用户名: 密码: 验证码:
液压型风电机组阀控液压马达变桨距控制理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变桨距系统是现代大型风力发电机组的重要组成部分。随着风力发电机组大型化的进程,对于变桨距系统的驱动力矩、可靠性和控制性能都提出了更高的要求。以液压缸作为驱动元件的变桨距系统结构复杂、故障率高,而且液压缸负载力与阻力矩之间存在非线性,严重影响了系统的响应特性。针对这些问题本文提出了基于阀控液压马达的变桨距系统,并以液压型风电机组阀控液压马达变桨距系统为研究对象,对变桨距载荷特性、摩擦补偿、速度冲击、载荷模拟以及液压型风电机组的变桨距控制技术展开研究。通过本文的研究旨在掌握阀控液压马达变桨距系统的关键理论、方法和技术,为液压型风电机组的变桨距控制技术提供理论依据。
     对变桨距载荷特性进行研究,基于叶素-动量理论构建了变桨距载荷的计算模型,对影响变桨距载荷的风速模型、风轮模型、桨叶气动力参数进行了分析。并结合风速特征,获得了不同风速下变桨距载荷随桨距角变化的规律。
     对影响阀控液压马达桨距角控制精度的主要因素展开研究。构建了阀控液压马达转角控制系统数学模型,对影响桨距角控制精度的各种因素进行了分析。分析结果表明,动态摩擦力矩对阀控液压马达桨距角控制精度的影响最大。基于LuGre动态摩擦模型构建了阀控液压马达变桨距系统模型,采用遗传算法对LuGre摩擦模型的动静态参数进行了辨识。提出了阀控液压马达自适应摩擦力矩补偿控制策略,并进行了仿真和实验研究,与传统的PID加前馈补偿控制方法相对比,采用自适应补偿方法可以在不同载荷条件下实现很好的补偿效果,消除了由于摩擦带来的液压马达低速爬行现象,提高了桨距角控制精度。
     对变桨距过程中产生的速度冲击问题进行研究。针对桨距角控制过程中变桨距马达转速冲击问题和正反向转速不对称问题提出了阀控液压马达变桨距过程速度位置协调模糊控制策略,构建了变桨马达速度前馈模型,对变桨距过程中马达转速进行了规划,实现了变桨距马达速度前馈和位置反馈协调控制。在不同变桨距载荷条件下对系统进行了仿真和实验研究,实验结果证明采用速度位置协调控制可以有效抑制变桨距速度冲击。
     在对液压型风力发电机组研究的基础上,提出了液压型风力发电机组额定负荷区发电功率控制策略,在额定负荷区实现了主传动系统和变桨距系统联合控制发电功率。搭建了液压型风力发电机组半物理仿真平台,并针对变桨距载荷模拟问题,设计了变桨距载荷模拟系统。建立了阀控液压马达加载系统的数学模型,对系统的多余力矩进行了分析,提出了一种改进辅助同步补偿多余力抑制方法并对该方法的可行性进行了验证。在半物理仿真平台上,对液压型风力发电机组变桨距控制策略进行了实验验证。
Variable pitch control system is an important part of the modern large-scale windturbine. With the development of large-scale wind turbine process, higherrequirements for the pitch drive torque, reliability and control performance of thesystem has been put forward. The complex system structure for taking the hydrauliccylinder as the pitch drive components, the high failure rate, and the nonlinear existsbetween the hydraulic cylinder load force and resistance moment, impact on theresponse characteristics of the system seriously. To solve all these problems, this paperproposes the variable pitch-controlled system, which based on valve control hydraulicmotor. With the valve control hydraulic motor as the research object, the pitch loadcharacteristics, friction compensation, simulation speed shock, load simulation, andpitch control technology have been researched. This paper aims to master the criticaltheory, method, and the technique of the variable pitch control system of the valvecontrol hydraulic motor, as well as provide the theory evidence for the hydraulic windturbine pitch control technique.
     The load characteristics of variable pitch were researched, and calculation modelof blade element momentum theory propeller pitch load was constructed based on theinfluence of load. Variable pitch wind model, the wind wheel blade parameters ofdynamic model were analysied. Combined with the features of wind speed, theregularities of variable pitch load changes with the angle are obtained under differentwind speed.
