用户名: 密码: 验证码:
ANP及其受体在大鼠耳蜗螺旋神经节的表达及分布特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耳蜗螺旋神经节(Spiral ganglion, SG)主要是由神经元和胶质细胞共同构成的外周感觉神经节组织,位于耳蜗蜗螺旋小管内,沿耳蜗轴螺旋式分布。螺旋神经元(Spiral ganglion neurons, SGNs)是位于螺旋神经节内的初级听觉传入神经元,将螺旋器感觉毛细胞感知的声信息向听觉中枢传递。根据形态学特征、周围神经支配形式和生理功能特点,可将SGNs分为两种类型:I型SGNs为胞体较大、有髓鞘的双极神经元,约占SGNs总数的90~95%,支配内毛细胞并对不同频率的声信号进行编码;II型SGNs为胞体较小、无髓鞘的假单极神经元,所占比例较少,支配外毛细胞和部分支持细胞,通过控制感觉上皮对声音的敏感性而反馈调节听觉感受。噪声、耳毒性药物、老龄化、基因突变等原发性因素,以及毛细胞死亡引发的继发性损伤都可造成SGNs变性、死亡,最终导致永久性听力损失(感音神经性聋)。探明在初级听觉神经元神经生理和突触传递过程中发挥重要调节作用的神经递质、调质以及神经活性物质的表达、功能、相互作用,及其在生理、病理条件下参与调节听觉信号转导的具体机制,有望为听力损伤的有效预防和治疗提供重要依据。
     雪旺细胞(Schwann cells, SCs)和卫星细胞(Satellite glial cells, SGCs)是螺旋神经节内主要的胶质细胞。SCs与SGNs的神经纤维(神经突)紧密联系,并与I型SGNs的神经纤维形成髓鞘结构;SGCs紧密包绕SGNs胞体,共同构成一个功能性单元,并与I型SGNs胞体形成髓鞘结构。尽管对螺旋神经节内SGCs的具体功能仍然不清楚,但研究发现外周感觉神经节内的SGCs表达多种离子通道、神经递质受体以及神经营养因子来调节神经突触传递过程中的神经活性,并且形成一个与血脑屏障十分类似的选择性通透屏障来调节局部神经微环境和代谢,这些特点与中枢神经系统(CNS)的星形胶质细胞具有诸多相似之处。感觉神经节内神经元-SGCs间相互联系或相互作用(Neuron–SGCs communication),是调节神经突触传递、神经代谢平衡和神经保护作用的重要基础。因此,探寻调节螺旋神经节内SGN-SGC间相互联系的新靶点和新药物,有望为听力损伤的防治提供新的策略。
     心钠素(Atrial natriuretic peptide,ANP)是由心房肌细胞合成、分泌的28个氨基酸多肽类激素,具有强大的排钠、利尿和血管舒张活性,是利钠肽家族中的一员,后者还包括B型利钠肽和C型利钠肽。ANP与两种定位于靶细胞膜上的高亲和功能受体相互作用,进而发挥维持血压、细胞外液体容积和心血管体液动态平衡等重要生物学效应。利钠肽A型受体(Natriuretic peptide receptor-A, NPR-A)具有鸟苷酸环化酶(guanylyl cyclase, GC)催化活性,可催化细胞内第二信使环磷酸鸟苷(cGMP)的形成,继而调节三种cGMP结合蛋白:①依赖于cGMP的蛋白激酶(PKG)、②依赖于cGMP的磷酸二酯酶(cGMP-regulated PDEs)、③环核苷酸门控离子通道(CNG),发挥多种生物学效应,包括调节血管紧张度、神经元兴奋性、跨上皮离子转运,以及视觉、嗅觉信号转导。利钠肽C型受体(Natriuretic peptide receptor-C, NPR-C)也称为清除受体,缺乏鸟苷酸环化酶催化结构域,通过受体介导的内化和降解作用调节局部利钠肽浓度。研究表明NPR-C可通过百日咳毒素敏感的抑制性鸟嘌呤核苷酸调节蛋白(Gi),或磷脂酶C途径,抑制环磷酸腺苷(cAMP)的合成,进而影响多种组织第二信使系统的信号转导,对cGMP的水平不造成影响。
     除了心血管系统,ANP及其功能受体(NPR-A, NPR-C)在其他组织如肾脏、肾上腺、肺、脂肪组织、视网膜等也具有分布。此外,它们在CNS也具有表达,提示ANP可能作为一种重要的神经调质或神经肽参与神经和胶质功能的调节。关于ANP及其受体在鼠类内耳感觉以及分泌区域的分布也有报道,提示ANP可能作为一种局部激素参与内耳水电解质平衡的调节。既往研究证实ANP受体在豚鼠蜗轴组织以及大鼠螺旋神经节等耳蜗神经感觉区域具有表达,但ANP及其受体在螺旋神经节内的具体定位和功能仍然不清楚。基于以上思考,本研究中通过免疫组织化学(immunohistochemistry)、逆转录-聚合酶链式反应(RT-PCR)以及蛋白印迹(Westernblot)方法,检测ANP及其功能受体(NPR-A, NPR-C)在大鼠螺旋神经节内的细胞定位和在出生后不同发育时期大鼠螺旋神经节内的表达变化,并探讨ANP及其受体对于螺旋神经节功能可能具有的调节作用。本研究证实了ANP及其受体在出生后不同发育时期大鼠耳蜗螺旋神经节中具有表达,其主要定位于螺旋神经节的神经元和卫星细胞中;出生后各发育时期的大鼠耳蜗螺旋神经节具有合成、表达ANP及其受体的能力,ANP及其受体mRNA和蛋白表达量随着出生后发育发生变化。我们认为ANP可能作为内耳的一种重要的神经调质或神经肽,参与耳蜗螺旋神经节神经、胶质功能以及神经元-卫星细胞间相互联系的调节,进而影响内耳声信号转导和听觉系统发育。
     第一部分:ANP及其受体在大鼠耳蜗螺旋神经节的表达
     目的:明确ANP及其受体在大鼠耳蜗螺旋神经节的细胞定位、合成表达情况。
     方法:取出生后(第7日,P7)大鼠耳蜗行冰冻切片和超薄切片,通过对耳蜗组织切片行免疫组织化学染色,激光共聚焦显微镜和透射电子显微镜检测ANP及其受体在螺旋神经节的细胞定位;取大鼠蜗轴组织,通过RT-PCR和Western blot方法,检测组织内ANP及其受体mRNA和蛋白的合成、表达情况。
     结果:免疫组织化学方法(免疫荧光和免疫电镜)证实ANP及其受体在大鼠耳蜗螺旋神经节的两型SGNs以及SGCs具有共表达,其在SGNs的共表达具有不均一性(在部分SGNs的共表达相对较弱)。ANP主要定位在I、II型SGNs核周体胞质中,以及SGCs胞质中;NPR-A和NPR-C主要定位于I、II型SGNs以及SGCs质膜上和近质膜胞质中。以ANP、NPR-A和NPR-C的特异性上、下游引物,通过RT-PCR方法在大鼠蜗轴组织中扩增出其目的基因条带,证实大鼠蜗轴组织表达ANP及其受体的mRNA;以ANP、NPR-A和NPR-C的特异性抗体,通过Western blot方法在大鼠蜗轴组织中检测出其目的蛋白条带,证实大鼠蜗轴组织表达ANP及其受体的蛋白。
     结论:ANP及其受体主要定位于大鼠耳蜗螺旋神经节的神经元和卫星细胞中,其mRNA和蛋白在蜗轴组织也具有表达。本研究证实了大鼠耳蜗螺旋神经节具有合成、表达ANP及其受体的能力,提示ANP可能通过与其受体作用,参与耳蜗螺旋神经节内神经与胶质功能,以及SGN-SGC间相互联系的调节。
     第二部分:ANP及其受体在出生后不同发育时期大鼠耳蜗螺旋神经节的表达
     目的:明确ANP及其受体在出生后不同发育时期大鼠耳蜗螺旋神经节的表达特征。
     方法:取出生后不同发育时期(P0、P7、P14、P21和P28)大鼠耳蜗行冰冻切片,通过对耳蜗组织切片行免疫组织化学染色,激光共聚焦显微镜检测ANP及其受体在各发育时期大鼠螺旋神经节的表达情况;取各发育时期大鼠蜗轴组织,通过RT-PCR和Western blot方法检测组织内ANP及其受体mRNA和蛋白的合成、表达变化。
