用户名: 密码: 验证码:
多环芳烃物理化学性质的确定及其在逸度模型和上海典型环境研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(polycyclic aromatic hydrocarbons, PAHs)因在环境中持久、广泛存在且具有明确致癌性而备受关注,相关研究很多。研究理论多基于其物理化学(或物化)性质,因此,欲探讨PAHs各种环境行为及归趋,特别是利用模型进行相关研究,准确、无偏且有热力学一致性的物化性质是基本、首要前提。然而,由于存在实验室内、实验室间和不同仪器、不同方法间的误差等因素,已发表的物化性质数据存在小分子量PAHs物化性质参数多但存在差异、大分子量PAHs相关参数较少甚至缺乏的问题。因此,论文从研究16种优先控制PAHs的物化性质参数出发,开展以下方面研究工作:
     所研究的物化性质有:熔点Tm、熔解熵△Sfus、水溶解度SW、饱和蒸气压PL、辛醇-水分配系数KOW、辛醇-空气分配系数KOA以及空气-水分配系数KAW等。首先通过查阅大量文献,对实验数据进行判断和筛选,剔除偏离较多的、实验方法有误差的及超出环境温度范围过多的数据,汇编整理后统一为标准单位和液态下的性质,经线性回归或平均计算,得出298.15 K下文献获得值LDVs(literature derived values)。16种PAHs的物化性质显示出随分子量变化而递增或递减的线性规律,R2值均达到0.9以上。为使LDVs参数间达到热力学一致性并减小误差,引入最小方差调整程序,计算出的调整百分比呈随机分布,表明了LDVs的无偏性。调整后得到的FAVs(final adjusted values)可为随后PAHs的相关研究提供基础数据,还可做为关键输入参数应用于PAHs相关环境模型中,以提高模型研究的科学性、准确性和可比性。同时发现由于logKOW测定实验中存在水饱和辛醇相和辛醇饱和水相以及纯水相和纯辛醇相间分配的差异而产生的热力学偏差,根据三个分配系数LDVs线性关系先对logKOW(LDVs)进行修正,再进行最小方差调整计算,调整百分比减小且随机性更趋明显,这一修正使FAVs具有更好的热力学一致性和无偏性。
     为判断模型计算的准确性,选取四种定量结构预测模型(QSPR):EPIWIN, SPARC online, COSMOtherm,pp-LFER,对各自计算出的PAHs物化性质进行最小方差调整,并以FAVs为参照进行比较分析,发现模型预测PAHs物化性质的精确性和热力学一致性比较好,但与FAVs存在不同程度偏差,准确性稍差;同时最小方差调整结果显示某些性质在正或负方向上规律偏差,表明模型计算存在一定的系统偏差。研究得出模型应用中需注意:①好的热力学一致性和线性回归不能代表一个QSPR模型的准确性;②模型计算结果与实验数据间相互检验是非常必要且有互相促进作用。
     为验证物化性质对PAHs环境行为的影响,分别进行实验和模型验证,研究PAHs在上海典型环境中大气、土壤、植物叶片中及在Level III逸度模型中的分布和预测,对PAHs环境行为进行推断并分析物化性质的影响性。
     大气PM10采样分析结果显示,2005~2006年上海某工业区PM10中PAHs平均浓度为132±83 ng/m3,焦化厂周边PM10中PAHs浓度高于其它采样点,显示出一定的行业特征,对照点浓度远低于工业区;环数分布规律相似,均以3,4,5环为主,2,6环较少;季节性变化呈现出秋冬高、春夏低的趋势,环数分布也有相应变化,体现了物化性质是温度函数的特性。表明除环境等因素影响外,PAHs的物化性质决定了其在环境中的分配行为和归趋。同时采用BaPE进行风险评估结果显示:工业区PM10的BaPE值明显高于其它采样点位。上海多个点位表层土壤中PAHs分析结果显示,工业区土壤的总PAHs浓度最高(焦化厂、氯碱厂、电厂分别为3258, 1873和994 ng/g),其次为徐家汇交通主干道和南京路(196和166 ng/g),对照点淀山湖的含量最低(10.7 ng/g)。温度影响结果显示:冬季PAHs检出浓度普遍高于夏季,冬季以2、3、4环PAHs为主,夏季则以3、4、5为主。温度对不同环数PAHs介质分配的影响与其饱和蒸气压有关。
     采用特征比值法对上海环境数据进行的源分析结果显示:选定的工业区域大气PM10中PAHs污染主要来自工业排放,其次为交通和扬尘污染,总体表现为混合污染;表层土壤分析结果为煤炭燃烧和交通排放混合污染。对焦化厂炼焦路炉顶无组织排放废气中PM10特征比值法分析发现:焦化炉顶PM10计算结果与文献中工业排放和焦炉燃烧PM10结果非常接近。
     为探明气态PAHs分配行为,选取四种上海常见植物(广玉兰、香樟、黄杨和法国梧桐)叶片,采集的相同外部环境下叶片分析结果表明:常绿树树叶对PAHs的富集能力随环境温度而变化,梧桐树叶内PAHs随叶片生长而一直增加,通常梧桐叶内PAHs浓度较常绿树叶内高,各自富集特征差异较大,这应为叶片特性和PAHs物化性质共同作用结果。对两种被动式采样技术SPMDs和XAD对大气中PAHs的富集研究发现,相同条件下XAD富集能力较SPMDs高出数倍,富集特征存在差异,这与采样器的物理特性及PAHs物化性质有关。
     Level III逸度模型采用Beyer Environment中环境参数,输入论文所得16种PAHs的物化性质FAVs,结果显示:随分子量和苯环数增加,富集在土壤和沉积物中的PAHs浓度呈数量级增加,气相中则呈递减趋势;两相间迁移呈现规律性递增或递减变化,模型计算结果显示出低于上海实测结果的趋势;根据上海实测结果,对Beyer环境参数中大气和土壤输入量微调后两者差异有所减小。证实了Level III模型对区域有机物环境行为预测的指导意义。
Polycyclic aromatic hydrocarbons (PAHs) are well know persistent organic pollutants (POPs) and widely investigated by researchers around the world due to their notable carcinogenic, mutagenecity properties and persistency. The basic and key element of all these research work is their physical-chemical properties. So a set of recommended physical-chemical properties, with accurate and themodynamic consistency, is necessary. The thesis began with this topic and the following works were carried out as described below.
     A complete set of thermodynamically consistent property data (vapor pressure, aqueous solubility, octanol solubility, octanol-water partition coefficient, octanol-air partition coefficient, and air-water partition coefficient) for sixteen PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-c,d]pyrene, dibenzo(a,h)anthracene and benzo[g,h,i]perylene) was derived from measured data reported in the literature. First, literature derived values (LDVs) at 25°C for each property of 16 PAHs were obtained by averaging, regressing and extrapolating after changed to standard units and liquid state. Then the LDVs were adjusted to conform the thermodynamic relationships by a least square adjustment procedure. The influence of the mutual solubility of octanol and water on phase partitioning is taken into account in the adjustment of the KOW. Compared to other semi-volatile organic compounds, the LDVs for the PAHs display a high degree of thermodynamic consistency and require only minor adjustments. The LDVs and the adjusted values for all properties show highly linear regressions with molecular mass (R2 > 0.9). The final adjusted values (FAVs) were recommended for further research work related to PAHs.