     The effects of friction compensation valve-controlled hydraulic motor pitchcontrol precision were studied. Combined with LuGre dynamic friction model,mathematical model of valve-controlled hydraulic motor position control system wasbuilt, and the factors of the precision of pitch angle control were analysed. Theanalysis results show that the dynamic friction torque of valve control hydraulic motorpitch angle control precision influence is very big. This article uses the geneticalgorithm to identify the LuGre friction model parameters, and put forward the valve-controlled hydraulic motor pitch angle control system adaptive frictioncompensation strategy, comparing with the traditional PID control with feedforwardcompensation method, using the adaptive compensation method can achieve goodcompensation effect under different loading conditions, eliminating the friction causedthe hydraulic motor of low speed creeping phenomenon, improve the accuracy of pitchangle control.
     In this paper, the shock problems occurring in the process of variable pitch windspeed were researched. For pitch angle control in the process of variable pitch motorspeed impact and positive reverse rotation speed asymmetric problems, thevalve-controlled hydraulic motor variable speed and position of composite controlstrategy were put forward. Considering the characteristics of fluctuated remarkably forwind turbines variable pitch wind load, speed and position fuzzy control method wasput forward, and variable propeller motor speed feedforward model was constructed.The motor rotate speed in the process of variable pitch was planned and the positionvariable pitch motor speed feedforward and position feedback compound control wasimplemented. In different variable pitch load conditions the simulation research onsystem has been carried on. Experimental results show that the speed and positioncontrol can restrain the pitch speed impact.
     Based on the research on hydraulic type wind turbine, the method of using valvecontrol hydraulic motor as the variable pitch control system is proposed, and thehydraulic type wind turbine generation power in rated load area control strategy is putforward. The hydraulic type wind turbine semi-physical simulation platform was built,and according to variable propeller pitch load simulation problem, variable pitch windload simulation system is presented. The mathematical model of valve-controlledhydraulic motor loading system was established, and the system of surplus torque isanalyzed. An improved aided synchronous compensation of surplus torque suppressionmethod is proposed and the feasibility of this method is verified. On semi-physicalsimulation platform, the hydraulic type of wind turbines variable pitch control strategyis proposed. The simulation results show that power control requirements can besatisfied in hydraulic type wind turbine rated load by using valve control hydraulic motor variable pitch control system.
     Finally, in the laboratory, valve-controlled hydraulic motor variable pitch controland variable pitch load simulation system were set up. In this paper, based on LuGredynamic friction model, proposed the adaptive compensation control method, thevalve controlled hydraulic motor variable pitch speed impact suppression method,improvement of auxiliary synchronous surplus torque suppression method is verifiedexperimentally. According to semi-physics experiment of power control in hydraulictype wind turbine rated load, the results show that the presented theory and controlmethod are feasible.
引文
[1] El-Ashry M. Renewables2011Global Status Report[R].Paris:REN21,2011:17-18.
    [2] GWEC.Globle Wind Report2011[R]. Belgium:Global Wind Energy Council,2012
    [3] Wilkes J. The European Offshore Wind Industry Key2011Trends and Statistics[R].Brussels:European Wind Energy Association,2012
    [4]中国可再生能源学会风能专业委员会.2011年中国风电装机容量统计[J].风能,2012,3(25):41-48
    [5]程启明,程尹曼,王映斐,等.风力发电系统技术的发展综述[J].自动化仪表,2012,33(1):1-8.
    [6] Munteanu L, Bratcu A L, Cutululis N A, et al. Optimal Control of Wind Energy Systems[M].李建林,周京华译.北京:机械工业出版社,2010
    [7]范晓旭.变速恒频风力发电机建模、仿真及其协调优化控制[D].保定:华北电力大学.2010:29-32.
    [8] Shrestha G, Bang D, Polinder H, et al. Review of Generator Systems for Large WindTurbine[J]. Proceedings of EWEC, Brussels Belgium,2008:68-77.
    [9] Hamzehlouia S, Izadian A, Member S, et al. Controls of Hydraulic Wind PowerTransfer[C]//37th Annual Conference of the IEEE Industrial Electronics Society. IECON2011. Melbourne, VIC,2011:2475-2480.