     结果:免疫组织化学方法证实ANP及其受体在出生后各发育时期的大鼠螺旋神经节中均有表达;RT-PCR和Western blot方法在各发育时期大鼠蜗轴组织检测到ANP、NPR-A和NPR-C的mRNA和蛋白,证实其具有合成ANP及其受体的能力。ANP mRNA在大鼠蜗轴组织中的表达量于出生时(P0)为最低,随着发育迅速升高,在成年时期(P28)达最高水平。NPR-A mRNA在大鼠蜗轴组织中的表达量于出生时(P0)为最高,随着发育迅速降低,在成年时期(P28)达最低水平。NPR-C mRNA在大鼠蜗轴组织中的表达量于出生后(P0)为最高,随着发育逐渐降低且变化相对较小,在成年时期(P28)有轻微升高。ANP蛋白在大鼠蜗轴组织中的表达量于出生后(P0)开始升高,于出生后第7日(P7)为最高水平,随着发育迅速降低,在成年时期(P28)达最低水平。NPR-A蛋白在大鼠蜗轴组织中的表达量于出生时(P0)为最高,随着发育逐渐降低,在成年时期(P28)水平相对较低。NPR-C蛋白在大鼠蜗轴组织中的表达量于出生后(P0)为最高,随着发育逐渐降低,至出生后第14日(P14)听力形成时水平最低,随后在成年时期(P28)有轻微升高。
     结论:ANP及其受体在出生后各发育时期大鼠耳蜗螺旋神经节中均具有表达,并且其mRNA和蛋白在大鼠蜗轴组织的表达量随出生后发育而发生改变。ANP及其受体蛋白在蜗轴组织中的表达量均随着出生后听觉发育成熟而相应下调,提示ANP可能通过与其受体作用,参与出生后螺旋神经节的神经和胶质发育,以及SGN-SGC间相互联系建立过程的调节。
The spiral ganglion (SG) is a peripheral cluster of both neurons and glial cellslocalized in Rosenthal’s canal, which coils around the cochlear modiolus. Spiral ganglionneurons (SGNs) are the primary afferent neurons in the spiral ganglion and play a criticalrole in hearing, transmitting primary acoustic information from the mechanosensory haircells in the organ of Corti to the higher auditory centers of the central nervous system(CNS). SGNs are divided into two subpopulations, type I and type II, according to theirdifferent morphology, synaptic connections and functions. The large, bipolar andmyelinated type I neurons innervate inner hair cells with their peripheral processes toprincipally encode the auditory signals and represent approximately90~95%of theafferent auditory neurons. The smaller, pseudomonopolar and non-myelinated type IIneurons innervate the outer hair cells and some of the supporting cells of the cochlea toprovide sensory feedback, controlling the sensitivity of the auditory epithelia to specific sound stimuli. Degeneration of SGNs, primarily resulting from noise trauma, ototoxicdrugs, infection, aging and genetic mutations, or secondarily occurring as a result of haircells loss, ultimately leads to permanent sensorineural hearing loss. Understanding theexpression, function and signaling interactions of the neurotransmitters, neuromodulatorsand other regulatory substances which affect neuronal physiology and neurotransmissionin primary auditory neurons, may offer insights into the mechanisms underlying normaland pathological states of hearing, and provide important clues for effective prophylacticand therapeutic treatment for hearing impairment.
     The satellite glial cells (SGCs) and Schwann cells are the primary glial cells in thespiral ganglion. Schwann cells are found in close proximity to the neuronal processes oraxons where they from myelin sheaths around type I neuronal axons. Perineuronal SGCs,whose roles are still relatively poorly understood, envelop the somata of SGNs, andtogether they constitute functional units. Additionally, SGCs form loose myelin around thesomatic membrane of type I neurons. SGCs in the peripheral sensory ganglion share manyproperties with astrocytes in the CNS, as they not only express various ion channels,neurotransmitter receptors and trophic factors which modulate neuronal activity insynaptic transmission, but also form a partial diffusion barrier which regulates theneuronal environment, resembling the blood-brain barrier in the CNS. Consequently, theinteraction between neurons and SGCs (Neuron–SGC communication) can modulateneurotransmission, neuroprotection and neuronal homeostasis. Therefore, new strategiesaimed at manipulating communication between SGNs and SGCs within the spiralganglion have the potential to become promising pharmacological targets that facilitatenew and effective therapies for hearing impairment.