     In order to compare and assess the accuracy of result calculated by models, four popular quantitative structure-property relationship (QSPR) models were employed: SPARC online, EPIWIN, COSMOtherm and pp-LFER. There has none relative report about the accuracy of each model for predicting the properties of PAHs before though it is essential for further use. We defined the FAVs as criteria to judge the accurate of results from models. Discrepancy was found for every model despite of their precision and thermo-consistency. The comparison showed that the experimental data, adjustment procedure and thermodynamic consistency are all valuable factors in evaluating a QSPR method. The results showed that good precision and thermo-consistency cannot represent the accuracy of a model. The accuracy of xperimental data and result from model can test each other.
     In order to verify the influence of properties on behavior and fate of 16 PAHs, environmental sample and a fugacity model were employed. The environmental fate of 16 PAHs were investigated by selecting air, soil and leaves samples in several typical function districts in Shanghai and in Level III model. The results showed that the average concentration of 16 PAHs in PM10 were 132±83 ng/m3 in two years. Samples from Cocking Chemical Plant had the highest PM10 concentration than others while samples from Dianshan lake are far lower than that from the industrial area. And 2,3,4-ring PAHs took predominant level in PM10 while 2,6-ring PAHs were seldom detected. In spit of the environmental factors, physical-chemical properties of compounds are the key point in determining their environmental fate. PAHs are obvious influenced by the change of temperature. Usually the higher PAHs concentrations in PM10 appeared in autumn to winter while the lower ones in spring to summer. This character also had intimate relationship with local weather as while as their physical chemical properties. And risk assessment of PM10 showed that BaPE were much higher in industrial district than rural area. Results from soil samples also showed that 16 PAHs in soil from industrial area (Cocking Chemical Plant,Chloro-alkaline Chemical Plant,Thermo Power Plant were 3258 ng/g, 1873 ng/g and 994 ng/g respectively) were higher than that from others, and the sample from Dianshan lake was still the lowest one (10.7 ng/g). At the same time, PAHs detected in winter were always higher than in summer. And the 2,3,4-ring PAHs took prevalent level in winter samples while 3,4,5-ring PAHs in summer samples. Six-ring PAHs had only less detected in soil samples. This distribution pattern was mainly determined by the vapor pressure of PAHs except for environmental factors.
     Diagnositic ratio analysis showed that PAHs in PM10 mainly came from the industrial waste gas, followed by traffic discharge and dustfall of road. Diagnositic ratio result for soil samples illustrated that the coal burning and traffic were their mainly source. Analysis of PM10 sampled just aroud the funnel of CCP had almost identical results as the reported data in literatures.
     Leaf samples from three evergreen species (southern magnolia, camphor tree, boxtree) and one deciduous species (phoenix tree) in Shanghai were sampled during 2005 to 2006. The results showed that there has big difference in accumulating capacity and tendency among these species. For the phoenix tree, the accumulation of PAHs increased with the growth of leaves till the leaves mature. PAHs in evergreen trees were variable with the change of temperature. Their accumulating capacities and tendencies were different among three evergreen species. Leaves from phoenix tree had higher capacity in intercepting and accumulating PAHs from air than evergreen species due to the character of leaf and properties of PAHs. Two passive sampler devices, SPMD and XAD, were employed to investigate their accumulating pattern and tendency of PAHs. The results showed that concentration of total 16 PAHs in XAD were 2 to 8 times than that in SPMD. This should be attributed to the character of SPMD and XAD and properties of PAHs.
     A fugacity model– Level III model, invented by Prof. D. Mackay from Trent University, was employed to illustrate the fate of PAHs in environment and the function of their physical-chemical properties (FAVs). The results showed that the PAHs tended to be accumulated fast in organic phase with the increasing of molecular mass and benzene rings while decreased in gas phase. And the exchange between phases also increased or decreased regularly. Results from Level III model were lower than the experimental results in Shanghai. This discrepancy decreased after adjusted two input parameters of Beyer Environment. The comparison verified that Level III model can be used in predicating the fate of PAHs in some certain typical area. It can also be used in predicting the fate and tendency in environment for compounds with similar structure and molecular mass without related property data.
引文
[1].U.S.EPA., Health Effects Assessment for Polycyclic Aromatic Hydrocarbons (PAHs). In U.S. Environmental Protection Agency, Washington, D.C.: 1984.
    [2].金相灿,有机化合物污染化学---有毒有机物污染化学[M].第一版;北京:清华大学出版社,1990.
    [3].Lima, A. L. C.,Farrington, J. W.,Reddy, C. M., Combustion-derived polycyclic aromatic hydrocarbons in the environment - A review[J]. Environmental Forensics, 2005, 6 (2),109-131.
    [4].Gregg, S. D., Fisher, J. W., Bartlett, M. G., A review of analytical methods for the identification and quantification of hydrocarbonds found in jet propellant and related petroleum based fuels[J]. Biomedical Chromatography, 2006, 20 (6-7), 492-507.
    [5].Baek, S. O.,Goldstone, M. E.,Kirk, P. W. W., etc., Concentrations of particulate and gaseous polycyclic aromatic hydrocarbons in London air following a reduction in the lead content of petrol in the United Kingdom.[J]. Science of The Total Environment, 1992, (111), 169-199.
    [6].Barbella, R., Bertoli, C., Ciajolo, A., etc., Behavior of a fuel oil during the combustion cycle of a direct injection diesel engine[J]. Combustion and Flame, 1990, 82 (2), 191-198.
    [7].Wang, L. C.,Wang, I. C.,Chang, J. E., etc., Emission of polycyclic aromatic hydrocarbons (PAHs) from the liquid injection incineration of petrochemical industrial wastewater[J]. Journal of Hazardous Materials, 2007, 148 (1-2), 296-302.
    [8].Yang, H. H., Lee, W. J.,Chen, S. J., etc., PAH emission from various industrial stacks[J]. Journal of Hazardous Materials, 1998, 60 (2), 159-174.
    [9].Friedman, G. M., Mukhopadhyay, P. K.,Moch, A., etc., Waters and organic-rich waste near dumping grounds in the New York Bight[J]. International Journal of Coal Geology, 2000, 43 (1-4), 325-355.
    [10]. White, P. A., Rasmussen, J. B., The genotoxic hazards of domestic wastes in surface waters[J]. Mutation Research - Reviews in Mutation Research, 1998, 410 (3), 223-236.
    [11]. Busche, U., Hirner, A. V., Mobilization potential of hydrophobic organic compounds (HOCs) in contaminated soils and waste materials. Part II: Mobilization potential of PAHs, PCBs, and phenols by natural waters [J]. Acta Hydrochimica et Hydrobiologica, 1997, 25 (5), 248-252.
