glycosides from Paulownia tomentosa Steud [J]. Arch Pharm Res,1994,17(6):470-475
    [207]N Didry, V Seidel, L Dubreuil, et al. Isolation and antibacterial activity of phenylpropanoid derivatives from Ballota nigra [J]. J. Ethnopharmacol,1999; 67(2):197-202
    [208]魏舜明,周银莲,张英伯.几种扬树皮中酣甙和酚酸类化台物的初步研究[J].林产化学与工业,1985,8(2):1-8
    [209]向玉英,魏舜明,侯艳.杨树溃疡病与树皮酚化物关系的研究[J].森林病虫通讯,1993,1:5-7
    [210]You ng B., Wagner D., Doak P., et al. Induction of phenolic glycosides by quaking aspen (Populus tremuloides) leaves in relation to extrafloral nectaries and epidermal leaf mining [J]. J. Chem. Ecol. 2010a,36,369-377.
    [211]Young B., Wagner D., Doak P., et al. Within-plant distribution of phenolic glycosides and extrafloral nectaries in trembling aspen (Populustremuloides, Salicaceae) [J]. Am. J. Bot.,2010b,97,601-610.
    [212]Zhang, X.F., Thuong, et al. Phenolic glycosides with antioxidant activity from the stem bark of Populus davidiana [J]. J. Nat. Prod.2006,69,1370-1373.
    [213]阳传和,田砚亭.应用放射性同位素示踪法研究杨树溃疡病菌在杨树苗茎中的扩展与分布[J].北京林业大学学报,1986,2:99-105
    [214]赵仕光,朱玮,岳红艳.溃疡病菌在杨树树皮组织中的扩展和对寄主细胞超微结构的影响[J].林业科学研究,]999,12(2):]18-126
    [215]Damerval C., Vienne D.D., Zivy M., and Thiellement H.. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat seedling proteins [J]. Electrophoresis,1986,7(1):52-54
    [216]Bradford M.M.. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J], Anal. Biochem,1976,72:248-254
    [217]皇甫海燕,官春云,郭宝顺,等.蛋白质组学及植物蛋白质组学研究进展[J].作物研究,2006(5):577-579
    [218]王一鸣,花宝光,王有年,等.桃果实蛋白质双向电泳影响因素的研究[J].园艺学报,2007,34(6):1579-1584
    [219]Wang W, Scali M, Vignani R, et al. Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds[J]. Electrophoresis,2003,24: 2369-2375
    [220]刘伟霞,潘映红.适用于小麦叶片蛋白质组分析的样品制备方法[J].中国农业科学,2007,40(10):2169-2176
    [221]LewisN, YamamotoE. Lignin occurrence, biogenesisand biodegradation[J]. Ann Rev plant physiol plant Mol Biol,1990,4:455-496.
    [222]Graham M. Y, Graham T L.. Rapid accumulation of aniomc peroxidases and phenolic pulymers in soybean eotyledon tissue following treatment with phytophthora megasperma f. sp. glycines wall glucan[J]. Plant Physiol,1991,97:1445-1455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700