     Atrial natriuretic peptide (ANP) is a28amino acid peptide with potent natriuretic,diuretic, and vasorelaxant activity which is predominantly synthesized and secreted by thecardiac atria, and is the first member of the natriuretic peptide family, which also includesbrain natriuretic peptide and C-type natriuretic peptide. ANP interacts with two specific,high affinity receptors, NPR-A and NPR-C, on the plasma membrane of target cells tomediate its physiological effects on the regulation of cardiovascular homeostasis,maintaining blood pressure and extracellular fluid volume. The natriuretic peptidereceptor-A (NPR-A) is coupled to the particulate guanylyl cyclase (GC) which catalyzesthe synthesis of the second messenger cyclic guanosine monophosphate (cGMP). cGMPmodulates the activity of specific effector molecules including cGMP-regulated isoforms of phosphodiesterases, cyclic-nucleotide-gated ion channels, and cGMP-dependent proteinkinases G, which in turn regulate diverse biological responses associated with blood vesseltone, neuronal excitability, transepithelial ion transportation, and the sensory transductionpathways underlying olfaction and vision. The natriuretic peptide receptor-C (NPR-C),which lacks the GC domain, contributes to the clearance of ANP and other natriureticpeptides from the circulation through receptor-mediated internalization and degradation. Anumber of studies have shown that NPR-C can also affect second messenger systems in avariety of tissues by inhibiting cyclic AMP (cAMP) production via a pertussistoxin-sensitive inhibitory guanine nucleotide regulatory protein (Gi), and by activatingphospholipase-C without affecting cGMP levels.
     In addition to the cardiovascular system, the tissue-specific distribution and functionof ANP, NPR-A and NPR-C has been established in several tissues including kidney,adrenal, lung, adipose tissue and retina. Furthermore, ANP and its receptors have beenfound in the CNS, leading us to speculate that ANP may function as a neuromodulator orneuropeptide involved in neuronal and glial functions. Importantly, their presence in thesecretory and sensory compartments of the rodent inner ear is well-documented,suggesting ANP may act as a local hormone regulating the fluid and electrolyte balance inthe inner ear. ANP receptors have been localized to the cochlear modiolus of the guineapig and rat spiral ganglion, the neuronal region of the cochlea. However, little is knownregarding the localization and function of ANP and its receptors within the spiral ganglion.In our current study, we investigated the expression and localization of ANP and itsreceptors in the cochlear spiral ganglion of the postnatal rat by immunohistochemistry,reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, withthe aim of identifying their cellular localizations, expression levels and potential functions.We showed here that ANP and its receptors were colocalized in both subtypes of SGNsand perineuronal SGCs within the rat spiral ganglion. Additionally, we analyzed thedifferential expression levels of both mRNA and protein of ANP and its receptors withinthe rat spiral ganglion during postnatal development. Collectively, our data provide directevidence for the presence and synthesis of ANP as well as its receptors in both neuronaland nonneuronal cells within the cochlear spiral ganglion, suggesting possible roles forANP in modulating neuronal and glial functions as well as neuron–SGC communicationwithin the spiral ganglion during auditory neurotransmission and development.
     Part one: Expression and localization of atrialnatriuretic peptide and its receptors in the spiralganglion of the rat cochlea
     [Objectives] To investigate the expression and cellular localization of ANP and itsreceptors in the spiral ganglion of the rat cochlea.
     [Methods] All cochleae used in this investigation were obtained from postnatalSprague Dawley rats (postnatal day7, P7). To reveal the cellular localization of ANP andits receptors in the rat spiral ganglion, both the cochlear cryosections and ultrathin sectionswere subjected to immunohistochemistry, and then examined under a scanning laserconfocal microscope or a transmission electron microscope, respectively. To investigatethe expression of ANP and its receptors in the rat spiral ganglion, both mRNA and proteinproducts of ANP and its receptors were detected in the cochlear modiolus tissues byRT-PCR and Western blot analysis.
     [Results] The co-localization of ANP and its receptors were found in both subtypes ofSGNs and in perineuronal SGCs by immunohistochemistry, while the heterogeneity ofimmunoreactivity of ANP and its receptors were less co-localizated in a sub-population ofSGNs. Specifically, ANP was predominantly immunoreactive in the perikaryal cytoplasm ofboth type I and type II SGNs and in the perinuclear cytoplasm of SGCs. The distribution ofNPR-A and NPR-C was rather similar, and they were predominantly immunoreactive in theplasma membrane and adjacent cytoplasm of both type I and type II SGNs as well assurrounding SGCs. Subsequently, the transcripts of ANP and its receptor were detected inthe cochlear modiolus tissues by RT-PCR using specific primer pairs for ANP, NPR-A andNPR-C. The protein products were also present in the modiolus tissues by Western blottingusing specific antibodies against ANP, NPR-A and NPR-C.
     [Conclusions] We have demonstrated that ANP and its receptors colocalize in bothsubtypes of SGNs and perineuronal SGCs of the rat spiral ganglion. Furthermore, we haveconfirmed the expressions of ANP and its receptors in the rat spiral ganglion at both theprotein and mRNA level. Collectively, our research provides a direct evidence for thepresence and synthesis of ANP and its receptors in both neuronal and non-neuronal cells within the spiral ganglion of the rat cochlea, suggesting possible roles for ANP inmodulating neuronal and glial functions, as well as neuron–SGC communication withinthe spiral ganglion during auditory neurotransmission via its receptors.
     Part two: Expression patterns of atrial natriureticpeptide and its receptors within the spiral ganglion ofthe rat cochlea during postnatal development
     [Objectives] To investigate the expression profiles of ANP and its receptors withinthe spiral ganglion of the rat cochlea during postnatal development.
     [Methods] All cochleae used in this investigation were obtained from postnatalSprague Dawley rats at five different ages (from postnatal day0to day28, P0-P28). Toreveal the cellular localization of ANP and its receptors in the rat spiral ganglion duringpostnatal development, the cochlear cryosections were subjected to immunohistochemistryand examined under a scanning laser confocal microscope. To investigate the expressionlevels of ANP and its receptors in the rat spiral ganglion, both mRNA and proteinproducts of ANP and its receptors were detected and analyzed in the cochlear modiolustissues by RT-PCR and Western blot analysis.