    [10] Pusha A, Izadian A, Hamzehlouia S, et al. Modeling of Gearless Wind PowerTransfer[C]//37th Annual Conference of the IEEE Industrial Electronics Society. IECON2011. Melbourne, VIC,2011:3176-3179
    [11] Mortensen K A, Henriksen K H. Efficiency Analysis of a Radial Piston Pump Applied in a5MW Wind Turbine with Hydraulic Transmission[D]. Denmark:Aalborg University,2011.
    [12] Kohm scher T. Modell bildung Analyse und Auslegung hydrostatischerAntriebsstrangkonzepte[D]. Germany:RWTH Aachen,2008.
    [13]张刚.液压型风力发电机组主传动系统功率控制研究[D].秦皇岛:燕山大学,2012:23-25.
    [14]李志梅,魏本建.风电机组电动变桨距传动机构设计与仿真[J].机械传动,2009,33(6):53-56.
    [15]窦真兰,王晗,凌志斌,蔡旭.电动变桨距控制系统设计与实现[J].电力电子技术.2011,45(7):1-4
    [16]邱静,徐大林,孔屹刚.风电机电动变桨距系统变增益模糊控制仿真研究[J].华东电力.2011,39(4):631-635
    [17]王亚飞,赵斌,许洪华.风电机组电动变桨距伺服系统的研究[J].可再生能源.2011,29(4):28-31.
    [18] Chiang M H.A Novel Pitch Control System for a Wind Turbine Driven By a Variable-speedpump-controlled Hydraulic Servo System[J].Mechatronics,2011,21(4):753-761
    [19]马琛俊.大型风力发电机组直驱式容积控制变桨距系统研究[D].哈尔滨:哈尔滨工业大学,2010:22-23
    [20]任育杰,袁聪,宋锦春.风机液压变桨距机构的负载力分析及系统建模[J].机械与电子.2012,(7):28-31.
    [21]孔祥东,李昊,宋豫,等.风力机阀控液压马达变桨距位置控制系统仿真[J].系统仿真学报,2012,24(9):2019-2023
    [22]叶杭冶,潘东浩.风电机组变速与变桨距控制过程中的动力学问题研究[J].太阳能学报,2007,28(12):1321-1328
    [23]林勇刚.大型风力机变桨距控制技术研究[D].杭州:浙江大学,2005:35-39
    [24]郭洪澈.兆瓦级风电机组独立变桨控制技术研究[D].沈阳:沈阳工业大学,2008:30-34
    [25]张纯明.大型风力发电机组独立变桨距控制策略研究[D].沈阳:沈阳工业大学.2011,8:11-12
    [26]鲁效平,顾海港,林勇刚,等.基于独立变桨距技术的风力发电机组载荷控制研究[J].太阳能学报,2011,32(11):1591-1598.
    [27]陈晓波.风力发电机组电液比例变桨距控制半物理仿真试验台研究[D].杭州:浙江大学.2006.
    [28]林勇刚,徐立,李伟,等.电液比例变桨距风力机半物理仿真试验台[J].中国机械工程[J].2005,16(8):667-670.
    [29]杨先有.风电机组变桨距实验平台数字物理混合设计及仿真[D].湖南:湘潭大学,2010.
    [30]袁伟.风力机变桨距实验平台设计及控制策略研究[D].沈阳:东北大学,2008.
    [31]汪海波,田炜,鲁斌,等.兆瓦级风电机组电动变桨距系统测试平台设计[J].电力系统自动化.2010,34(24):74-77.
    [32]鲁效平.风力发电机独立变桨距关键技术研究[D].杭州:浙江大学.2010.
    [33]王经甫,叶正茂,李洪人.双阀并联控制在船舶舵机电液负载模拟器多余力抑制中的研究.机械工程学报,2005,41(4):229-233.
    [34] Wang J F, Liang L H, Zhang S T, et al. Application of H_infinity Control Basedon Mixed Sensitivity in the Electro-Hydraulic Load Simulator[C]//. Proceedingsof the2007IEEE International Conference on Mechatronics and Automation,Harbin, China,2007:2991-2996.
    [35]方强.被动式力矩伺服控制系统设计方法及应用研究[D].哈尔滨工业大学博士论文.2006:69-89.