    [12]. Cook, J., Beyea, J., Potential toxic and carcinogenic chemical contaminants in source-separated municipal solid waste composts: Review of available data and recommendations [J]. Toxicological and Environmental Chemistry, 1998, 67 (1-2), 27-69.
    [13]. Finizio, A., Mackay, D.,Bidleman, T., etc., Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols.[J]. Atmospheric Environment 1997, 31 (15), 2289-2296.
    [14]. Gigliotti, C.,Brunciak, P. A.,Dachs, J., etc., Air-water exhcange of polycyclic aromatic hydrocarbons in the New-York-New Jersey, USA, Harbor estuary.[J]. Environmental Toxicology and Chemistry, 2002, 21 (2), 235-244.
    [15]. Goss, K. U., Effects of temperature and relative humidity on the sorption of organic vapors on clay minerals.[J]. Environmental Science and Technology, 1993, 27 (10), 2127-2132.
    [16]. De Maagd, P. G.-J.,Ten Hulscher, D. T. H. E. M.,Van Den Heuvel, H., etc., Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous solubilities, n-octanol/water partition coefficients, and Henry's law constants. [J]. Environmental Toxicology and Chemistry, 1998, 17 (2), 251-257.
    [17]. De Kock, A.,Lord, D. A., A simple procedure for determining octanol-water patition coefficients using reverse phase high performance liquid chromatography (RPHPLC). [J]. Chemosphere, 1987, 16 (1),pp 133-142.
    [18]. De Bruijn, J., Busser, F., Seinen, W., etc., Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the 'slow-stirring' method.[J]. Environmental Toxicology and Chemistry 8 (6), pp. 499-512, 1989, 8 (6), 499-512.
    [19]. De Voogt, P., Van Zijl, G. A., Govers, H., etc., Reversed-phase TLC and structure-activity relationships of polycyclic (hetero) aromatic hydrocarbons. [J]. Journal of Planar Chromatography - Modern TLC 1990, 3, 24-33.
    [20]. DePablo, R. S., Determination of saturated vapor pressure in range 10-1-10-4 torr by effusion method. [J]. Journal of Chemical and Engineering Data, 1976, 21 (2), 141-143.
    [21].Fowler, L.,Trump, N. W.,Volgler, C. E., Vapor pressure of naphthalene. Measurements between 40.deg. and 180.deg.[J]. Journal of Chemical & Engineering Data, 1968, 13 (2), 209-210.
    [22]. Garst, J. E.,Wilson, W. C., Accurate, wide-range, automated, high-performance liquid-chromatographic method for the estimation of octanol water partition-coefficients. 1. Effect of chromatographic conditions and procedure variables on accuracy and reproducibility of the method.[J]. Journal of Pharmaceutical Sciences, 1984, 73 (11), 1616-1623.
    [23]. Mackay, D.,Shiu, W. Y.,Ma, K. C., etc., Handbook. Physical-Chemical Properties and Environmental Fate for Organic Chemicals Volume 1: Introduction and Hydrocarbons. [J]. 2006.
    [24]. Lide, D. R., Handbook of Chemistry and Physics, 88th Edition.[M]. The CRC Press: 2007.
    [25]. Shaw, D. G. E., IUPAC Solubility Data Series, Vol. 38: Hydrocarbons (C8-C36) with Water and Seawater. [J]. Pergamon Press, Oxford, England, 1989.
    [26]. Stephenson, R. M., Malanowski, S., Handbook of the Thermodynamics of Organic Compounds.[J]. Elsevier, New York., 1987.
    [27]. Weast, R. C., CRC Handbook of Chemistry and Physis.[M]. 66 ed.; Perris, CA, USA CRC Press: 1985.
    [28]. Yaws, C. L., Handbook of Vapor Pressure, Vol. 1 C1 to C4 Compounds, Vol. 2. C5 to C7 Compounds, Vol. 3, C8 to C28 Compounds. [M]. Texas: Gulf Publishing Co., Houstion 1994.
    [29]. Zwolinski, B. J., Wilhoit, R. C., Handbook of Vapor Pressures and Heats of Vaporization of Hydrocarbons and Related Compounds. [M]. Texas: Texas A & M University, College Station: 1971
    [30]. ?berg, A., Macleod, M., Wiberg, K., Physical-chemical property data for dibenzo-p-dioxin (DD), dibenzofuran (DF), and chlorinated DD/Fs: A critical review and recommended values.[J]. J. Phys. Chem. Ref. Data 37, 1997 (2008) DOI:10.1063/1.3005673, Published 14 November 2008 2008, (37), 1997-2008.
    [31]. Abraham, M. H., Chadha, H. S., Whiting, G. S., etc., Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and theΔlog P parameter of seiler. [J]. Journal of Pharmaceutical Sciences, 1994, 83 (8), 1085-1100.
    [32].Abraham, M. H., Poole, C. F.,Poole, S. K., Solute effects of reversed-phase thin-layer chromatography:A linear free energy relationship analysis.[J]. Journal of Chromatography A, 1996, 749 (1-2), 201-209.
    [33]. Abraham, M. H., Le, J., Acree, W. E., etc., The solubility of gases and vapours in dry octan-1-ol at 298 K. [J]. Chemosphere, 2001, 44 (4), 855-863.
    [34]. Abraham, M. H., Ibrahim, A., Gas to olive oil partition coefficients: A linear free energy analysis.[J]. Journal of Chemical Information and Modeling, 2006, 46 (4), 1735-1741.
    [35]. Abraham, M. H.,Acree Jr, W. E., Prediction of gas to water partition coefficients from 273 to 373 K using predicted enthalpies and heat capacities of hydration.[J]. Fluid Phase Equilibria, 2007, 262 (1-2), 97-110.
    [36]. Acree, J., W. E., Abraham, M. H., The analysis of solvation in ionic liquids and organic solvents using the Abraham linear free energy relationship.[J]. Journal of Chemical Technology and Biotechnology, 2006, 81 (8), 1441-1446.
    [37]. Beyer, A., Wania, F., Gouin, T., etc., Selecting internally consistent physicochemical properties of organic compounds.[J]. Environmental Toxicology and Chemistry, 2002, 21 (5), 941-953.
    [38]. Goss, K. U., Prediction of the temperature dependency of Henry's law constant using poly-parameter linear free energy relationships.[J]. Chemosphere, 2006, 64 (8), 1369-1374.
    [39]. Chang, K. F., Fang, G. C.,Chen, J. C., etc., Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004[J]. Environmental Pollution, 2006, 142 (3), 388-396.
    [40].董雪玲,袁杨森,大气可吸入颗粒物中有机污染物的研究进展[J].资源与产业, 2006, (6).
    [41].成海容,张干,刘向,etc.,青海瓦里关大气中多环芳烃的研究[J]. 2006, 6.
    [42].张树才,张巍,王开颜, etc.,北京东南郊大气中多环芳烃的相分配及其致癌毒性表征[J].生态环境, 2006, (6).