     [Results] The co-localization of ANP and its receptors were confirmed within thespiral ganglion of the rat cochlea at various stages of postnatal development byimmunohistochemistry. Subsequently, the differential expressions of ANP and itsreceptors at both the protein and mRNA level were detected in the cochlear modiolustissues by RT-PCR and Western blotting. Specifically, ANP mRNA was expressed at thelowest level after birth but strongly increased to a maximum level at P28. NPR-A mRNAwas expressed at a maximum level after birth but gradually decreased to a minimum levelat P28. The expression of NPR-C mRNA was decreased at early postnatal developmentalstages but slightly increased in adulthood. In contrast to the qRT-PCR data, ANP proteinwas expressed at a maximum level at P7but sharply decreased to the lowest level at P28.NPR-A and NPR-C proteins were expressed at a maximum level after birth but graduallydeclined during postnatal development.
     [Conclusions] We have demonstrated that ANP and its receptors colocalize in the spiral ganglion of the rat cochlea during postnatal development. Furthermore, we haveanalyzed the differential expression levels of both mRNA and protein of ANP and itsreceptors within the rat spiral ganglion during postnatal development. Collectively, ourresearch provides a direct evidence for the presence and synthesis of ANP and itsreceptors in the spiral ganglion of the rat cochlea during postnatal development. Theprotein expression levels of ANP and its receptors decreased with auditory development,suggesting possible roles for ANP in modulating neuronal and glial development, as wellas establishment of the neuron–SGC communication via its receptors.
引文
[1] Stover T, Diensthuber M. Molecular biology of hearing. GMS current topics inotorhinolaryngology, head and neck surgery.2011;10:Doc06.
    [2] Rusznák Z, Sz cs G. Spiral ganglion neurones: an overview of morphology, firingbehaviour, ionic channels and function. Pflügers Archiv European Journal ofPhysiology.2009;457:1303-25.
    [3] Nayagam BA, Muniak MA, Ryugo DK. The spiral ganglion: connecting theperipheral and central auditory systems. Hearing research.2011;278:2-20.
    [4] Shepherd RK, Hardie NA. Deafness-induced changes in the auditory pathway:implications for cochlear implants. Audiology&neuro-otology.2001;6:305-18.
    [5] Sekerkova G, Zheng L, Mugnaini E, Bartles JR. Espin actin-cytoskeletal proteinsare in rat type I spiral ganglion neurons and include splice-isoforms with afunctional nuclear localization signal. The Journal of comparative neurology.2008;509:661-76.
    [6] Lallemend F, Vandenbosch R, Hadjab S, Bodson M, Breuskin I, Moonen G, et al.New insights into peripherin expression in cochlear neurons. Neuroscience.2007;150:212-22.
    [7] Lang H, Li M, Kilpatrick LA, Zhu J, Samuvel DJ, Krug EL, et al. Sox2up-regulation and glial cell proliferation following degeneration of spiral ganglionneurons in the adult mouse inner ear. Journal of the Association for Research inOtolaryngology: JARO.2011;12:151-71.
    [8] Ichikawa H, Jacobowitz DM, Sugimoto T. S100protein-immunoreactive primarysensory neurons in the trigeminal and dorsal root ganglia of the rat. Brain research.1997;748:253-7.
    [9] Barres BA. The Mystery and Magic of Glia: A Perspective on Their Roles in Healthand Disease. Neuron.2008;60:430-40.
    [10] Hanani M. Satellite glial cells in sensory ganglia: from form to function. BrainResearch Reviews.2005;48:457-76.
    [11] Hanani M. Satellite glial cells in sympathetic and parasympathetic ganglia: In searchof function. Brain Research Reviews.2010;64:304-27.
    [12] Ten Tusscher MP, Klooster J, Vrensen GF. Satellite cells as blood-ganglion cellbarrier in autonomic ganglia. Brain research.1989;490:95-102.
    [13] Allen DT, Kiernan JA. Permeation of proteins from the blood into peripheral nervesand ganglia. Neuroscience.1994;59:755-64.
    [14] Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties,regulation, and physiological functions. Glia.2000;32:1-14.
    [15] Young JA, Brown DA, Kelly JS, Schon F. Autoradiographic localization of sites of(3H)gamma-aminobutyric acid accumulation in peripheral autonomic ganglia. Brainresearch.1973;63:479-86.
    [16] Bowery NG, Brown DA, Marsh S. gamma-Aminobutyric acid efflux fromsympathetic glial cells: effect of 'depolarizing' agents. The Journal of physiology.1979;293:75-101.
    [17] Brown DA, Galvan M. Influence of neuroglial transport on the action ofgamma-aminobutyric acid on mammalian ganglion cells. British journal ofpharmacology.1977;59:373-8.
    [18] Marrs GS, Spirou GA. Embryonic assembly of auditory circuits: spiral ganglion andbrainstem. The Journal of physiology.2012;590:2391-408.
    [19] Bulankina AV, Moser T. Neural circuit development in the mammalian cochlea.Physiology.2012;27:100-12.
    [20] Appler JM, Goodrich LV. Connecting the ear to the brain: Molecular mechanismsof auditory circuit assembly. Progress in neurobiology.2011;93:488-508.
    [21] Lu CC, Appler JM, Houseman EA, Goodrich LV. Developmental profiling of spiralganglion neurons reveals insights into auditory circuit assembly. The Journal ofneuroscience: the official journal of the Society for Neuroscience.2011;31:10903-18.
    [22] Barclay M, Ryan AF, Housley GD. Type I vs type II spiral ganglion neurons exhibitdifferential survival and neuritogenesis during cochlear development. Neuraldevelopment.2011;6:33.
    [23] Huang LC, Thorne PR, Housley GD, Montgomery JM. Spatiotemporal definition ofneurite outgrowth, refinement and retraction in the developing mouse cochlea.Development.2007;134:2925-33.
    [24] Huang LC, Barclay M, Lee K, Peter S, Housley GD, Thorne PR, et al. Synapticprofiles during neurite extension, refinement and retraction in the developingcochlea. Neural development.2012;7:38.
    [25] Breuskin I, Bodson M, Thelen N, Thiry M, Borgs L, Nguyen L, et al. Glial but notneuronal development in the cochleo-vestibular ganglion requires Sox10. Journal ofneurochemistry.2010;114:1827-39.
    [26] Freyer L, Aggarwal V, Morrow BE. Dual embryonic origin of the mammalian oticvesicle forming the inner ear. Development.2011;138:5403-14.
    [27] Kisch B. Electron microscopy of the atrium of the heart. I. Guinea pig.Experimental medicine and surgery.1956;14:99-112.