    [36] Li G Q, Cao J, Zhang B, et al. Design of Robust Controller in Electro-Hydraulic LoadSimulator[C]//. Proceedings of2006International Conference on Machine Learning andCybernetics, Dalian, China,2006:779-784.
    [37]叶正茂,李洪人,王经甫.基于CMAC的船舶操舵系统负载模拟器复合控制[J].工程设计学报,2002,9(3):147-150.
    [38] Y Nam. QFT Force Loop Design for the Aerodynamic Load Simulator[J]. IEEE Transactions,Aerospace and Electronic Systems.2001,37(4):1384-1392.
    [39] Q Wang, Q Bi, Y Zhang. Partial Internal Model Control[J]. IEEE Trans. On IndustrialElectrics.2001,48(5):976-982.
    [40] S Y Lee, H S Cho. A Fuzzy Controller for an Aeroload Simulator Using Phase PlaneMethod[J]. IEEE Transaction, Control Systems Technology.2001,9(6):790-801.
    [41]王本永,赵克定.提高液压三轴仿真转台位置控制精度的具体措施[J].液压与气动.2005,12:60-62.
    [42]林荣川,郭隐彪,魏莎莎,等.非线性耦合力作用下液压马达低速波动机理分析[J].农业机械学报.2011,42(6):213-218.
    [43]王旭永.三轴转台外框架电液位置伺服系统低速运动的研究[D].哈尔滨工业大学博士学位论文.1993.
    [44]曹健.仿真转台用连续回转电液伺服马达及其控制系统的研究[D].哈尔滨工业大学博士学位论文.2002.
    [45]李军伟.仿真转台电液伺服系统及其中框同步控制技术研究[D].哈尔滨工业大学博士学位论文.2003.
    [46]从爽,高雪鹏,魏衡华.非线性直流电机仿真模型系统的建立[J].系统仿真学报,2001(13):25-28.
    [47] Parlit Z, Homstein A, Engster D, et al. Ideniifieation of Pre-sliding Friction Dynamics[J].American Institute of Physics,2004,14(2):420-430.
    [48] M S Madi,K khayati,P Bigras.Parameter Estimation for the LuGre Frietion Model usingInterval Analysis and Set Inversion[C]. IEEE International Conference on Systems,Man andCyberneties,2004:428-433.
    [49]王英,熊振华,丁汉.基于状态观测的自适应摩擦力补偿的高精度控制[J].自然科学进展,2005(15):1100-1105.
    [50]王中华,王兴松,王群.新型摩擦模型的参数辨识及补偿实验研究[J].制造业自动化,2001,23(6):30-32.
    [51]曹健,李尚义,赵克定.仿真转台用新型连续回转液压伺服马达摩擦特性研究[J].宇航学报,2003(24):374-378.
    [52]吴子英,刘宏昭,刘丽兰,李鹏飞,原大宁.运动副摩擦参数的识别方法研究[J].应用力学学报,2007(24):115-120.
    [53] K S Low,M T Keck,K J Tseng.Parameter Ideniification and Controller OPtimization using GAfor a Precision Stage[J].IEEE Control Systems,2001:694-698.
    [54]郑言海,王洪祥,庄显义.基于匹配追随算法的摩擦力自适应辨识与补偿研究[J].高技术通讯,2001:77-80.
    [55] Armstrong B. Control of Machines with Friction[M]. Norwell, Kluwer Academic Publishers.1996:188-243.
    [56]马娟丽,唐永哲,职晓波.低速摩擦伺服系统的滑模变结构控制研究[J].弹箭与制导学报.2007,27(3):77-79.
    [57]李仪,郭宏,蔚永强.永磁同步电动机大惯量负载的滑模变结构控制[J].北京航空航天大学学报.2007,33(10):1208-1211.
    [58] Liu Jinkun,Er Lianjie. QFT Robust Control Design for3-Axis Flight Table Servo Systemwith Large Friction[J]. Chinese Journal of Aeronautics.2004,17(1):34-38.
    [59]张绍德,陈主成.一种基于干扰观测器的伺服系统设计[J].电子科技大学学报.2005,34(1):85-88.
