用户名: 密码: 验证码:
个旧锡矿区地质数据的极值分布和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以地质异常理论为基础的“三联式”成矿预测理论为指导,以个旧锡矿区为示范研究区,针对矿产资源勘查面临的“三难”:难识别、难发现、难开发等问题,在系统研究区域成矿地质背景及深入研究、揭示和分析地质数据的基础上,把数学和地质相结合,把极值理论(Extreme Value Theoy,EVT)应用于个旧锡矿区地质数据的极值统计分布和应用研究,用极值分析的理论和方法进行了异常数据的识别、提取和圈定,对广义帕累托分布(Generalized Pareto Distribution,GPD)模型中的参数估计方法进行了研究和比较,对超过阈值的异常数据建立了GPD模型等方面做了理论和应用方面的研究。
     本文重点介绍了极值理论中阈值法(Peak Over Threshold,POT)确定异常下限的理论和方法。区别于经验法,提出了一个定量确定阈值的方法,并把POT法确定异常下限与统计学方法X + 2S进行了比较研究。对GPD模型的参数确定方法进行了研究。比较了几种主要参数估计方法在确定GPD模型中参数时的特点及优缺点。针对确定GPD模型中参数极大似然估计法所得到似然方程是非线性的超越方程没有解析解的特点,提出了一个具有解析解的近似极大似然估计法,详细地推导了近似的计算公式。并强调了在使用时需注意的问题。把极值理论用于个旧东区,对2003年Pb、Zn、Ag、Sn、Mn五种元素的化探数据进行了实证研究,得到的主要结论如下:
     1.区别于以往的识别、提取和圈定地质异常的方法。极值理论不仅可以拟合超越异常下限数据的分布,刻画异常发生的概率。而且可以客观的、定量的圈定地质异常,以及描述异常发生的概率,从而刻画了矿产预测的不确定性,而不确定性的定量化和数量化正是矿产定量预测的主要任务之一。
     2.通过计算表明:用极值理论的POT法确定的阈值要比用统计学方法X + 2S确定的阈值要小,这样对异常下限的确定上就可以把可能是异常的数据不至于剔除掉,符合成矿预测应最少漏失矿体而又最大减少需进行详细工作面积的原则。
     3.计算结果表明Pb元素GPD模型中的参数ξ,σ随阈值的变化情况是:随着阈值的增加,σ随之增大,而ξ随之减少。
Based on the geological anomaly theory and the‘three-components’mineral prediction theory, this paper does research work with the data gathered in the Gejiu Tin ore deposits. Focusing on the problems in the mineral resources exploration such as three difficulties: difficult to identify, difficult to find, difficult to exploit, we combine mathematics with geology to develop our research work based on the systemic study of the background of region mineral forming and on the enough data analysises. We have applied extreme value theory (EVT) to analysis the data of Gejiu Tin ore deposits. We use extreme value theory to recognize, extract and delineate anomaly. The investigations and comparisons are completed for parameter estimation in the model with generalized Pareto distribution (GPD), moreover, the theoretical and applied aspects are completed for building GPD model with anomaly data exceeding the threshold.
     The paper mainly describes a method of finding lower limit by using peak over threshold (POT) in extreme value theory, which is different from the experiential method. We provide a method of finding threshold and compare this method with the statistical method X + 2S. Also, we study the parameter estimation in GDP. The characterizations, advantages and disadvantages of several main methods of parameter estimation are given. As we know, the likelihood equation obtained by parameters maximum likelihood estimation in GDP has no analytic solution, so we provide an approximate maximum likelihood estimation and derive its formulae in detail. The formulae can give its analytic solutions and one should pay attention to some problems when applying the formula which has been emphasized in this paper. The following results are mainly achieved after applying extreme value theory to study the data of Pb、Zn、Ag、Sn、Mn in Gejiu Tin ore deposits in 2003.
     1. The method in this paper is different from previous the method which is used to recognize, extract and delineate geological anomaly. Extreme value theory not only can fit the distribution which the data exceed the lower limit value of anomaly and characterize the probability of anomaly occurring, but also can delineate geological anomaly objectively and quantitatively,as a result, the indeterminacy in quantitative prediction of minerals is characterized,which is one of assignment in quantitative prediction of minerals.
     2. Through the computations, it is shown that the threshold calculated by extreme value theory's POT method is smaller than that calculated by the statistical method X + 2S. Therefore, when determining the lower limit of anomaly, it is possible not to eliminate such data that is probably anomalous. This corresponds with the principle that the mine forming prediction should leak ore-body at least and reduce the required area for detail investigation at most.