    [28] Jamieson JD, Palade GE. Specific Granules in Atrial Muscle Cells. The Journal ofcell biology.1964;23:151-72.
    [29] Henry JP, Gauer OH, Reeves JL. Evidence of the atrial location of receptorsinfluencing urine flow. Circulation research.1956;4:85-90.
    [30] de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potentnatriuretic response to intravenous injection of atrial myocardial extract in rats. Lifesciences.1981;28:89-94.
    [31] Sudoh T, Kangawa K, Minamino N, Matsuo H. A new natriuretic peptide in porcinebrain. Nature.1988;332:78-81.
    [32] Sudoh T, Minamino N, Kangawa K, Matsuo H. C-type natriuretic peptide (CNP): anew member of natriuretic peptide family identified in porcine brain. BiochemBiophys Res Commun.1990;168:863-70.
    [33] Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM. Natriuretic Peptides: TheirStructures, Receptors, Physiologic Functions and Therapeutic Applications. cGMP:Generators, Effectors and Therapeutic Implications. In: Schmidt HHHW, HofmannF, Stasch J-P, editors.: Springer Berlin Heidelberg;2009. p.341-66.
    [34] Oikawa S, Imai M, Ueno A, Tanaka S, Noguchi T, Nakazato H, et al. Cloning andsequence analysis of cDNA encoding a precursor for human atrial natriureticpolypeptide. Nature.1984;309:724-6.
    [35] Yan W, Wu F, Morser J, Wu Q. Corin, a transmembrane cardiac serine protease,acts as a pro-atrial natriuretic peptide-converting enzyme. Proceedings of theNational Academy of Sciences of the United States of America.2000;97:8525-9.
    [36] Chan JC, Knudson O, Wu F, Morser J, Dole WP, Wu Q. Hypertension in micelacking the proatrial natriuretic peptide convertase corin. Proceedings of theNational Academy of Sciences of the United States of America.2005;102:785-90.
    [37] Forssmann WG, Richter R, Meyer M. The endocrine heart and natriuretic peptides:histochemistry, cell biology, and functional aspects of the renal urodilatin system.Histochemistry and cell biology.1998;110:335-57.
    [38] John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, et al. Geneticdecreases in atrial natriuretic peptide and salt-sensitive hypertension. Science.1995;267:679-81.
    [39] John SW, Veress AT, Honrath U, Chong CK, Peng L, Smithies O, et al. Bloodpressure and fluid-electrolyte balance in mice with reduced or absent ANP. TheAmerican journal of physiology.1996;271:R109-14.
    [40] Bilder GE, Schofield TL, Blaine EH. Release of atrial natriuretic factor. Effects ofrepetitive stretch and temperature. The American journal of physiology.1986;251:F817-21.
    [41] Edwards BS, Zimmerman RS, Schwab TR, Heublein DM, Burnett JC, Jr. Atrialstretch, not pressure, is the principal determinant controlling the acute release ofatrial natriuretic factor. Circulation research.1988;62:191-5.
    [42] Ruskoaho H. Cardiac hormones as diagnostic tools in heart failure. Endocrinereviews.2003;24:341-56.
    [43] Burnett JC, Jr., Kao PC, Hu DC, Heser DW, Heublein D, Granger JP, et al. Atrialnatriuretic peptide elevation in congestive heart failure in the human. Science.1986;231:1145-7.
    [44] Nakao K, Sugawara A, Morii N, Sakamoto M, Yamada T, Itoh H, et al. Thepharmacokinetics of alpha-human atrial natriuretic polypeptide in healthy subjects.European journal of clinical pharmacology.1986;31:101-3.
    [45] Vanneste Y, Michel A, Dimaline R, Najdovski T, Deschodt-Lanckman M.Hydrolysis of alpha-human atrial natriuretic peptide in vitro by human kidneymembranes and purified endopeptidase-24.11. Evidence for a novel cleavage site.The Biochemical journal.1988;254:531-7.
    [46] Stephenson SL, Kenny AJ. The hydrolysis of alpha-human atrial natriuretic peptideby pig kidney microvillar membranes is initiated by endopeptidase-24.11. TheBiochemical journal.1987;243:183-7.
    [47] Yandle TG, Brennan SO, Espiner EA, Nicholls MG, Richards AM. Endopeptidase-24.11in human plasma degrades atrial natriuretic factor (ANF) to ANF(99-105/106-126). Peptides.1989;10:891-4.
    [48] Lu B, Gerard NP, Kolakowski LF, Jr., Bozza M, Zurakowski D, Finco O, et al.Neutral endopeptidase modulation of septic shock. The Journal of experimentalmedicine.1995;181:2271-5.
    [49] Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M, et al.The natriuretic peptide clearance receptor locally modulates the physiologicaleffects of the natriuretic peptide system. Proceedings of the National Academy ofSciences of the United States of America.1999;96:7403-8.
    [50] Miyagi M, Misono KS. Disulfide bond structure of the atrial natriuretic peptidereceptor extracellular domain: conserved disulfide bonds among guanylatecyclase-coupled receptors. Biochimica et biophysica acta.2000;1478:30-8.
    [51] Miyagi M, Zhang X, Misono KS. Glycosylation sites in the atrial natriuretic peptidereceptor: oligosaccharide structures are not required for hormone binding. Europeanjournal of biochemistry/FEBS.2000;267:5758-68.
    [52] Chinkers M, Wilson EM. Ligand-independent oligomerization of natriuretic peptidereceptors. Identification of heteromeric receptors and a dominant negative mutant.The Journal of biological chemistry.1992;267:18589-97.
    [53] Labrecque J, Deschenes J, McNicoll N, De Lean A. Agonistic induction of acovalent dimer in a mutant of natriuretic peptide receptor-A documents ajuxtamembrane interaction that accompanies receptor activation. The Journal ofbiological chemistry.2001;276:8064-72.
    [54] Bennett BD, Bennett GL, Vitangcol RV, Jewett JR, Burnier J, Henzel W, et al.Extracellular domain-IgG fusion proteins for three human natriuretic peptidereceptors. Hormone pharmacology and application to solid phase screening ofsynthetic peptide antisera. The Journal of biological chemistry.1991;266:23060-7.
    [55] Takahashi Y, Nakayama T, Soma M, Izumi Y, Kanmatsuse K. Organization of thehuman natriuretic peptide receptor A gene. Biochem Biophys Res Commun.1998;246:736-9.