    [43]. Tremblay, R. T.,Riemer, D. D.,Zika, R. G., Organic composition of PM2.5 and size-segregated aerosols and their sources during the 2002 Bay Regional Atmospheric Chemistry Experiment (BRACE), Florida, USA [J]. Atmospheric Environment 2007, 41 (20), 4323-4335.
    [44]. Primbs, T., Simonich, S.,Schmedding, D., etc., Atmospheric outflow of anthropogenic semivolatile organic compounds from East Asia in spring[J]. Environmental science & technology, 2004, 41 (10),pp 3551-3558.
    [45]. Matsushita H,Kato Y,Y., H., Distribution of benzo(a)pyrene content in soil in urban area[J]. Journal of Japanese Society Air Pollution, 1980 (15), 348-352.
    [46]. Arashidani K, Yoshikawa M,K., K., A simplified analysis of polynuclear aromatic hydrocarbons in soil and sediment by high performance liquid chromatography[J]. Eisei Kagaku, 1985 (31), 24-31.
    [47]. Spitzer T,S., K., Simple method for determination of polynuclear aromatic hydrocarbons in soil by clean-up on XAD-2[J]. Journal of Chromatography, 1986,(358), 434-437.
    [48].张天彬,杨国义,万洪富etc.,东莞市土壤中多环芳烃的含量、代表物及其来源[J].土壤, 2005, 37 (3), 265-271.
    [49].禹果,吴文勇,刘洪禄, etc.,利用化学分析和生物测试方法比较研究污染土壤中芳烃受体效应物质的积累[J].环境科学, 2006, (9).
    [50].罗雪梅,刘昌明,何孟常,土壤与沉积物对多环芳烃类有机物的吸附作用[J].生态环境, 2004, 13 (3),pp 394-398.
    [51]. Oleszczuk, P., Persistence of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge-amendedsoil [J]. Chemosphere, 2006, 65 (9), 1616 -1626.
    [52]. Simonich, S. L., Hites, R. A., Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere[J]. Nature, 1994, (370), 49-51.
    [53]. Manning, W. J., Feder, W. A.,大气污染物的植物监测[M].第一版ed.;中国环境科学出版社: 1987.
    [54].董瑞斌,许东风,多环芳烃在环境中的行为[J].环境与开发, 1999, 14 (4), 10-12.
    [55]. Nakajima, D., Yoshida, Y., Suzuki, J., etc., Seasonal changes in the concentration of Polycyclic Aromatic Hydrocarbons in Azalea leave and relationship to atmospheric concentration[J]. 1995, 30 (3),pp 409-418.
    [56]. Simonich, S. L., Hites, R. A., Vegetation atmosphere partitioning of polycyclic aromatic hydrocarbons[J]. Environmental Science and Technology, 1994 (28), 939-943.
    [57].王雅琴,左谦,焦杏春, etc.,北京大学及周边地区非取暖期植物叶片中的多环芳烃[J].环境科学, 2004 (7), 23-27.
    [58].潘勇军,田大伦,唐大武, etc.,樟树林生态系统中多环芳烃含量和分布特征[J].林业科学, 2004, (11), 2-7.
    [59]. Jouraeva, V. A.,Johnson, D. L.,Hassett, J. P., etc., Role of sooty mold fungi in accumulation of fine-particle-associated PAHs and metals on deciduous leaves[J]. Environmental Research, 2006, 102 (3), 272-282.
    [60]. Bohme, F., Welsch-Pausch, K., McLachlan, M. S., Uptake of airborne semivolatile organic compounds in agricultural plants: Field measurements of interspecies variability[J]. Environmental Science & Technology, 1999 (33), 1805–1813.
    [61]. Wania, F., Pacyna, J. M., Mackay, D., Global fate of persistent organic pollutants[J]. Toxicological and Environmental Chemistry, 1998, 66 (1-4) 81-89.
    [62].杨建丽,刘征涛,冯流, etc.,长江口水体中PAHs的基本生态风险特征[J].环境科学研究, 2009, 22 (7) 784-788.
    [63].郎印海,薛荔栋,刘爱霞, etc.,日照近岸海域表层沉积物中多环芳烃(PAHs)来源的识别和解析[J].中国海洋大学学报(自然科学版), 2009, 39 (3) 535-542.
    [64]. Lee, R. F. Fate of petroleum hydrocarbons in marine zooplankton ,Sources,effects and sinksof hydrocarbons in the aquatic environment[A], In Conference on prevention and control of oil pollution: proceedings.[C], Washington D. C., 1975
    [65]. Sonthworth, G. R., The role of volatilization in removing polycyclic aromatic hydrocarbons from aquatic environment [J]. Bulletin of Environmental Contamination and Toxicology, 1979, (21) 507~514.
    [66].张永清,费红琳,丁凯,修正Cp_EA-PLS用于多环芳烃光解半衰期QSAR的研究[J].计算机与应用化学, 2009, 26 (4) 499-500.
    [67].谭文捷,丁爱中,王金生,硫酸盐还原条件下多环芳烃在土壤中的迁移转化[J].环境科学研究, 2009, 22 (2) 236-241.
    [68]. Haritash, A. K., Kaushik, C. P., Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review[J]. Journal of Hazardous Materials, 2009.
    [69]. Palmes, E. D., Gunnison, A. F., Personal monitoring device for gaseous contaminants.[J]. American Industrial Hygiene Association Journal, 1973, 34, 78-81.
    [70]. Shen, L., Lei, Y. D., Wania, F., Sorption of chlorobenzene vapors on styrene-divinylbenzene polymer[J]. Journal of Chemical and Engineering Data, 2002, 47 (4), 944-949.
    [71]. Rantalainen, A. L., Hyotylainen, T., Saramo, M., etc., Passive sampling of PAHs in indoor air in Nepal[J]. Toxicological and Environmental Chemistry, 1999, 68 (3-4) 335-348.
    [72]. Bohlin, P., Jones, K. C.,Strandberg, B., Occupational and indoor air exposure to persistent organic pollutants: A review of passive sampling techniques and needs[J]. Journal of Environmental Monitoring, 2007, 9 (6) 501-509.
    [73]. Soedergren, A., Solvent-filled dialysis membranes simulate uptake of pollutants by aquatic organisms [J]. Environmental Science and Technology, 1987, 21 (9) 855-859.
    [74]. Ke, R., Xu, Y.,Huang, S., etc., Comparison of the uptake of polycyclic aromatic hydrocarbons and organochlorine pesticides by semipermeable membrane devices and caged fish (Carassius carassius) in Taihu Lake, China[J]. Environmental Toxicology and Chemistry, 2007, 26 (6) 1258-1264.
    [75]. Huckins, J. N.,Tubergen, M. W.,Manuweera, G. K., Semipermeable membrane devices containing model lipid: A new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential[J]. Chemosphere, 1990, 20 (5) 533-552.