    [60]张文静,台宪青.基于LuGre模型的火炮伺服系统摩擦力矩自适应补偿.清华大学学报[J].2007,47(S2):1156-1160.
    [61]克晶,苏宝库,曾鸣.一种直流力矩电机系统的自适应摩擦补偿方法[J].哈尔滨建筑大学学报.2003,35(5):536-540.
    [62] Vitiello Valentina, Tornambe Antonio. Adaptive compensation of modeled friction using aRBF neural network approximation[C]. Proceedings of the46thIEEE Conference on Decisionand Control, New Orleans, United States.2008:4699-4704.
    [63]李海涛,房建成.基于CMAC的CMG框架伺服系统摩擦补偿方法研究[J].系统仿真学报.2008,20(7):1887-1890.
    [64]王永富,柴天佑.一种补偿动态摩擦的自适应模糊控制方法[J].中国电机工程学报.2005,25(2):139~143.
    [65] Moore Kevin L. A non-standard iterative learning control approach to tracking periodicsignals in discrete-time non-linear systems[J].International Journal of Control.2000,73(10):955-967.
    [66] Fernando D. Bianchi, Hernan De Battista,Ricardo J. Mantz.风力机控制系统原理、建模及增益调度设计[M].刘光德,译.北京:机械工业出版社,2010:6-7.
    [67] Sfetsos A. A comarison of various forecasting techniques aplied to mean hourly wind speedtime series[J]. Renewable Energy,2000,21(1):23-35
    [68]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006:22-25
    [69] Potter C W, Negnevitsky M. Very short-term wind forecasting for tasmanian powergeneration[J]. IEEE Transactions on Power Systems,2006,21(2):965-972
    [70] Manwell J E, J G MeGowan, A L Rogers. Wind Energy Explained-theory, Design andApplication[M]. London:John Wiley&Sons Ltd.,2002.
    [71] Burton, Tony, David Sharpe, Nick Jenkins, etal. Wind Energy Handbook[M]. Chichester:JohnWiley&Sons Ltd.,2005.
    [72] Kamal L, Jafri Y Z.Time series models to simulate and foreeast hourly average wind speed inWuetta pakistan[J]. Solar Energy,1997,61(1):23-32
    [73] Alexiadis M, Dokopoulos P, Sahsamanoglou H, et al.Short term forecasting of win Speed andrelated electrical power[J].Solar Energy,1998,63(1):61-68
    [74] Manwell J E,J G MeGowan, A L Rogers.Wind Energy Explained-theory,Design andApplication[M].London:John Wiley&Sons Ltd.,2002
    [75] Nichita C,Luca D,Dakyo B, et al. Large band simulation of the wind speed for real time windturbine simulators[J].IEEE Trans Energy Conversion,2002,17(4):523-529.
    [76]陈严,张锦源,王楠,等.风力机风场模型的研究及紊流风场的Matlab数值模拟[J].太阳能学报,2006,27(9):955-960.
    [77]娄素华,李志恒,高苏杰,等.风电场模型及其对电力系统的影响[J].电网技术,2007,31(S2):330-334.
    [78] Zhi L H, Li Q S, Hu F. Field Measurements of Strong wind Characteristics Near Ground inUrban Area[J]. Hunan Daxue Xuebao, Journal of Hunan University Natural Sciences,2009,36(2):8-12.
    [79] Welfonder E, Neifer R S, Panner M. Development and Experimental Identification ofDynamic Models for Wind Turbines[J]. Control Engineering Practice,1997,5(l):63-73.
    [80] S rensen P,Hansen AD,Rosas d PAC.Wind Models for Simulation of Power Fluctuationsfrom Wind Farms[J].Journal of Wind Engineering and Industrial Aerodynamics,2002,90(12-15):1381-1402.
    [81] S rensen P.Simulation of Interaction Between Wind Farm and Power System[R].Roskilde,Denmark:Ris National Laboratory,2001
    [82]埃米尔.希缪,罗伯特.H.斯坎伦.刘尚培,项海帆,谢霁明译.风对结构的作用—风工程导论[M].上海:同济大学出版社,1992:22-31.
    [83]杨兴满.风力发电机传动链性能分析与研究[D].重庆大学,2008:7-9.