    [56] Potter LR, Hunter T. Phosphorylation of the kinase homology domain is essentialfor activation of the A-type natriuretic peptide receptor. Molecular and cellularbiology.1998;18:2164-72.
    [57] Potter LR, Garbers DL. Dephosphorylation of the guanylyl cyclase-A receptorcauses desensitization. The Journal of biological chemistry.1992;267:14531-4.
    [58] Potter LR, Garbers DL. Protein kinase C-dependent desensitization of the atrialnatriuretic peptide receptor is mediated by dephosphorylation. The Journal ofbiological chemistry.1994;269:14636-42.
    [59] Antos LK, Potter LR. Adenine nucleotides decrease the apparent Km of endogenousnatriuretic peptide receptors for GTP. American journal of physiologyEndocrinology and metabolism.2007;293:E1756-63.
    [60] Pandey KN. Intracellular trafficking and metabolic turnover of ligand-boundguanylyl cyclase/atrial natriuretic peptide receptor-A into subcellular compartments.Molecular and cellular biochemistry.2002;230:61-72.
    [61] Fan D, Bryan PM, Antos LK, Potthast RJ, Potter LR. Down-regulation does notmediate natriuretic peptide-dependent desensitization of natriuretic peptide receptor(NPR)-A or NPR-B: guanylyl cyclase-linked natriuretic peptide receptors do notinternalize. Molecular pharmacology.2005;67:174-83.
    [62] Vieira MA, Gao M, Nikonova LN, Maack T. Molecular and cellular physiology ofthe dissociation of atrial natriuretic peptide from guanylyl cyclase a receptors. TheJournal of biological chemistry.2001;276:36438-45.
    [63] Koh GY, Nussenzveig DR, Okolicany J, Price DA, Maack T. Dynamics of atrialnatriuretic factor-guanylate cyclase receptors and receptor-ligand complexes incultured glomerular mesangial and renomedullary interstitial cells. The Journal ofbiological chemistry.1992;267:11987-94.
    [64] Goy MF, Oliver PM, Purdy KE, Knowles JW, Fox JE, Mohler PJ, et al. Evidencefor a novel natriuretic peptide receptor that prefers brain natriuretic peptide overatrial natriuretic peptide. The Biochemical journal.2001;358:379-87.
    [65] Nagase M, Katafuchi T, Hirose S, Fujita T. Tissue distribution and localization ofnatriuretic peptide receptor subtypes in stroke-prone spontaneously hypertensiverats. Journal of hypertension.1997;15:1235-43.
    [66] Kuhn M, Holtwick R, Baba HA, Perriard JC, Schmitz W, Ehler E. Progressivecardiac hypertrophy and dysfunction in atrial natriuretic peptide receptor (GC-A)deficient mice. Heart (British Cardiac Society).2002;87:368-74.
    [67] Nakayama T, Soma M, Takahashi Y, Rehemudula D, Kanmatsuse K, Furuya K.Functional Deletion Mutation of the5′-Flanking Region of Type A HumanNatriuretic Peptide Receptor Gene and Its Association With Essential Hypertensionand Left Ventricular Hypertrophy in the Japanese. Circulation research.2000;86:841-5.
    [68] Porter JG, Arfsten A, Fuller F, Miller JA, Gregory LC, Lewicki JA. Isolation andfunctional expression of the human atrial natriuretic peptide clearance receptorcDNA. Biochem Biophys Res Commun.1990;171:796-803.
    [69] Rose RA, Giles WR. Natriuretic peptide C receptor signalling in the heart andvasculature. The Journal of physiology.2008;586:353-66.
    [70] Stults JT, O'Connell KL, Garcia C, Wong S, Engel AM, Garbers DL, et al. Thedisulfide linkages and glycosylation sites of the human natriuretic peptidereceptor-C homodimer. Biochemistry.1994;33:11372-81.
    [71] Ammarguellat F, Larouche I, Schiffrin EL. Myocardial fibrosis in DOCA-salthypertensive rats: effect of endothelin ET(A) receptor antagonism. Circulation.2001;103:319-24.
    [72] Nussenzveig DR, Lewicki JA, Maack T. Cellular mechanisms of the clearancefunction of type C receptors of atrial natriuretic factor. The Journal of biologicalchemistry.1990;265:20952-8.
    [73] Moffatt P, Thomas G, Sellin K, Bessette MC, Lafreniere F, Akhouayri O, et al.Osteocrin is a specific ligand of the natriuretic Peptide clearance receptor thatmodulates bone growth. The Journal of biological chemistry.2007;282:36454-62.
    [74] Rahmutula D, Nakayama T, Soma M, Kosuge K, Aoi N, Izumi Y, et al. Structureand polymorphisms of the human natriuretic peptide receptor C gene. Endocrine.2002;17:85-90.
    [75] Mizuno T, Iwashina M, Itakura M, Hagiwara H, Hirose S. A variant form of thetype C atrial natriuretic peptide receptor generated by alternative RNA splicing. TheJournal of biological chemistry.1993;268:5162-7.
    [76] Leitman DC, Andresen JW, Kuno T, Kamisaki Y, Chang JK, Murad F. Identificationof multiple binding sites for atrial natriuretic factor by affinity cross-linking incultured endothelial cells. The Journal of biological chemistry.1986;261:11650-5.
    [77] Anand-Srivastava MB, Sairam MR, Cantin M. Ring-deleted analogs of atrialnatriuretic factor inhibit adenylate cyclase/cAMP system. Possible coupling ofclearance atrial natriuretic factor receptors to adenylate cyclase/cAMP signaltransduction system. Journal of Biological Chemistry.1990;265:8566-72.
    [78] Anand-Srivastava MB, Trachte GJ. Atrial natriuretic factor receptors and signaltransduction mechanisms. Pharmacological reviews.1993;45:455-97.
    [79] Murthy KS, Teng B-Q, Zhou H, Jin J-G, Grider JR, Makhlouf GM.Gi-1/Gi-2-dependent signaling by single-transmembrane natriuretic peptideclearance receptor. American Journal of Physiology-Gastrointestinal and LiverPhysiology.2000;278:G974-G80.
    [80] Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, andcyclic guanosine monophosphate-dependent signaling functions. Endocrine reviews.2006;27:47-72.
    [81] Cao LH, Yang XL. Natriuretic peptides and their receptors in the central nervoussystem. Progress in neurobiology.2008;84:234-48.