    [76]. Esteve-Turrillas, F. A., Pastor, A., Yusa, V., etc., Using semi-permeable membrane devices as passive samplers [J]. TrAC - Trends in Analytical Chemistry, 2007, 26 (7),pp 703-712.
    [77]. Bartkow, M. E., Huckins, J. N., Muller, J. F., Field-based evaluation of semipermeable membrane devices (SPMDs) as passive air samplers of polyaromatic hydrocarbons (PAHs)[J].Atmospheric Environment, 2004, 38 (35) 5983-5990.
    [78]. Cicenaite, A.,Huckins, J. N.,Alvarez, D. A., etc., Feasibility of a simple laboratory approach for determining temperature influence on SPMD-air partition coefficients of selected compounds[J]. Atmospheric Environment, 2007, 41 (13) 2844-2850.
    [79]. Lebo, J. A.,Zajicek, J. L.,Huckins, J. N., etc., Use of semipermeable membrane devices for in situ monitoring of polycyclic aromatic hydrocarbons in aquatic environments[J]. Chemosphere, 1992, 25 (5),pp 697-718.
    [80]. Ke, R., Li, J.,Qiao, M., etc., Using semipermeable membrane devices, bioassays, and chemical analysis for evaluation of bioavailable polycyclic aromatic hydrocarbons in water[J]. Archives of Environmental Contamination and Toxicology, 2007, 53 (3) 313-320.
    [81]. Augulyte, L.,Bergqvist, P. A., Estimation of water sampling rates and concentrations of PAHs in a municipal sewage treatment plant using SPMDs with performance reference compounds[J]. Environmental Science and Technology, 2007, 41 (14) 5044-5049.
    [82]. Liu, Z. Y.,Yang, F. L.,Quan, X., etc., Dynamic fugacity model for describing the fate of persistent organic pollutants in the river[J]. Huanjing Kexue/Environmental Science, 2006, 27 (1),pp 121-125.
    [83]. Daignault, S. A., Noot, D. K., Williams, D. T., etc., A review of the use of XAD resins to concentrate organic compounds in water. [J]. Water Research, 1988, 22 (7) 803-813.
    [84]. Wania, F., Shen, L., Lei, Y. D., etc., Development and calibration of a resin-based passive sampling system for monitoring persistent organic pollutants in the atmosphere. [J]. Environmental Science and Technology, 2003, 37 (7) 1352-1359.
    [85]. Loewen, M. D., Sharma, S.,Tomy, G., etc., Persistent organic pollutants and mercury in theHimalaya[J]. Aquatic Ecosystem Health and Management, 2005, 8 (3) 223-233.
    [86]. Halek, F., Nabi Bidhendi, G. R.,Hashtroudi, M., etc., Distribution of polycyclic aromatic hydrocarbons in gas phase in urban atmosphere[J]. International Journal of Environmental Research, 2008, 2 (1) 97-102.
    [87]. Hu, W., Zhong, Q., Yuan, Q., etc., The analysis of PAHs concentrations of vehicular tail gas in different types. [J]. Huanjing Kexue Xuebao / Acta Scientiae Circumstantiae, 2008, 28 (12) 2493-2498.
    [88]. Sadhra, S., Wheatley, A. D., Polycyclic aromatic hydrocarbon emissions from clinical waste incineration. [J]. Chemosphere, 2007, 66 (11) 2177-2184.
    [89]. Daly, G. L., Lei, Y. D., Teixeira, C., etc., Pesticides in western Canadian Mountain air and soil[J]. Environmental Science and Technology, 2007, 41 (17) 6020-6025.
    [90]. Daly, G. L., Lei, Y. D., Teixeira, C., etc., Organochlorine pesticides in the soils and atmosphere of Costa Rica[J]. Environmental Science and Technology, 2007, 41 (4) 1124-1130.
    [91]. Shen, L., Wania, F., Lei, Y. D., etc., Atmospheric distribution and long-range transport behavior of organochlorine pesticides in North America[J]. Environmental Science and Technology, 2005, 39 (2) 409-420.
    [92]. Goss, K.-U., Bronner, G., Harner, T., etc., The partition behavior of fluorotelomer alcohols and olefins. [J]. Environmental Science and Technology, 2006, 40 (11) 3572-3577.
    [93]. Wania, F., Shen, L., Lei, Y. D., etc., Development and calibration of a resin-based passive sampling system for monitoring persistent organic pollutants in the atmosphere.[J]. Environmental Science and Technology, 2003, 37 (7) 1352-1359.
    [94]. Xiao, H., Hung, H.,Harner, T., etc., A flow-through sampler for semivolatile organic compounds in air[J]. Environmental Science and Technology, 2007, 41 (1) 250-256.
    [95].刘国卿,张干,李军, etc.,利用SPMD技术监测珠江三角洲大气中多环芳烃[J].中国环境科学2004, 24 (3).
    [96].王俊,张干,李向东, etc.,珠江三角洲地区大气中多环芳烃的被动采样观测[J].环境科学研究, 2007, 20 (1).
    [97].张干,刘向,大气持久性有机物(POPs)被动采样[J].化学进展, 2009, 21 (2/3).
    [98]. Diamond, M. L., Bhavsar, S. P.,Helm, P. A., etc., Fate of organochlorine contaminants in arctic and subarctic lakes estimated by mass balance modelling[J]. Science of the Total Environment, 2005, 342 (1-3) 245-259.
    [99]. Prevedouros, K., MacLeod, M.,Jones, K. C., etc., Modelling the fate of persistent organic pollutants in Europe: Parameterisation of a gridded distribution model[J]. Environmental Pollution, 2004, 128 (1-2) 251-261.
    [100].Mackay, D., Multimedia Environmental Models: The Fugacity Approach[M]. Second Edition ed.;化学工业出版社: 2007.
    [101].张丽,戴树桂,多介质环境逸度模型研究进展[J].环境科学与技术, 2005, 28 (1) 97-99.
    [102].Wania, F.,Breivik, K.,Persson, N. J., etc., CoZMo-POP 2 - A fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organic pollutants[J]. Environmental Modelling and Software, 2006, 21 (6) 868-884.
    [103].Xiao, H.,Li, N.,Wania, F., Compilation, evaluation, and selection of physical-chemical property data forα-,β-, andγ-hexachlorocyclohexane.[J]. Journal of Chemical and Engineering Data, 2004, 49 (2)173-185.
    [104].Beyer, A., Wania, F., Gouin, T., etc., Selecting internally consistent physicochemical properties of organic compounds[J]. Environmental Toxicology and Chemistry, May, 2002, 21 (5) 941-953.
    [105].Li, N. Q., Wania, F., Lei, Y. D., etc., A Comprehensive and Critical Compilation, Evaluation, and Selection of Physical-Chemical Property Data for Selected Polychlorinated Biphenyls.[J]. Journal of Physical and Chemical Reference Data, 2003, 32 (4) 1545-1590.
    [106].Schenker U,M, M.,Scheringer M, etc., Improving data quality for environmental fate models: A least-squares adjustment procedure for harmonizing physicochemical properties of organic compounds [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, NOV 1 2005 2005, 39 (21) 8434-8441.