    [84] Kishinami K, Taniguchi H, Suzuki J, etc. Theoretical and Experimental Study on theAerodynamic Characteristics of a Horizontal Axis Wind Turbine[J].Energy,2005,30(11-12):2089-2100.
    [85] Heier S. Grid Integration of Wind Energy convertion Systems [M]. Second Edition.Translated by Rachel Waddington. Member of the Institute of Translation and Interpreting,UK. Kassel University Germany,2002:43-44.
    [86] Borowy B S, Salameh Zi M. Dynamic Response of a Stand-Alone Wind Energy ConversionSystem with Battery Energy Storage to a Wind Gust[J]. IEEE Transactions on EnergyConversion,1997,12(1):73-78.
    [87]陈清丽.风力发电机组风轮建模及运行特性研究[D].北京:华北电力大学,2007:20-25.
    [88]戴巨川,胡燕平,刘德顺,等.MW级变桨距风电机组叶片转矩计算与特征分析[J].太阳能学报,2010,31(8):1030-1036
    [89] W A Timmer, R.P J O M van Rooij. Summary of the Delft University Wind TurbineDedicated Airfoils [J]. J.Sol. Energy Eng,2003.
    [90] Selvam K, Kanev S, van Wingerden J, et al. Feedback-feedforward Individual Pitch Controlfor Wind Turbine Load Reduction[J]. Int J RNC,2008,19:72-91
    [91] Selvam K. Individual Pitch Control for Large Scale Wind Turbine. Dissertation of masterdegree[D]. Delft: Delft University of Technology,2007.13-18
    [92] Garrad Hassan and Partners Ltd. GH Bladed Theory Manual[R],2005.33-36
    [93]郭洪澈.兆瓦级风电机组独立变桨控制技术研究[D].博士学位论文.沈阳:沈阳工业大学,2008.30-34
    [94]林勇刚.大型风力机变桨距控制技术研究[D].博士学位论文.杭州:浙江大学,2005.35-39
    [95]戴巨川,胡燕平,刘德顺,等.大型风电机组变桨距载荷计算与特性分析[J].中国科学:技术科学.2010,40(7):778-785.
    [96]孔屹刚,徐大林,顾兆丹,等.水平轴风力机变桨载荷分析与计算.江苏大学学报(自然科学版).2010,31(6):635-639.
    [97] Armstrong B, Dupont P, Canudas de Wit C. A Survey of Model, Analysis Tools andCompensation Methods for the Control of Machines with Friction.Automatica.1994,30(7):1083-1138.
    [98]许小庆,权龙,王永进.伺服阀流量动态校正改善电液位置系统性能的理论和方法[J].机械工程学报,2009,45(8):95-100.
    [99]权龙,李凤兰,田惠琴,等.变量泵、比例阀和蓄能器复合控制差动缸回路原理及应用[J].机械工程学报,2006,42(5):116-119.
    [100]柏艳红,权龙.电液位置速度复合伺服系统控制策略[J].机械工程学报.2010,46(24):150-155.
    [101]崔杨,穆钢,刘玉,等.风电功率波动的时空分布特性.电网技术,2011,35(2):110-114.
    [102]张彪.电液负载模拟器多余力抑制及其反步自适应控制研究.哈尔滨:哈尔滨工业大学.2009.
    [103] Q Fang, Y Yao, X C Wang. Disturbance Observer Design for ElectricAerodynamic LoadSimulator[C]//. The Fourth International Conference on Machine Learning and Cybernetics,Guangzhou, China,2005:1316~1321
    [104]赵玉琢,周连山,叶文柄等.被动式电液力控制系统的辅助同步补偿[J].自动化技术与应用,1985(2):27~28.
    [105] Chao Ai, Xiangdong Kong, Gang Zhang, Hao Li. Simulation Study on Constant SpeedOutput Control of Fixed Displacement Pump-Variable Displacement Motor Hydraulic System[C].FPM2011,2011:276-281.
    [106]艾超.液压型风力发电机组转速控制和功率控制研究[D].秦皇岛:燕山大学,2012:24,50,93,100-101.
    [107] Lin W M, Hong C M, Cheng F S. Fuzzy Neural Network Output Maximization Controlfor Sensorless Wind Energy Conversion System[J]. Energy,2010,35(2):592-601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700