    [82] Tanaka I, Misono KS, Inagami T. Atrial natriuretic factor in rat hypothalamus, atriaand plasma: determination by specific radioimmunoassay. Biochem Biophys ResCommun.1984;124:663-8.
    [83] McKenzie JC. Atrial natriuretic peptide-like immunoreactivity in astrocytes ofparenchyma and glia limitans of the canine brain. The journal of histochemistry andcytochemistry: official journal of the Histochemistry Society.1992;40:1211-22.
    [84] McKenzie JC, Berman NE, Thomas CR, Young JK, Compton LY, Cothran LN, etal. Atrial natriuretic peptide-like (ANP-LIR) and ANP prohormone immunoreactiveastrocytes and neurons of human cerebral cortex. Glia.1994;12:228-43.
    [85] McKenzie JC, Juan YW, Thomas CR, Berman NE, Klein RM. Atrial natriureticpeptide-like immunoreactivity in neurons and astrocytes of human cerebellum andinferior olivary complex. The journal of histochemistry and cytochemistry: officialjournal of the Histochemistry Society.2001;49:1453-67.
    [86] Krzan M, Stenovec M, Kreft M, Pangrsic T, Grilc S, Haydon PG, et al.Calcium-dependent exocytosis of atrial natriuretic peptide from astrocytes. TheJournal of neuroscience: the official journal of the Society for Neuroscience.2003;23:1580-3.
    [87] Moriyama N, Taniguchi M, Miyano K, Miyoshi M, Watanabe T. ANP inhibitsLPS-induced stimulation of rat microglial cells by suppressing NF-κB and AP-1activations. Biochemical and Biophysical Research Communications.2006;350:322-8.
    [88] Jin Y, Zhong YM, Yang XL. Natriuretic peptides are localized to rat retinalamacrine cells. Neuroscience letters.2007;421:106-9.
    [89] Cao LH, Yang XL. Natriuretic peptide receptor-A is functionally expressed onbullfrog retinal Muller cells. Brain research bulletin.2007;71:410-5.
    [90] Cao LH, Yu YC, Zhao JW, Yang XL. Expression of natriuretic peptides in ratMuller cells. Neuroscience letters.2004;365:176-9.
    [91] Xu GZ, Tian J, Zhong YM, Yang XL. Natriuretic peptide receptors are expressed inrat retinal ganglion cells. Brain research bulletin.2010;82:188-92.
    [92] Yu YC, Cao LH, Yang XL. Modulation by brain natriuretic peptide of GABAreceptors on rat retinal ON-type bipolar cells. The Journal of neuroscience: theofficial journal of the Society for Neuroscience.2006;26:696-707.
    [93] Abdelalim EM, Masuda C, Tooyama I. Expression of natriuretic peptide-activatedguanylate cyclases by cholinergic and dopaminergic amacrine cells of the rat retina.Peptides.2008;29:622-8.
    [94] Abdelalim EM, Tooyama I. NPR-C is expressed in the cholinergic anddopaminergic amacrine cells in the rat retina. Peptides.2010;31:180-3.
    [95] Kanwal S, Elmquist BJ, Trachte GJ. Atrial natriuretic peptide inhibits evokedcatecholamine release by altering sensitivity to calcium. The Journal ofpharmacology and experimental therapeutics.1997;283:426-33.
    [96] Vatta M, Papouchado M, Bianciotti L, Locatelli A, Fernandez B. Atrial natriureticfactor modifies noradrenaline release in a sodium-free medium. Journal ofautonomic pharmacology.1994;14:267-73.
    [97] Richard D, Bourque CW. Atrial natriuretic peptide modulates synaptic transmissionfrom osmoreceptor afferents to the supraoptic nucleus. The Journal of neuroscience:the official journal of the Society for Neuroscience.1996;16:7526-32.
    [98] Dixon DB, Copenhagen DR. Metabotropic glutamate receptor-mediated suppressionof an inward rectifier current is linked via a cGMP cascade. The Journal ofneuroscience: the official journal of the Society for Neuroscience.1997;17:8945-54.
    [99] Vles JS, de Louw AJ, Steinbusch H, Markerink-van Ittersum M, Steinbusch HW,Blanco CE, et al. Localization and age-related changes of nitric oxide-and ANP-mediated cyclic-GMP synthesis in rat cervical spinal cord: an immunocytochemicalstudy. Brain research.2000;857:219-34.
    [100] Moro MA, Fernandez-Tome P, Leza JC, Lorenzo P, Lizasoain I. Neuronal deathinduced by SIN-1in the presence of superoxide dismutase: protection by cyclicGMP. Neuropharmacology.1998;37:1071-9.
    [101] Wiggins AK, Shen PJ, Gundlach AL. Atrial natriuretic peptide expression isincreased in rat cerebral cortex following spreading depression: possiblecontribution to sd-induced neuroprotection. Neuroscience.2003;118:715-26.
    [102] Kuribayashi K, Kitaoka Y, Kumai T, Munemasa Y, Isenoumi K, Motoki M, et al.Neuroprotective effect of atrial natriuretic peptide against NMDA-inducedneurotoxicity in the rat retina. Brain research.2006;1071:34-41.
    [103] Tong Y, Pelletier G. Ontogeny of atrial natriuretic factor (ANF) binding in variousareas of the rat brain. Neuropeptides.1990;16:63-8.
    [104] Prado J, Baltrons MA, Pifarré P, García A. Glial cells as sources and targets ofnatriuretic peptides. Neurochemistry International.2010;57:367-74.
    [105] Sarker MH, Fraser PA. The role of guanylyl cyclases in the permeability response toinflammatory mediators in pial venular capillaries in the rat. The Journal ofPhysiology.2002;540:209-18.
    [106] Levin ER, Frank HJ. Natriuretic peptides inhibit rat astroglial proliferation:mediation by C receptor. American Journal of Physiology-Regulatory, Integrativeand Comparative Physiology.1991;261:R453-R7.
    [107] Sumners C, Tang W, Paulding W, Raizada MK. Peptide receptors in astroglia:Focus on angiotensin II and atrial natriuretic peptide. Glia.1994;11:110-6.
    [108] Muller D, Hida B, Guidone G, Speth RC, Michurina TV, Enikolopov G, et al.Expression of guanylyl cyclase (GC)-A and GC-B during brain development:evidence for a role of GC-B in perinatal neurogenesis. Endocrinology.2009;150:5520-9.