    [107].Schenker, U., MacLeod, M.,Scheringer, M., etc., Improving data quality for environmental fate models: A least-squares adjustment procedure for harmonizing physicochemical properties of organic compounds. [J]. Environmental Science & Technology, NOV 1 2005 2005, 39 (21) 8434-8441.
    [108].Shen, L.,Wania, F., Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides.[J]. Journal of Chemical and Engineering Data, 2005, 50 (3) 742-768.
    [109].Beyer, A.,Wania, F.,Gouin, T., etc., Temperature dependence of the characteristic travel distance.[J]. Environmental Science and Technology, 2002, 37 (4) 766-771.
    [110].Schenker, U.,MacLeod, M.,Scheringer, M., etc., Least-squares Adjustment; Safety and Environmental Technology Group, ETH: Zurich, Switzerland. http:// www.sust-chem.etha.ch/reach/product/least-squares-adjustment.xls. [J]. 2005.
    [111].Bozlaker, A.,Muezzinoglu, A.,Odabasi, M., Atmospheric concentrations, dry deposition and air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey[J]. Journal of Hazardous Materials, 2008, 153 (3) 1093-1102.
    [112].Ma, Y. G., Lei, Y. D.,Xiao, H., etc., Critical Review and Recommended Values for the Physical-Chemical Property Data of 15 Polycyclic Aromatic Hydrocarbons at 25°C[J]. Journal of Chemical & Engineering Data, 2009, DOI: 10.1021/je900477x.
    [113].Ottaviani, G., Martel, S.,Escarala, C., etc., The PAMPA technique as a HTS tool for partition coefficients determination in different solvent/water systems. [J]. European Journal of Pharmaceutical Sciences, 2008, 35 (1-2) 68-75.
    [114].Long, B., Wang, Y.,Yang, Z., Partition behaviour of benzoic acid in (water + n-dodecane) solutions at T = (293.15 and 298.15) K. [J]. Journal of Chemical Thermodynamics, 2008, in press.
    [115].Chiou, C. T., Schmedding, D. W.,Manes, M., Improved prediction of octanol-water partition coefficients from liquid-solute water solubilities and molar volumes[J]. Environmental Science and Technology, 2005, 39 (22) 8840-8846.
    [116].Li, L.,Xie, S.,Cai, H., etc., Quantitative structure-property relationships for octanol-water partition coefficients of polybrominated diphenyl ethers. [J]. Chemosphere, 2008, 72 (10) 1602-1606
    [117].Gao, S.,Cao, C., A new approach on estimation of solubility and n-octanol/water partition coefficient for organohalogen compounds. [J]. International Journal of Molecular Sciences, 2008, 9 (6) 962-977.
    [118].Dimitrov, S.,Koleva, Y.,Lewis, M., etc., Modeling mode of action of industrial chemicals: Application using chemicals on Canada's Domestic Substances List (DSL) .[J]. QSAR and Combinatorial Science, 2003, 22 (1) 5-17.
    [119].Ekins, S., Mestres, J., Testa, B., In silico pharmacology for drug discovery: applications to targets and beyond.[J]. British Journal of Pharmacology, 2007, 152 pp 21-37.
    [120].Gómez, M. J., Pazos, F., Guijarro, F. J., etc., The environmental fate of organic pollutants through the global microbial metabolism.[J]. Molecular Systems Biology, 2007, 3 (114) 1-11.
    [121].Wajsman;, D.,Rudén, C., Identification and evaluation of computer models for predicting environmental concentrations of pharmaceuticals and veterinary products in the Nordic environment.[J]. Journal of Exposure Science and Environmental Epidemiology, 2006, 16 pp 85-97.
    [122].Sabljic, A., QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk. [J]. Chemosphere, 2001, 43 (3),pp 363-375.
    [123].Gramatica, P., Consolaro, F., Pozzi, S., QSAR approach to POPs screening for atmospheric persistence. [J]. Chemosphere, 2001, 43 (4-7) 655-664.
    [124].Taft, R. W., Abboud, J.-L. M., Kamlet, M. J., etc., Linear solvation energy relations.[J]. Journal of Solution Chemistry, 1985, 14 (3) 153-186.
    [125].Selves, J.-L., Abraham, M. H.,Burg, P., A new method for the explanation of liquids properties in terms of molecular interactions. [J]. Fluid Phase Equilibria, 1998, 148 (1-2) 69-82.
    [126].Abraham, M. H.,Ballantine, D. S.,Callihan, B. K., Revised linear solvation energy relationship coefficients for the 77- phase McReynolds data set based on an updated set of solute descriptors. [J]. Journal of Chromatography A 2000, 878 (1) 115-124.
    [127].Wong, M. H.,Wu, S. C.,Deng, W. J., etc., Export of toxic chemicals - A review of the case of uncontrolled electronic-waste recycling[J]. Environmental Pollution, 2007, 149 (2) 131-140.
    [128].Niederer, C.,Schwarzenbach, R. P.,Goss, K.-U., Elucidating differences in the sorption properties of 10 humic and fulvic acids for polar and nonpolar organic chemicals. [J]. Environmental Science and Technology, 2007, 41 (19) 6711-6717.
    [129].Goss, K.-U., Prediction of the temperature dependency of Henry's law constant using poly-parameter linear free energy relationships. [J]. Chemosphere, 2006, 64 (8) 1369-1374.
    [130].Abraham, M. H.,Andonian-Haftvan, J.,Whiting, G. S., etc., Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination. [J]. Journal of the Chemical Society, Perkin Transactions, 1994, 2 (8) 1777-1791.
    [131].Goss, K. U., Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER).[J]. Fluid Phase Equilibria, 2005, 233 (1) 19-22.
    [132].Hilal, S. H.,Saravanaraj, A. N.,Whiteside, T., etc., Calculating physical properties of organic compounds for environmental modeling from molecular structure.[J]. Journal of Computer-Aided Molecular Design, 2007, 21 (12) 693-708.
    [133].Karickhoff, S. W., McDaniel, V. K.,Melton, C., etc., Predicting chemical reactivity by computer.[J]. Environmental Toxicology and Chemistry, 1991, 10 (11) 1405-1416.
    [134].Arp, H. P. H.,Niederer, C.,Goss, K. U., Predicting the partitioning behavior of various highly fluorinated compounds.[J]. Environmental Science and Technology, 2006, 40 (23) 7298-7304.
    [135].Niederer, C.,Goss, K.-U., Effect of ortho-chlorine substitution on the partition behavior of chlorophenols.[J]. Chemosphere, 2008, 71 (4) 697-702.
    [136].Goss, K. U.,Arp, H. P. H.,Bronner, G., etc., Partition behavior of hexachlorocyclohexane isomers.[J].Journal of Chemical and Engineering Data, 2008, 53 (3) 750-754.
    [137].Klamt, A., Eckert, F., Prediction of vapor liquid equilibria using COSMOtherm. [J]. Fluid Phase Equilibria, 2004, 217 (1) 53-57.
    [138].Xiao, H., Wania, F., Is vapor pressure or the octanol-air partition coefficient a better descriptor of the partitioning between gas phase and organic matter?[J]. Atmospheric Environment, 2003, 37 (20) 2867-2878.
    [139].Harju, M.,Hamers, T.,Kamstra, J. H., etc., Quantitative structure-activity relationship modeling on in vitro endocrine effects and metabolic stability involving 26 selected brominated flame retardants. [J]. Environmental Toxicology and Chemistry, 2007, 26 (4) 816-826.
    [140].Xu, H.-Y., Zou, J.-W.,Yu, Q.-S., etc., QSPR/QSAR models for prediction of the physicochemical properties and biological activity of polybrominated diphenyl ethers. [J]. Chemosphere, 2007, 66 (10) 1998-2010.
    [141].Ivanciuc, T., Ivanciuc, O., Klein, D. J., Prediction of environmental properties for chlorophenols with posetic quantitative super-structure/property relationships (QSSPR). [J]. International Journal of Molecular Sciences, 2006, 7 (9) 358-374.
    [142].Gramatica, P., Battaini, F.,Papa, E., QSAR prediction of physicochemical properties of esters. [J]. Fresenius Environmental Bulletin, 2004, 13 (11B) 1258-1262.
    [143].Wania, F.,Lei, Y. D.,Harner, T., Estimating octanol-air partition coefficients of nonpolar semivolatile organic compounds from gas chromatographic retention times.[J]. Analytical Chemistry, 2002, 74 (14) 3476-3483.
    [144].Lei, Y. D., Chankalal, R.,Chan, A., etc., Supercooled liquid vapor pressures of the polycyclic aromatic hydrocarbons[J]. Journal of Chemical and Engineering Data, 2002, 47 (4) 801-806.
    [145].Lei, Y. D.,Wania, F.,Shiu, W. Y., etc., HPLC-based method for estimating the temperature dependence of n-octanol-water partition coefficients.[J]. Journal of Chemical and Engineering Data, 2000, 45 (5) 738-742.
    [146].Daly, G. L.,Lei, Y. D.,Castillo, L. E., etc., Polycyclic aromatic hydrocarbons in Costa Rican air and soil: A tropical/temperate comparison.[J]. Atmospheric Environment, 2007, 41 (34) 7339-7350.
    [147].Daly, G. L.,Lei, Y. D.,Teixeira, C., etc., Pesticides in western Canadian Mountain air and soil.[J]. Environmental Science and Technology, 2007, 41 (17) 6020-6025.
    [148].Daly, G. L.,Lei, Y. D.,Teixeira, C., etc., Organochlorine pesticides in the soils and atmosphere of Costa Rica.[J]. Environmental Science and Technology, 2007, 41 (4) 1124-1130.
    [149].Daly, G. L.,Lei, Y. D.,Teixeira, C., etc., Accumulation of current-use pesticides in neotropical montane forests.[J]. Environmental Science and Technology, 2007, 41 (4) 1118-1123.
    [150].Su, Y.,Wania, F.,Harner, T., etc., Deposition of polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons to a boreal deciduous forest.[J]. Environmental Science and Technology, 2007, 41 (2) 534-540.
    [151].3540C, Soxhlet Extraction. In EPA: December 1996.
    [152].3500C, Organic Extraction and Sample Preparation. In EPA: Feburary 2007.
    [153].3600C, Cleanup. In EPA: December 1996.
    [154].3630C, SILICA GEL CLEANUP. In EPA, EPA: December 1996.
    [155].TO13A, Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Air Using Gas Chromatography/Mass Spectrometry (GC/MS). In EAP, EPA: January 1999.
    [156].8000B, Determinative Chromatographic Separations. In EPA: December 1996.
    [157].EPA 8310, Polynuclear Aromatic Hydrocarbons[J]. September 1986, 1986.
    [158].8310, Polycyclic Aromatic Hydrocarbons. In EPA: September 1986.
    [159].Zhu, X., Pfister, G.,Henkelmann, B., etc., Simultaneous monitoring of profiles of polycyclic aromatic hydrocarbons in contaminated air with semipermeable membrane devices and spruce needles[J]. Environmental Pollution, 2008, 156 (2) 461-466.
    [160].Stracquadanio, M.,Bergamini, D.,Massaroli, E., etc., Field evaluation of a passive sampler of polycyclic aromatic hydrocarbons (PAHs) in an urban atmosphere (Bologna, Italy)[J]. Journal of Environmental Monitoring, 2005, 7 (9) 910-915.
    [161].朱先磊,王玉秋,刘维立, etc.,焦化厂多环芳烃成分谱特征的研究[J].中国环境科学, 2001, 21 (3) 266-269.
    [162].Van Metre, P. C., Mahler, B. J.,Wilson, J. T., PAHs Underfoot: Contaminated Dust from Coal-Tar Sealcoated Pavement is Widespread in the United States[J]. Environmental Science and Technology, Publication Date (Web): November 19, 2008 (Article), 2009, 43 (1) 20-25.
    [163].Brown, J. R., Field, R. A.,Goldstone, M. E., etc., Polycyclic aromatic hydrocarbons in central London air during 1991 and 1992[J]. Science of The Total Environment 1996, (177) 73-84.
    [164].Li, X.,Li, P.,Lin, X., etc., Spatial distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in soils from typical oil-sewage irrigation area, Northeast China[J]. Environmental Monitoring and Assessment, 2008, 143 (1-3) 257-265.
    [165].Fraser, M. P., Cass, G. R., Simoneit, B. R. T., etc., Air quality model evaluation data for organics: 5. C6–C22 nonpolar and semipolar aromatic compounds. [J]. Environmental Science and Technology, 1998, (32) 1760–1770.
    [166].Westerdahl, D., Fruin , S.,Sax, T., etc., Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles[J]. Atmospheric Environment, 2005, (39),pp 3597-3610.
    [167].McCow, S.R., Sun, Q., Effect of composition and State of organic components on polycyclic aromatic hycrocarbon decay in atmospheric aerosol[J]. Atmospheric Environment, 1994, 28 (12),pp 21472-2153.
    [168].Vasconcellos, P.C., Zacarias, D., Pires, M. A. F., etc., Measurements of polycyclic aromatic hydrocarbons in airborne particles from the metropolitan area of Sao Paulo City [J].Atmospheric Environment 2003, (37) 3009– 3018.
    [169].Simcik, M. F., The importance of surface adsorption on the washout of semivolatile organic compounds by rain [J]. Atmospheric Environment 2004, (38) 491-501.
    [170].Zhang, L., Bai, Z.,You, Y., etc., Chemical and stable carbon isotopic characterization for PAHs in aerosol emitted from two indoor sources[J]. Chemosphere.
    [171].郭红连,陆晨刚,余琦,etc.,上海大气可吸入颗粒物中多环芳烃(PAHs)的污染特征研究[J].复旦学报(自然科学版), 2004, 43 (6) 1107-1113.
    [172].Carter, A. M.,Germain, A.,Rousseau, J., etc. Impact of residential wood combustion on ambient airquality[A], In WIT Transactions on Ecology and the Environment[C], 2006 637-643.
    [173].Manodori, L.,Gambaro, A.,Zangrando, R., etc., Polychlorinated naphthalenes in the gas-phase of the Venice Lagoon atmosphere[J]. Atmospheric Environment, 2006, (40) 2020-2029.
    [174].Mantis, J.,Chaloulakou, A.,Samara, C., PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the Greater Area of Athens, Greece[J]. Chemosphere, 2005, 59 (5) 593-604.
    [175].Nisbet, I. C. T.,LaGoy, P. K., Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs)[J]. Regulatory Toxicology and Pharmacology, 1992, (16) 290-300.
    [176].Ladji, R.,Yassaa, N.,Balducci, C., etc., Annual variation of particulate organic compounds in PM10 in the urban atmosphere of Algiers[J]. Atmospheric Research.
    [177].Calln, M., Maran, E., Mastral, A., etc., Ecotoxicological assessment of ashes and particulate matter from fluidized bed combustion of coal[J]. Ecotoxicology and Environmental Safety, 1998, 41 (1),pp 59-61.
    [178].Rajsic, S. F., Tasic, M. D., Novakovic, V. T., etc., First assessment of the PM10 and PM2.5 particulate level in the ambient air of Belgrade city.[J]. Environmental Science and Pollution Research International, 2004 (11) 158–164.
    [179].Farmer, P. B., Singh, R., Kaur, B., etc., Molecular epidemiology studies of carcinogenic environmental pollutants. E?ects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage [J]. Mutation Research, 2003 (544) 397-402.
    [180].Artinano, B., Salvator, P.,Alonso, D. G., etc., Anthropogenic and natural in?uence on the PM(10) and PM(2.5) aerosol in Madrid (Spain). Analysis of high concentration episodes. [J]. Environmental Pollution, 2003 (125) 453-465.
    [181].Voutsa, D., Samara, C.,Kouimtzis, T. H., etc., Elemental composition of airborne particulate matter in the multiimpacted urban area of Thessaloniki, Greece. [J]. Atmospheric Environment 2002 (36) 4453–4462.
    [182].Samara, C., Kouimtzis, T., Tsitouridou, R., etc., Chemical mass balance source apportionment of PM10 in an industrialized urban area of Northern Greece.[J]. Atmospheric Environment 2003, (37),pp 41-54.
    [183].Valavanidis, A., Fiotakis, K., Vlahogianni, T., etc., Characterization of atmospheric particulates, particle-bound transition metals and polycyclic aromatic hydrocarbons of urban air in the centre of Athens (Greece)[J]. Chemosphere, 2006, (65) 760-768.
    [184].Chaloulakou, A., Kassomenos, P., Spyrellis, N., etc., Measurements of PM10 and PM2.5 particle concentrations in Athens.[J]. Atmospheric Environment, 2003 (37) 649–660.
    [185].Manalis, N., Grivas, G.,Protonotarios, V., etc., Toxic metal content of particulate matter (PM10) within the Greater Area of Athens[J]. Chemosphere, 2005 (60) 557–566.
    [186].郑大威,方方,郑菁英, etc.,北京市区交通干线路口大气中PAHs污染情况测定[J].北京工业大学学报, 1997, 23 (1) 30-35.
    [187].李军,张干,祁士华,广州市大气中多环芳烃分别特征、季节变化及其影响因素[J].环境科学, 2004, 25 (3) 7-14.
    [188].俞飞,林玉锁,城市典型工业生产区及附近居住区土壤中PAHs污染特征[J].生态环境, 2005, 14 (1) 6-9.
    [189].Chen, J., Wang, P.,Guo, L., etc., Study of dynamic multi-medium fugacity model of regionalenvironment's persistent organic pollutants and its applications[J]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2007, 39 (6) 897-900.
    [190].Sienra, M. d. R., Rosazza, N. G., Prendez, M., Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter[J]. Atmospheric Research, 2005, 75 (4) 267-281.
    [191].Ravindra, K.,Wauters, E.,Tyagi, S. K., etc., Assessment of air quality after the implementation of compressed natural gas (CNG) as fuel in public transport in Delhi, India[J]. Environmental Monitoring and Assessment, 2006, 115 (1-3) 405-417.
    [192].Nicola, F. D.,G. Maisto,M.V. Prati, etc., Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. [J]. Environmental Pollution, May 2008, 2008, 153 (2) 376-383.
    [193].Farrar, N. J.,Smith, K. E. C.,Lee, R. G. M., etc., Atmospheric Emissions of Polybrominated Diphenyl Ethers and Other Persistent Organic Pollutants during a Major Anthropogenic Combustion Event[J]. Environmental Science and Technology, 2004, 38 (6) 1681-1685.
    [194].Kipopoulou, A. M., Manoli, E., Samara, C., Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area.[J]. Environmental Pollution, 1999, 106 (3) 369-380.
    [195].Howsam, M., Jones, K. C., Ineson, P., PAHs associated with the leaves of three deciduous tree species. I - Concentrations and profiles.[J]. Environmental Pollution, 2000, 108 (3) 413-424.
    [196].Librando, V., Perrini, G., Tomasello, M., Biomonitoring of atmospheric PAHs by evergreen plants: Correlations and applicability.[J]. Polycyclic Aromatic Compounds, 2002, 22 (3-4) 549-559.
    [197].Wild, E., Dent, J., Thomas, G. O., etc., Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene: Further studies utilizing two-photon excitation microscopy.[J]. Environmental Science and Technology, 2006, 40 (3) 907-916.
    [198].Schreiber, L., Schon?herr, J., Uptake of organic chemicals in conifer needles: Surface adsorption and permeability of cuticles. [J]. Environmental Science and Technology, 1992, 26 (1) 153-159.
    [199].Komp, P., Mclachlan, M. S., Interspecies variability of the plant/air partitioning of polychlorinated biphenyls. [J]. Environmental Science and Technology, No. 10. 1997, 1997, 31 (10) 2944-2948.
    [200].Mackay, D., Shiu, W. Y.,Ma, K. C., etc., Handbook. Physical-Chemical Properties and Environmental Fate for Organic Chemicals Volume 1: Introduction and Hydrocarbons.[M]. 2006.
    [201].Su, Y., Wania, F.,Harner, T., etc., Deposition of polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons to a boreal deciduous forest. [J]. Environmental Science and Technology, 2007, 2007, 41 (2) 250-256.
    [202].McLachlan, M. S., Horstmann, M., Forests as filters of airborne organic pollutants: A model.[J]. Environmental Science and Technology, 1998, 32 (3) 413-420.
    [203].Simonich, S. L.,Hites, R. A., Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons. [J]. Environmental Science and Technology, 1994, 28 (5) 939-943.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700