     3. The results also show that the parameterσwill increase and the parameterξwill decrease when the threshold increases, whereξandσare the parameters in generalized Pareto distribution of Pb.
引文
[1] Stuart Coles. An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics, 2002
    [2] Gumbel E J. Statistics of Extremes. New York: Columbia University Press, 1958
    [3] Reiss R D, Thomas M. Statistical Analysis of Extreme Values(from Insurance, Finance, Hydrology and Other Fields). Basel-Boston-Berlin: Birkhauser Verlag , 1997
    [4] Leadbetter M R, George Lindgren, Holger Rootzen. Extremes And Related Properties of Random Sequences and Processes. New York-Heidelberg-Berlin: Springer-Verlag, 1983
    [5] Reiss R-D. A Course on Point Processes. Springer-Verlag. Springer Series in Statistics, 1993
    [6] Samuel Kotz, Saralees Nadarajah. Multivariate t Distrbutions and Their Applications. Cambridge University Press, 2004
    [7] Engel J. On the Analysis of Grouped Extreme Value Data With GLIM. Appl. Statist. 1993, 42: 633~640
    [8] Fernando A, Quintana, Pilar L. Iglesias. Bayesian clustering and product partition models. J. R. Statist. Soc. B, 2003, 65: 557~574
    [9] Bortot P, Tawn J A. Models for the extremes of Markov chaind.Biometrika. 1998, 85: 851~867
    [10] Buishand T A. Bivariate extreme value data and the station-year method. Journal of Hydrology, 1984, 69: 77~95
    [11] Buishand T A. Statistics of extremes in climatology. Statistica Neerlandica, 1989, 43: 1~30
    [12] Buishand T A. Extreme rainfall estimation by combining data from several sites. Hydrological Science Journal, 1991, 36: 345~365
    [13] Davison A C, Smith R L. Models for exceedances over high thresholds(with discussion). Joural of the Royal Statistical Society, 1990, B52: 393~442
    [14] Frrzgerald D L. Single station and regional analysis of daily rainfall extremed. Stochastic Hydrology and Hydraulics, 1989, 3: 281~292
    [15] Walshaw D. Getting the most from your extreme wind data: a step by step guide. Journal of Research of the National Instistute of Standards and Technology, 1994, 99: 399-411
    [16] Zwiers F W, Ross W H. An alternative approach to the extreme value analysis of rainfall data. Atmospheric Ocean, 1991, 29: 437~461
    [17]赵鹏大.定量地学方法及应用.北京:高等教育出版社,2004
    [18]赵鹏大等编著.非传统矿产资源概论.北京:地质出版社,2003
    [19]赵鹏大,胡旺亮,李紫金.矿床统计预测.北京:地质出版社,1994
    [20]赵鹏大,陈永清,刘吉平等著.地质异常成矿理论与实践.武汉:中国地质大学出版社,1999
    [21]陈希孺.数理统计学简史.湖南教育出版社,2002
    [22]陈希孺.高等数理统计学.中国科学技术大学出版社,1999
    [23]张卫东,李茂林,张秀梅,王久洋.极值理论在地震危险性分析中的应用与研究.东北地震研究,2005,21(1):24~30
    [24]陈虹,黄忠贤.应用混合极值理论及最大似然法估计中国大陆地震危险性.地震学报,1995,17(2):264~269
    [25]陈虹.应用混合极值理论及最大似然法估计东南沿海各地震区的地震危险性.东南地震,1996,16(1):10~15
    [26]傅湘,王丽萍,纪昌明.极值统计学在洪灾风险评价中的应用.水利学报,2001(7):8~12
    [27]吴昊,郭仁东,常春,段龙武.多项分布极值水文统计理论应用研究.沈阳大学学报,2005,17(4):74~76
    [28]刘德辅,王莉萍,宋艳,庞亮.复合极值分布理论及其工程应用.中国海洋大学学报,2004,34(5):893~902
    [29]史道济.二元极值分布参数的最大似然估计与分布估计.天津大学学报,1996,27(3):294~299
    [30]史道济等.多元极值分布随机向量的抽样方法.应用概率统计,1997,13(1):75~80
    [31]王蓉华,费鹤良,徐晓岭.异常数据检验的均值比方法.数理统计与应用概率,1998,13(1):63~70
    [32]欧俊豪,马逢时,高毅.二维极值分布相依参数的估计.数理统计与应用概率,1998,13(3):219~227
    [33]赵鹏大,张寿庭,陈建平.矿山可接替资源预测评价若干问题探讨.理工大学学报(自然科学版),2004,31(2):111~117
    [34]高惠璇.应用多元统计分析.北京:北京大学出版社,2005
    [35]于秀林,任雪松.多元统计分析.北京:中国统计出版社,1999
    [36]范永香,阳正熙著.成矿规律与成矿预测.中国矿业大学出版社,2003
    [37]夏成明,姜先畴等.应用极值理论研究台湾和华东地区中强地震活动的相关性.地震学报,2002,22(4):40~45
    [38]阎俊岳,黄爱芬.中国近海大风极值计算方法研究.气象学报,1996,54(2):233~239
    [39]肖敬红,缪柏其,吴振翔.应用极值理论计算VaR的一种方法.运筹与管理,2005,14(1):52~56
    [40]彭美煊.临汾地震安全性评价的极值理论方法.高原地震,1995,7(1):32~41
    [41]段忠东,周道成.极值概率分布参数估计方法的比较研究.哈尔滨工业大学学报,2004,36(12):1605~1609
    [42]仇学艳,王超,秦崇仁.阀值法在河海工程设计中的应用.水利学报,2001(8):32~37
    [43]于莲君,田心如,张东凌等.龙卷风的风强分析与极值推断.气象科学,1999,19(1):99~103
    [44]刘吉峰,丁裕国,程炳岩.利用随机模拟研究极值天气的预报模型试验.南京气象学院学报,2002,25(6):823~829
    [45]田宏伟,詹原瑞,邱军.极值理论(EVT)方法用于受险价值(VaR)计算的实证比较与分析.系统工程理论与实践,2000(10):27~35
    [46]谢崇宝,袁宏源,郭元裕. P-III型理论频率曲线参数估计——模糊极值法.水文,1997,(3):1~7
    [47]春乃芽.如何利用EXCEL处理化探数据.物探化探计算技术,2006,28(3):272~276
    [48]赵鹏大,池顺都,陈永清.查明地质异常:成矿预测的基础.高校地质学报,1996,2(4):361~373
    [49]余雄飞.路基挡土墙抗滑稳定的极值分析.中国公路学报,1997,10(1):27~32
    [50]李庆玉,杨俊.极值原理在库存管理中的应用.重庆工商大学学报(自然科学版),2005,22(3):223~225
    [51]段忠东,欧进萍,周道成.极值风速的最优概率模型.土木工程学报,2002,35(5):11~16
    [52]赵鹏大,陈建平.地质异常理论与遥感地质研究.大自然探索,1996,15(2):29~34
    [53]陈守余,徐忠详.油气化探多元信息提取及含油气性灰色识别.地球物理——中国地质55大学学报,1998,23(1):92~96
    [54]陈永清,刘红光.初论地质异常数字找矿模型.地球物理——中国地质大学学报,2001,26(2):129~134
    [55]赵鹏大,陈永清.基于地质异常单元金矿找矿有利地段圈定与评价.地球物理——中国地质大学学报,1999,24(5):443~448
    [56]刑国才,逄建东,刘华等.地质异常理论在油气勘探中的应用.中国海上油气,2004,16(1):22~25
    [57] Azzalini A. Statistical Inference Based on the Likelihood. London: Chapman and Hall, 1996
    [58] Bruun J T, Tawn J A. Comparison of approaches for estimating the probability of coastal flooding. Applied Statistics, 1998, 47: 405~423
    [59] Capera P, Fougeres A L, Genest C A. Nonparametric estimation procedure for bivariate extreme value copulas. Biometrika, 1997, 84: 567~577
    [60] Deheuvels P, Tiago de Oliveira J. On the nonparametric estimation of the bivariate extreme value distributions. Statistics and Probability Letters, 1989, 8: 315~323
    [61] Dekkers A L M, De Haan L. Optimal choice of sample fraction in extreme value estimation. Journal of Multivariate Analysis, 1993, 47: 173~195
    [62] De Haan L. Fighting the arch-enemy with mathematics.Statistica. Neerlandica, 1990, 44: 45~68
    [63] De Haan L, Pickands J. A spectral representation for stationary min-stable stochastic processes. Stochastic Processes and their Applications, 1984, 17: 26~27
    [64] De Haan L, Pichands J. Stationary min-stable stochastic processes. Probability Theory and Related Fields, 1986, 72: 477~492
    [65] De Haan L, Resnick S I. Limit theory for multivariate sample extremes. Zeit. Wahrscheinl-theorie, 1977, 40: 317~337
    [66] Coles S G, Heffernan J, Tawn J A. Dependence measures for multivariate extremes. Extremes, 1999, 2: 339~365
    [67] Coles S G, Powell E A. Bayesian methods in extreme value modeling: a review and new developments. International Statistical Review, 1996, 64: 119~136
    [68] Coles S G, Tawn J A. Statistics of coastal flood prevention. Philosophical Transactions of the Royal Society of London, 1990, A332: 457~476
    [69] Coles S G, Tawn J A. Modelling extreme multivariate events. Journal of the Royal Statistical Society, 1991, B53: 377~392
    [70] Coles S G., Tawn J A. A Bayesian analysis of extreme rainfall data. Applied Statistics, 1996a, 45: 463~478
    [71] Cox D R, Hinkley D V. Theoretical Statistics. London: Chapman and Hall, 1974
    [72] Cox D R, Isham V. Point Processs. London: Chapman and Hall, 1980
    [73] Cressie N A C. Statistics for Spatial Data. Wiley, Chichester, 1993
    [74]赵鹏大,陈永清,刘吉平等著.地质异常成矿预测理论与实践.武汉:中国地质大学出版社,1991,1~4
    [75]赵鹏大,王京贵,李浩昌,饶明辉,刘光萍著.中国地质异常与金铀矿产资源预测.武汉:中国地质出版社,1998,1~12
    [76]陈希孺.数理统计引论.北京:科学出版社,1981
    [77]赵鹏大等编著.非传统矿产资源概论.北京:地质出版社,2003,149~158
    [78]刘文杰,李峰,杨昌正. MAPGIS地理信息系统在化探数据处理中的应用.矿业快报,2008,(8):110~112
    [79]赵鹏大.“三联式”资源定量预测与评价——数字找矿理论与实践探讨.中国地质大学学报,2002,27(5):482~489
    [80] Hosking J R M, Wallis J R. Parameter and quantile estimate for the generalized Pareto distribution, Technometrics, 1987, 29: 339~349
    [81] Davison A C, Smith R L. Models for Exceedance over High Thresholds. JR Stat. Soc. 1990, B52: 393~442
    [82] Fisher R A. On the mathematical foundations of theoretical statistics. reprinted in Contributions to Mathematical Statistics. New York : J. Wiley & Sons, 1950
    [83] Smith R L. Estimating tails of probability distributions. Annals of Statistics, 1987, 15: 1174~1207
    [84] Azzalini.A. Statistical Inference and its Applications (2th Edition). New York: John Wiley, 1973
    [85] Stuart Coles. An Introduction to Statistical Modeling of Extreme Values. London: Springer, 2001, 74~91
    [86] Hosking J R M. Algorithm AS215: Maximum Likelihood Estimation of the Parameters ofthe Generalized Extreme Value Distribution. Applied Statistics, 1985, 34: 301~310
    [87] Hosking J R M. The Theory of Probability Weighted Moments. Research Report RC12210, IBM Thomas J. Watson Research Center. Yorktown Heights, N Y. 1986
    [88] Hosking J R M, Wallis J R, Wood E F. Estimation of the Generalized Extreme Value Distribution by the Method of Probability Weighted Moment. Technometrics, 1985, 27: 251~261
    [89]赵鹏大,胡旺亮,李紫金编著.矿床统计预测(第二版).北京:地质出版社,1994,82~84
    [90] Xie Shuyun, Cheng Qiuming,Ke Xianzhong, Bao Zhengyu, Wang Changming, Quan Haoli. Identification of Geochemical Anomaly by Multifractal Analysis. Journal of China University of Geosciences, 2008, 19(4): 334~342
    [91] Embrechts P, Kluppelberg C, Mikosch T. Modeling Extremal Events for Insurance and Finance. Berlin: Springer-Verlag, 1997
    [92]赵鹏大,陈永清.地质异常矿体定位的基本途径.地球科学——中国地质大学学报,1998,23(2):111~114
    [93]池顺都,赵鹏大,刘粤湘.研究矿床时间谱系的GIS途径.地球科学,2001,26(3):180~184
    [95]翟裕生等.成矿系统及地质异常.现代地质,1999,13(1):99~104
    [96]陈明,李金春.化探背景与异常识别的问题与对策.地质与勘探,1999,35(2):25~29
    [97]吴锡生.化探数据处理方法.北京:地质出版社,1993
    [98]陈永清,夏庆霖.应用地质异常单元圈定矿产资源体潜在地段.地球科学,1999,24(5):459~463
    [99]李树基等.个旧锡矿地质.北京:冶金工业出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700