    [109] Boran MS, Garcia A. The cyclic GMP-protein kinase G pathway regulatescytoskeleton dynamics and motility in astrocytes. Journal of neurochemistry.2007;102:216-30.
    [110] Pifarre P, Prado J, Giralt M, Molinero A, Hidalgo J, Garcia A. Cyclic GMPphosphodiesterase inhibition alters the glial inflammatory response, reducesoxidative stress and cell death and increases angiogenesis following focal braininjury. Journal of neurochemistry.2010;112:807-17.
    [111] Latzkovits L, Cserr HF, Park JT, Patlak CS, Pettigrew KD, Rimanoczy A. Effects ofarginine vasopressin and atriopeptin on glial cell volume measured as3-MG space.American Journal of Physiology-Cell Physiology.1993;264:C603-C8.
    [112] Lamprecht J, Meyer zum Gottesberge AM. The presence and localization ofreceptors for atrial natriuretic peptide in the inner ear of the guinea pig. Archives ofoto-rhino-laryngology.1988;245:300-1.
    [113] Meyer zum Gottesberge AM, Gagelmann M, Forssmann WG. Atrial natriureticpeptide-like immunoreactive cells in the guinea pig inner ear. Hearing research.1991;56:86-92.
    [114] Meyer zum Gottesberge AM, Lamprecht J. Localization of the atrial natriureticpeptide binding sites in the inner ear tissue--possibly an additional regulating system.Acta oto-laryngologica Supplementum.1989;468:53-7.
    [115] Meyer zum Gottesberge AM, Schleicher A, Drummer C, Gerzer R. The volumeprotective natriuretic peptide system in the inner ear. Comparison betweenvestibular and cochlear compartments. Acta oto-laryngologica Supplementum.1995;520Pt1:170-3.
    [116] Yoon YJ, Anniko M. Distribution of alpha-ANP in the cochlea and the vestibularorgans. ORL; journal for oto-rhino-laryngology and its related specialties.1994;56:73-7.
    [117] Yoon YJ, Hellstrom S. Immunohistochemical localization of alpha-atrial natriureticpolypeptide in the rat cochlea. Acta oto-laryngologica.1992;112:604-10.
    [118] Koch T, Gloddek B, Gutzke S. Binding sites of atrial natriuretic peptide (ANP) inthe mammalian cochlea and stimulation of cyclic GMP synthesis. Hearing research.1992;63:197-202.
    [119] Furuta H, Mori N, Luo L, Ryan AF. Detection of mRNA encoding guanylatecyclase A/atrial natriuretic peptide receptor in the rat cochlea by competitivepolymerase chain reaction and in situ hybridization. Hearing research.1995;92:78-84.
    [120] Krause G, Meyer zum Gottesberge AM, Wolfram G, Gerzer R. Transcriptsencoding three types of guanylyl-cyclase-coupled trans-membrane receptors in innerear tissues of guinea pigs. Hearing research.1997;110:95-106.
    [121] Suzuki M, Kitano H, Kitanishi T, Yazawa Y, Kitajima K, Takeda T, et al. RT-PCRanalysis of mRNA expression of natriuretic peptide family and their receptors in ratinner ear. Brain research Molecular brain research.1998;55:165-8.
    [122] Seebacher T, Beitz E, Kumagami H, Wild K, Ruppersberg JP, Schultz JE.Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear.Hearing research.1999;127:95-102.
    [123] Yoon YJ, Lee EJ, Kim SH. Synthesis of atrial natriuretic peptide in the rabbit innerear. The Laryngoscope.2012;122:1605-8.
    [124] Chen HX, Wang JL, Liu QC, Qiu JH. Distribution and location of immunoreactiveatrial natriuretic peptides in cochlear stria vascularis of guinea pig. Chinese medicaljournal.1994;107:53-6.
    [125]陈合新,邱建华,乔莉,等.豚鼠血管纹心钠素(ANP)免疫组化分布及超微定位,中华耳鼻咽喉科杂志,1993,6:339-341.
    [126]陈合新,王锦玲,邱建华.心钠素在豚鼠耳蜗螺旋神经节的分布及定位.中华医学杂志,1996,76(2):147-148.
    [127]林颖,邱建华.利钠尿肽在鼠内耳的表达及其意义.听力学及言语疾病杂志,2005,13(4):291-293.
    [128]林颖,邱建华.心钠素在豚鼠耳蜗微血管的分布.第四军医大学学报,2005,26(7):581-583.
    [129]林颖,邱建华,乔莉,熊巍,刘顺利.心钠素对耳蜗微循环的影响.听力学及言语疾病杂志,2006,14(5):347-350.
    [130]熊巍,邱建华,林颖,乔莉,刘顺利.心钠素对耳蜗缺血再灌注损伤的影响.中华耳鼻咽喉头颈外科杂志,2006,41(4):293-296.
    [131]王剑,乔莉,邱建华.一氧化氮合酶和心钠素在豚鼠耳蜗的分布.中华耳科学杂志,2007,5(1):103-106.
    [132]王剑,乔莉,邱建华.一氧化氮合成酶和心钠素在豚鼠耳蜗的分布.细胞与分子免疫学杂志,2007,23(3):273-274.
    [133]曹增玉,高雪,邱建华.心钠素及其受体在不同年龄大鼠耳蜗中的表达.中华耳科学杂志,2007,5(4):439-441.
    [134]张鹏志,陈俊,薛涛,曹增玉,邱建华.大鼠耳蜗血管纹边缘细胞原代培养及心钠素的表达.中华耳科学杂志,2008,6(3):325-330.
    [135] Qiao L, Han Y, Zhang P, Cao Z, Qiu J. Detection of atrial natriuretic peptide and itsreceptor in marginal cells and cochlea tissues from the developing rats. Neuroendocrinology letters.2011;32:187-92.
    [136]周柯,孙菲,邱建华,刘顺利,米文娟.心钠素在原代培养大鼠耳蜗螺旋神经元细胞中的表达.中华耳科学杂志,2010,8(2):225-230.
    [137]徐志勇,刘兆华.外耳道间断加压对豚鼠迷路积水及ANP表达的影响.第三军医大学学报,2001,23(10):1180-1182.
    [138] Whitlon DS, Ketels KV, Coulson MT, Williams T, Grover M, Edpao W, et al.Survival and morphology of auditory neurons in dissociated cultures of newbornmouse spiral ganglion. Neuroscience.2006;138:653-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700