用户名: 密码: 验证码:
基于多光程长的高散射体物质光学参数的测量及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
所谓高散射物质即其有相对较高的散射系数。高散射物质的定量分析主要分为两个部分。首先是物质本身光学参数的测量,物质的光学参数是物质的根本属性之一,比如物质的散射系数,吸收系数,各项异性因子等,同时是分析物质成份的重要依据,尤其生物组织的光学参数测量是生物光子学领域研究的关键基础,在医学诊断和治疗领域中有着广泛的应用前景。物质的每种成分都有特定的光学特征,为光谱定量分析提供了基础,其次是通过物质的光学参数对其成分进行测量,通过物质光谱携带的信息来区分不同浓度的同种物质,以及测量它们的含量。本文从定量分析的两方面结合多光程长的测量方法对高散射物质的光学特性进行研究,本课题已经完成的主要工作包括:
     1)为了提高高散射物质中蒙特卡罗仿真算法的运算速度,在Wang等提供的适于多层组织模型研究的MCML算法的基础上加以改进,分别针对一般光电传感器以及光纤传感器作为接受器件时,提出了两种不同的模型修改方法,通过增加约束条件以及进行近似处理,大幅度提高了蒙特卡罗仿真的速度。
     2)自行搭建多光程长实验平台,其通过微米位移机构实现不同光程长的测量,以及对高散射物质光学特性的研究,通过对单一波长的分析得出物质的吸收系数与约化散射系数,并通过蒙特卡罗模型进行验证。
     3)应用偏最小二乘(PLS)方法,对高散射物质进行浓度测量的研究,使用intralipid溶液与India ink配制不同浓度共21种溶液,采用单光程长与多光程长的方法对实验样本进行测量,对单光程长与多光程长方法得到的实验数据进行对比分析,分析结果表明多光程长方法的浓度测量精度远高于单光程长方法,尤其对于India ink,多光程长浓度测量精度要比单光程长浓度测量精度高一个数量级。
     4)血液成分测量技术一直是近年来生物医学领域的研究热点。目前应用的血液成分检测均是针对血清、血浆或模拟样品的,较少以全血作为光谱测量样本。通过多光程长的方法对全血在可见-近红外区域进行光谱测量,替代了常规使用的血球记录仪与生化分析仪等,能够实现简单、低成本、快速的血液成分检测并且为动态光谱无创血液成分的测量提供依据。
The research of the high scattering matters which have the higher scattering coefficient quantitative analysis consists of the measurement of the optical parameters and measurement of the component via the optical parameters. The optical parameters of the matters is the basic attributes, for instance, the scattering coefficient, absorption coefficient, anisotropic factor and so on. The optical parameters are important basis of the analysis of the maters components, especially, the optical parameters mearsurement of the biological tissue which is the key basis of the bio-photonics in the medical diagnostics and treatment fields. The optical characteristics of the each content of the matters are different, which is the basis of the quantitative analysis of the spectra. To the latter, the qualitative analyses distinguish the same matters and measure contents via the information of the spectra. The high scattering matters optical attributes was researched in the two aspects of the quantitative analysis combined with the multi-optical path method. The major works of this subject has been completed as follows:
     1) In order to improve the simulation speed of the Monte Carlo simulation, the Monte Carlo simulation which was put forward by Wang was improved. The two different simulation methods were employed to improve the generally receiving method and the fiber sensor receiving method. The constraint condition and approximate processing were employed; therefore the simulation speed is improved greatly.
     2) The multi-optical path experimental platform was design, which could implement the measurement of the different optical path, to the research of the optical parameters of the high scattering matters. The absorption coefficient and scattering coefficient could be obtained via analysis of the one wavelength and the Monte Carlo simulation was employed to verify the results.
     3) The PLS method was employed to measurement the concentration of the high scattering matters, the sample was the mixed solution of intralipid and India ink which was different concentration and 21 kinds totally. Compared with the fix optical path method, the measurement precision of the multi-optical path method was better, especially, the precision of the ink of multi-optical path method was improved one magnitude than the fix optical path method.
     4) The measurement of the blood components is the research focus of the biomedical field. The researches are focus on serum, plasma and simulation sample at present, however, the whole blood is rare. The spectra measurement of the blood components in VIA-NIR field is instead of the blood corpuscle recorder and biochemical analyzer which are generally employed. This method can implement simple, low cost, fast measurement of the blood components and provide evidence for the non-invasive measurement of blood compositions based on dynamic spectroscopy.
引文
[1] A.Kienle, M.S.Paterson, et al., Noninvasive determination of the optical properties of two-layered turbid media, Appl.Opt, 1998,37 (4):779~791.
    [2] S. A. Boppart et al., In vivo cellular optical coherence tomography imaging, Nature Medicine, 1998, 4:861~865.
    [3] Lhermitte.R., Meteorological Doppler radar, Science,1973,18 2,25 8~262.
    [4] Marcuvitz.N., On the theory of plasma turbulence, J.Math.Phys,1974, 15, 869~879.
    [5] Preisendorfer, R .W,Radiative transfer on discrete spaces,1965, Oxford Univ.Press (Pergamon), London and New York.
    [6] K.M.Case and Zweifel.P.F. Linear Transport Theory Reading: Addison-Wesley, 1967.
    [7] W.F.Cheong, S .A.Prahland, A review of the optical properties of biological tissues, IEEE J.Quan.Elec,1990,26 (26):2166~2185.
    [8] S.R.Arridge, Cope M, and Delpy D T., The theoretical basis for the determination of optical pathlengths in tissue temporal and frequency analysis. Physics in Medicine and Biology, 1992, 37(7): 1531~1560.
    [9] B.C. Wilson and G.Adam, A Monte Carlo model for the absorption and flux distributions of light in tissue. Medical Physics, 1983, 10(6): 824~830.
    [10] Lihong.Wang, Rapid modeling of diffuse reflectance of light in turbid slabs, J.Opt.Soc.Am.A,1998, 15(4):936~944.
    [11] Eric Tinet et al., Fast semi-analytical Monte Carlo simulation for time-resolved light propagation in turbid media, J.Opt.Soc.Am.A,19 96,13(9):1903~1915.
    [12] Malin S F, Ruchti T L, Blank T B, et al., Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy, Clinical Chemistry,1999, 45(9): 1651~1658.
    [13] Samann A, Fischbacher C, Jagemann K U, et al., Non-invasive blood glucose monitoring by means of near infrared spectroscopy: investigation of long-term accuracy and stability, Experimental and Clinical Endocrinology & Diabetes, 2000, 108(6): 406~413.
    [14] Maruo K, Tsurugi M, Chin J, et al., Noninvasive blood glucose assay using a newly developed near-infrared system, IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(2): 322~330.
    [15] Maruo K, Tsurugi M, Tamura M, et al., In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy, Applied Spectroscopy, 2003, 57(10): 1236~1244.
    [16]张洪艳,张来明,陈月等,近红外漫反射光谱在人体血糖无创检测中的应用,激光与红外, 2005, 35(2): 96~99.
    [17]陈文亮,崔厚欣,刘蓉等, 1100~1700nm近红外光谱无创血糖测量的OGTT实验研究,生物医学工程学杂志, 2004, 21(5): 824~827.
    [18] Delpy D T, Cope M, van der Zee P, et al., Estimation of optical pathlength through tissue from direct time of flight measurement, Physics in Medicine and Biology, 1988, 33(12): 1433~1442.
    [19] Wray S, Cope M, Delpy D T, et al., Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation, Biochimica et Biophysica Acta, 1988, 933(1): 184~192.
    [20] Strangman G, Franceschini M A, and Boas D A., Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters, NeuroImage, 2003, 18(4): 865~879.
    [21] Franceschini M A, Boas D A, Zourabian A, et al., Near-infrared spiroximetry: noninvasive measurements of venous saturation in piglets and human subjects, Journal of Applied Physiology, 2002, 92(1): 372~384.
    [22] Al-Rawi P G, Smielewski P, and Kirkpatrick P J, Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head, Stroke, 2001, 32(11): 2492~2500.
    [23]林凌,谌雅琴,李刚等,近红外光谱肌肉组织血氧定量监测技术的研究——模型实验与蒙特卡罗仿真研究,中国生物医学工程学报, 2004,23(5): 419~426.
    [24]王峰,李炜,林方等,用近红外光谱技术实现生物组织含氧量的无损检测,清华大学学报(自然科学版), 1999, 39(7): 16~19.
    [25] Matcher S J, Elwell C E, Cooper C E, et al., Performance comparison of several published tissue near-infrared spectroscopy algorithms, Analytical Biochemistry, 1995, 227(1): 54~68.
    [26] Uludag K, Kohl-Bareis M, Steinbrink J, et al., Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations, Journal of Biomedical Optics, 2002, 7(1): 51~59.
    [27] Hielscher A H, Alcouffe R E, and Barbour R L, Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues, Physics in Medicine and Biology,1998, 43(5): 1285~1302.
    [28] Arridge S R and Schweiger M, Photon-measurement density functions.Part 2: Finite-element-method calculations, Applied Optics, 1995, 34(34):8026~8037.
    [29] Cope M and Delpy D T, System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination, Medical and Biological Engineering and Computing,1988, 26(3): 289~294.
    [30] Germon T J, