用户名: 密码: 验证码:
酞酸酯在模拟海河菹草微宇宙中归趋研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以海河水体中的典型沉水植物菹草作为研究对象,选取美国环保局(EPA)和我国优先控制的典型内分泌干扰物酞酸二丁酯(DBP)和酞酸二异辛酯(DEHP)为目标化合物,以实验室微宇宙模拟和建立逸度模型为手段,对DBP和DEHP在海河菹草微宇宙中的迁移转化及最终归趋进行了研究。
     微宇宙实验结果表明:实验过程中,有草组水和沉积物中DBP和DEHP的浓度始终低于对照组;实验结束时,DBP和DEHP主要分布在沉积物中,其次是水中,并且在菹草中也有一定程度的富集,尤其是疏水性较强的DEHP;菹草(以鲜重计)对水中DBP和DEHP富集系数(BCF)的平均值分别为22.4 L/kg和180.7 L/kg;计算得出整个实验过程中,有草微宇宙中DBP和DEHP的降解率分别为输入量的94.2%和60.8%,较对照组(DBP和DEHP分别为91.0%和45.5%)分别提高3.2和15.3个百分点;有草组DBP和DEHP的残留率分别为输入量的-0.6%和30.7%,而对照组分别为4.7%和37.7%。可见,菹草体系不仅能有效增强DBP和DEHP的降解作用,还能减少系统残留量,降低内源污染。
     以DBP为例,建立了Ⅳ级非稳态多介质逸度模型和Ⅲ级稳态多介质逸度模型,对DBP在海河水、沉积物和菹草体系间的迁移转化行为进行模拟计算,并利用微宇宙实验结果对模型计算结果进行验证。结果表明,除个别数据点有偏差外,预测值与实测值在总体上拟合较为理想。系统达稳态时,DBP在有草组各相中的分布状况为:水、沉积物和植物相中DBP质量分别占系统中DBP总量的5.26%、90.16%和4.58%;DBP在对照组各相中的分布状况为:水和沉积物相中DBP质量分别占系统中DBP总量的8.87%和91.13%。沉积物相对DBP的降解是系统去除DBP的主要途径,其去除量占了系统总去除量的87.24%(有草组)和76.06%(对照组)。对于有草组而言,植物相对DBP的去除量占到了系统总去除量的4.54%,仅次于沉积物相,因此其对DBP去除作用的贡献也不可忽视。
     此外,对模型进行了灵敏度分析。结果表明,对于有草组而言,水-沉积物有机碳分配系数(Koc)和水中悬浮颗粒物的沉降速度(Uspm)对水相中DBP浓度的计算结果有显著影响;Koc、DBP在沉积物相降解速率常数(ksR)、沉积物有机碳百分数(foc)和沉积物密度(ρs)对沉积物相中DBP浓度的计算结果有显著影响; Koc、Uspm、植物从水中吸收DBP的速率(Ku)、植物密度(ρp)、水-植物分配系数(Kpw)对植物中DBP浓度的计算结果有显著影响。对于对照组而言,水相和沉积物相的敏感参数与有草组一致。
In this thesis, Potamogeton crispus L., which is a kind of typical submerged plant in Haihe River, was selected. Dibutyl phthalate (DBP) and Di-ethylhexyl phthalate (DEHP), two kinds of phthalates esters (PAEs) which were listed as priority persistent organic pollutants by the US EPA and China, were selected as typical organic contaminants. The environmental behavior and fate of DBP and DEHP in Potamogeton crispus L. Microcosm of Haihe River was studied by two approaches: stimulating laboratory microcosm experiments and multimedia fugacity model.
     Results of the laboratory microcosm experiments showed that concentrations of DBP and DEHP in water and sediments from the Potamogeton crispus L. microcosm were lower than those from the control microcosm during the experiment. At the end of the experiments, DBP and DEHP mainly distributed in sediment, and followed by in water. The two PAEs, especially DEHP which is a stronger hydrophobic compound, could be enriched in Potamogeton crispus L. The average enrichment coefficients (BCF) of Potamogeton crispus L. were 22.4 L/kg for DBP and 180.7 L/kg for DEHP. Removal efficiencies of loaded DBP and DEHP in the Potamogeton crispus L. microcosm (94.2% for DBP, 60.8% for DEHP) were 4.1 and 15.3 percentage points higher than those in the control microcosm (91.0% for DBP, 45.5% for DEHP). The retained percentages of loaded DBP and DEHP were -0.6% and 30.7% in the Potamogeton crispus L. microcosm, and 4.7% and 37.7% in the control microcosm, respectively, indicating that Potamogeton crispus L. can not only enhance the degradation of DBP and DEHP, but also decrease the amount of their residue, reducing the internal pollution sources.
     LevelⅣ(unsteady state) multimedia fugacity model and LevelⅢ(steady state) multimedia fugacity model were established and successfully applied to the experimental data for DBP in Haihe River. For Potamogeton crispus L. microcosm, when the system reaches steady state, DBP mass percentage in each phase were: 5.26% in water, 90.16% in sediment, and 4.58% in Potamogeton crispus L.; for control microcosm, DBP mass percentage in each phase were: 8.87% in water and 91.13% in sediment. In the system, DBP was mainly removed by microbial degradation in sediment (account for 87.24% in Potamogeton crispus L. microcosm and 76.06% in control microcosm of the total removal); for Potamogeton crispus L. microcosm, DBP removal in plant accounts for 4.54% of the total removal, rank only second to sediment, so it should not to be neglected.
     In addition, sensitivity analysis of model has been made. It is indicated that, for the Potamogeton crispus L. microcosm, water-sediment organic carbon distribution coefficient (Koc) and sedimentation velocity of suspended particles (Uspm) have significant influence on the calculated DBP concentration in water. Koc, degradation rate of DBP constant in sediment (ksR), organic carbon fraction of sediment (foc) and density of sediment (ρs) have significant influence on the calculated DBP concentration in sediment. Koc, Uspm, DBP uptake rate constant by plant (Ku), density of plant (ρp) and water-plant partition coefficient (Kpw) have significant influence on the calculated DBP concentration in plant. For control microcosm, sensitive parameters for water and sediment are the same as those for the Potamogeton crispus L. microcosm.
引文
[1]陈济安,邱志群,舒为群,等.我国水环境中邻苯二甲酸酯污染现状及其生物降解研究进展[J].癌变·畸变·突变,2007,19(3):212-214.
    [2] Yang H C, Chun S K. Histopathological study of acute toxicity of ammonia on common carp (Cyprinus carpio L.) [J]. Bull Korean Fish Soc, 1986, 19(3): 249-256.
    [3] Matsumoto M, Hirata-Koizumi M, Ema M. Potential adverse effects of phthalic acid esters on human health: a review of recent studies on reproduction [J]. Regulatory Toxicology and Pharmacology, 2008, 50 (1): 37-49.
    [4]莫测辉,蔡全英,吴启堂,等.我国城市污泥中邻苯二甲酸酯的研究[J].中国环境科学,2001,21(4):362-366.
    [5]陈荣圻,王建平.生态纺织品与环保染化料[M].北京:中国纺织出版社,2002.
    [6]金相灿.有机化合物污染化学-有毒有机物污染化学[M].北京:清华大学出版社,1990.
    [7] Chen C Y. Biosynthesis of DBP and DEHP from red alga-Bangina atropurpurea [J]. Water research, 2004, 38(4): 1014-1018.
    [8]胡晓宇,张克荣,孙俊红,等.中国环境中邻苯二甲酸酯类化合物污染的研究[J].中国卫生检验杂志,2003,13(2):9-14.
    [9]林兴桃,王小逸,任仁.环境内分泌干扰物-邻苯二甲酸酯的研究[J].环境污染与防治,2003,25(5):286-292.
    [10]沈婷,王小逸,林兴桃,等.空气中邻苯二甲酸酯类分析方法的研究进展[J].环境与健康杂志,2008,25(9):834-836.
    [11] Wang P, Wang S L, Fan C Q. Atmospheric distribution of particulate- and gas-phase phthalic esters (PAEs) in a Metropolitan City, Nanjing, East China [J]. Chemosphere, 2008, 72(10): 1567-1572.
    [12]郭志顺,罗财红,张卫东,等.三峡库区重庆段江水中持久性有机污染物污染状况分析[J].中国环境监测,2006,22(4):45-48.
    [13]吕怡兵,付强,陈瑛.环境中邻苯二甲酸酯类物质的污染现状与监测方法[J].中国环境监测,2007,23(5):66-70.
    [14] Wang F, Xia X H, Sha Y J. Distribution of Phthalic Acid Esters in Wuhan section of the Yangtze River, China [J]. Journal of Hazardous Materials, 2008, 154(1-3): 317-324.
    [15]孟平蕊,王西奎.济南市土壤中酞酸酯的分析与分布[J].环境化学,1996,15 (5):427-432.
    [16]刘文莉,张珍,朱连秋.电子垃圾拆解地区土壤和植物中邻苯二甲酸酯分布特征[J].应用生态学报,2010,21(2):489-494.
    [17]关卉,王金生,万洪富,等.雷州半岛典型区域土壤邻苯二甲酸酯类(PAEs)污染研究[J].农业环境科学学报,2007,26(2):622-628.
    [18]王振坤.邻苯二甲酸酯类化合物在海河河口水环境中行为研究[D].天津:天津大学,2006.
    [19] Cai Q Y, Mo C H, Wu Q T, et al. Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil-radish (Raphanus sativus) system with sewage sludge and compost application [J]. Bioresource Technology, 2008, 99(6): 1830-1836.
    [20]丁鹏,赵晓松,刘剑峰.酞酸酯类化合物(PAES)研究新进展[J].吉林农业大学学报,1999,21 (3):119-123.
    [21]李潇,聂湘平,潘德博,等.养殖鱼体邻苯二甲酸酯含量与分布特征[J].环境与健康杂志,2008,25(3):202-205.
    [22]刘慧杰,舒为群,李学奎,等.人体内有机物分析及邻苯二甲酸酯含量测定[J].公共卫生,2004,20(3):318-319.
    [23] Natalia N, Katell F, Koni G, et al. Contamination of vegetable oils marketed in Italy by phthalic acid esters [J]. Food Control, 2011, 22(2): 209-214.
    [24]陈文锐,彭碹.毛细管气相色谱法测定进口奶粉中酞酸酯类增塑剂污染情况[J].中国公共卫生,2000,16(7):636.
    [25]张蕴晖.邻苯二甲酸二乙基己酯对环境和生物体的危害[J].国外医学:卫生学分册,2002,29(2):73-77.
    [26] Melnick R L. Is peroxisome proliferation an obligatory precursor step in the carcinogenicity of Di(2-ethylhexyl) phthalate (DEHP)? [J]. Environmental Health Perspectives, 2001, 109(5): 437-442.
    [27] Saillenfait A M, Langonne I, Leheup B. Effects of mono-n-butyl phthalate on the development of rat embryos: in vivo and in vitro observations [J]. Pharmacology and Toxicology, 2001, 89(2): 104-112.
    [28] Toshiya F, Kawaguchi M, Kimura F. The endocrine disrupters butyl benzyl phthalate and bisphenol A increase the expression of progesterone receptor messenger ribonucleic acid in the preoptic area of adult ovariectomized rats [J]. Neuroendocrinology, 2001, 74(2): 77-81.
    [29] Uriu-Adams J Y, Reece C K, Nguyen L K, et al. Effect of butyl benzyl phthalate on reproduction and zinc metabolism [J]. Toxicology, 2001, 159(l-2): 55-68.
    [30] Ohtani H, Miural I, Ichikawa Y. Effects of dibutyl phthalate as an environmental endocrine disruptor on gonadal sex differentiation of genetic males of the frog Rana rugosa [J]. Environmental Health Perspectives, 2000, 108(12): 1189-1193.
    [31] Hushka L J, Waterman S J, Keller L H, et al. Two-generation reproduction studies in Rats fed di-isodecyl phthalate [J]. Reproductive toxicology, 2001, 15(2): 153-169.
    [32] Dalgaard M, Nellemann C, Lam H R, et al. The acute effects of mono (2-ethylhexyl) phthalate (MEHP) on testes of Prepubertal Wistar rats [J]. Toxicology Letters , 2001, 122(l): 69-79.
    [33]王明燕.邻苯二甲酸(2-乙基己基)酯的致突变实验[J].职业与健康,2002,18(11):35-36.
    [34]高丽芳,李勇,苏忆兰.邻苯二甲酸二-(2-乙基己基)酯对小鼠胚胎致畸作用和心肌细胞的毒性[J].毒理学杂志,2005,19(2):123-124.
    [35]陈玺,孙继朝,黄冠星,等.酞酸酯类物质污染及其危害性研究进展[J].地下水,2008,30(2):57-59.
    [36] Liu Q, Shen H, Wang X, et al. Exposure to phthalic acid esters in early human pregnancy [J]. Fertility and Sterility, 2010, 94(4): 230-231.
    [37]国伟林,王西奎.城区大气和塑料大棚空气中酞酸酯的分析[J].环境化学,1997,16(4):382-386.
    [38] Turner A, Rawling M C. The behaviour of di-(2-ethylhexyl) phthalate in estuaries [J]. Marine Chemistry, 2000, 68(3): 203-217.
    [39]迟杰,康江丽.水体中悬浮颗粒物对酞酸酯的吸附和解吸特性[J].环境化学,2006,25(4):405-408.
    [40] Wolfe N L, Steen W C, Burns L A. Phthalate ester hydrolysis: linear free energy relationships [J]. Chemosphere, 1980, 9(4): 403-408.
    [41]金朝晖,黄国兰,柴英涛,等.水体表面微层中酞酸酯的光降解研究[J].环境科学,1999,18(2):109-114.
    [42]倪静.菹草死亡后邻苯二甲酸酯的释放及生物可利用性研究[D].天津:天津大学,2010.
    [43]程桂荪,刘小秧.增塑剂酞酸二丁酯的微生物降解[J].环境科学,1986,7(6):25.
    [44]夏凤毅.邻苯二甲酸酯生物降解性研究[D].杭州:浙江大学环境与资源学院,2002.
    [45]李魁晓,顾继东.红树林细菌Rhodococcus rubber 1K降解邻苯二甲酸二丁酯的研究[J].应用生态学报,2005,16(8):1566-1568.
    [46]吴为中,朱擎,冯菁等.铜绿假单胞菌对DBP的降解特性研究[J].环境科学,2009,30(2):510-515.
    [47] Chang B V, Wang T H, Yuan S Y. Biodegradation of four phthalate esters in sludge [J]. Chemosphere, 2007, 69(7): 1116-1123.
    [48]吴万秀.沉水植物与酞酸酯类化合物间相互作用研究[D].天津:天津大学,2007.
    [49] Wolfe A K, Bjornstad D J. Why would anyone object? An exploration of social aspects of phytoremediation acceptability [J]. Critical Reviews in Plant Sciences. 2002, 2l(5): 429-438.
    [50]胡晓东,阮晓红,宫莹.植物修复技术在我国水环境污染治理中的可行性研究[J].云南环境科学,2004,23(1):48-50.
    [51]胡青云.水环境污染的生物修复技术研究进展[J].西南给排水,2010,32(4):13-17.
    [52]郭长城,喻国华,王国祥.菹草对水体悬浮泥沙及氮、磷污染物的净化[J].水土保持学报,2007,21(3):108-117.
    [53]刘建康.高级水生生物学[M].北京:科学出版社,1999.
    [54]尚士友,杜建民,张志毅,等.沉水植物资源开发与湖泊保护的研究[J].农业工程学报,1997,13(3):11-15.
    [55]吴爱平,吴世凯,倪乐意.长江中游浅水湖泊水生植物氮磷含量与水柱营养的关系[J].水生生物学报,2005,29(4):406-41.
    [56]丁玲,沈耀良,王正兴,等.三种沉水植物净化受污水体的比较研究[J].苏州科技学院学报(工程技术版),2007,20(2):44-48.
    [57]汤仲恩,种云霄,吴启唐,等.3种沉水植物对5种藻类的化感效应[J].华南农业大学学报,2007(28):42-46.
    [58]陈国梁,林清.不同沉水植物对Cu,Pb,Cd,Zn元素吸收积累差异及规律研究[J].环境科技,2009,22(1):9-16..
    [59] Armitage J M, Franco A, Gomez S, et al. Modeling the potential influence of particle deposition on the accumulation of organic contaminants by submerged aquatic vegetation [J]. Environmental Science and Technology, 2008, 42 (11): 4052-4059.
    [60]张蕾.沉水植物对典型内分泌干扰物的富集降解特性[D].天津:天津大学环境科学与工程学院,2008.
    [61]王斌,周莉苹,李伟.不同水质条件下菹草的净化作用及其生理反应初步研究[J].武汉植物学研究,2002,20(2):150-152.
    [62]李佳华.沉水植物对有机污染物胁迫的响应及其在湖泊生态修复中的作用[D].江苏:南京大学,2005.
    [63]刘音,张升堂.被污染水体的植物修复技术研究进展[J].安徽农业科学,2009,37(15):7147-7149.
    [64]张邦喜,李存雄,夏品华.沉水植物水质净化研究及在前置库中的应用[J].安徽农业科学,2010,38(22):11931- 11932.
    [65]杜秀英,竺乃恺,夏希娟,等.微宇宙理论及其在生态毒理学研究中的应用[J].生态学报,2001,21(10):1726-1733.
    [66] Warrington R. On the aquarium [J]. Notics Proc Roral Inst, 1857, 2: 403-408.
    [67]陈志琼,张斌,黄国兰,等.三丁基锡在河口微宇宙中的环境行为研究[J].环境污染与防治,2001,23(5):224-226.
    [68]聂湘平,魏泰莉,蓝崇钰.多氯联苯在模拟水生态系统中的分布、积累与迁移动态研究[J].水生生物学报,2004,28(5):478-483.
    [69] Huang G L, Hou S G, Wang L, et al. Distribution and fate of nonylphenol in an aquatic microcosm [J]. Water Research, 2007, 41(20): 4630-4638.
    [70] Gorzerino C, Quemeneur A, Hillenweck A, et al. Effects of diquat and fomesafen applied alone and in combination with a nonylphenol polyethoxylate adjuvant on Lemna minor in aquatic indoor microcosms [J]. Ecotoxicology and Environmental Safety, 2009, 72(3): 802-810.
    [71]李霞,陈菊芳,聂湘平,等.盐酸环丙沙星在不同模拟水体中的降解与残留[J].中山大学学报(自然科学版),2010,49(3):102-106.
    [72]陈磊.沉床微宇宙对富营养化水体实施生物修复的机制研究[D].天津:天津城市建设学院,2007.
    [73] Mackay D. Finding fugacity feasible [J]. Environmental Science and Technology, 1979, 13(10): 1218-1223.
    [74] Yoshida K, Shigeoka T, Yamauch F, et al. Muti-phase non-steady state equilibrium mode for evaluation of environmental fate of organic chemicals [J]. Toxicological Environmental Chemistry, 1987, 15(3): 159-183.
    [75] Mackay D, Paterson S. Calculating fugacity [J]. Environmental Science and Technology, 1981, 15(9): 1006-1014.
    [76] Mackay D. Multimedia Environmental Models: the Fugacity Approach [M]. Boca Raton: Lewis Publisher, 2001.
    [77]董玉瑛,雷炳莉.多介质逸度模型的应用与展望[J].化工环保,2005,25(3):199-203.
    [78]敖江婷.Ⅳ级逸度模型对典型有机污染物环境行为的动态模拟[D].大连:大连理工大学,2008.
    [79]迟杰.五氯酚在区域水环境中归趋的研究[D].天津:南开大学,1999.
    [80] Bennett D H, Mckone T E, Kastenberg W E. General formulation of characteristic time for persistent chemicals in a multimedia [J]. Environmental Science and Technology, 1999, 33(3): 503-509.
    [81] Chi J. Phthalate acid esters in Potamogeton crispus L. from Haihe River, China [J]. Chemosphere, 2009, 77(1): 48-52.
    [82]张玄.海河干流水域有机氯农药的分布与归趋[D].天津:天津大学,2008.
    [83]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [84]郝文涛.菹草根际微生物生态及其对酞酸酯消减行为的影响[D].天津:天津大学,2010.
    [85] Xie Y H, An S Q, Wu B F, et al. Density-dependent root morphology and root distribution in the submerged plant Vallisneria natans [J]. Environmental and Experimental Botany, 2006, 57(1-2): 195-200.
    [86]赵斌,何少江.微生物学实验[M].北京:科学出版社,2002.
    [87]陈家长,孟顺龙,胡庚东,等.鲫鱼对除草剂阿特拉津的生物富集效应研究[J].农业环境科学学报,2009,28(6):1313-1318.
    [88] Abhilash P C, Srivastava S, Singh N. Comparative bioremediation potential of four rhizospheric microbial species against lindane [J]. Chemosphere, 2011, 82(1): 56-63.
    [89] Xu G, Li F S, Wang Q H. Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China [J]. Science of the Total Environment, 2008, 393(2-3): 333-340.
    [90]张太平,潘伟斌.根际环境与土壤污染的植物修复研究进展[J].生态环境,2003,12(1):76-80.
    [91]切尔若布里文科C H.植物分泌物的生物学作用和间作中的种间相互作用(艾玲译)[M].北京:科学出版社,1981.
    [92]张淑香,高子勤.连作障碍与根际微生态研究Ⅱ:根系分泌物与酚酸类物质[J].应用生态学报,2000,11(1):152-554.
    [93]戴树桂.环境化学进展[M].北京:化学工业出版社,2005.
    [94] Vangronsveld J, Herzig R, Weyens N, et al. Phytoremediation of contaminated soils and groundwater: lessons from the field [J]. Environmental Science Pollution Research, 2009, 16(3): 765-794.
    [95]徐建明,何艳.根-土界面的微生态过程与有机污染物的环境行为研究[J].土壤,2006,38(4):353-358.
    [96] Liste H H, Alexander M. Accumulation of phenanthrene and pyrene in rhizosphere soil [J]. Chemosphere, 2000, 40(1): 11-14.
    [97] Jiao X C, Xu F L, Dawson R, et al. Adsorption and absorption of polycyclic aromatic hydrocarbons to rice roots [J]. Environmental Pollution, 2007, 148(1): 230-235.
    [98] Campfens J, Mackay D. Fugacity-based model of PCB bioaccumulation in complex aquatic food webs [J]. Environmental Science and Technology, 1997, 31(2): 577-583.
    [99]黄国兰,陈春江,孔庆宁,等译.环境多介质模型逸度方法[M].北京:化学工业出版社,2007.
    [100]Charles A S, Dennis R P, Thomas F P, et al. The environment fate of phthalate esters: a literature review [J]. Chemosphere, 1997, 35(4): 667-749.
    [101]Barko J W, Gunnison D, Carpenter S R. Sediment interactions with submersed macrophyte growth and community dynamics [J]. Aquatic Botany, 1991, 41(1-3): 41-65.
    [102]吴学玲,代沁芸,梁任星.利用高效降解菌株强化修复土壤中DBP及其细菌群落动态解析[J].中南大学学报(自然科学版),2011,42(5):1188-1194.
    [103]郑晓英,周玉文,王俊安.污泥中邻苯二甲酸酯生物降解性与化学结构的相关性[J].工业用水与废水,2006,37(5):13-16.
    [104]邹德勋,骆永明,滕应,等.多环芳烃长期污染土壤的微生物强化修复初步研究[J].土壤,2006,38(5):652-656.
    [105]蔡晓丹.天然水体中菹草对酞酸酯的富集降解特性研究[D].天津:天津大学,2011.
    [106]张玄,迟杰.HCHs在海河干流沉积物/水间迁移行为研究[J].农业环境科学学报,2009,28(5):984-988.
    [107]赵景联.环境修复原理与技术[M].北京:化学工业出版社,2006.
    [108]濮培民,王国祥,胡春华,等.底泥疏浚能控制湖泊富营养化吗?[J].湖泊科学,2000,12(3):269-279.
    [109]张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2002.
    [110]唐世荣.污染环境植物修复的原理与方法[M].北京:科学出版社,2006.
    [111]田淑媛,王景峰,郎铁柱,等.水生微管束植物处理废水及其利用[J].城市环境与城市生态,2000,13(6):54-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700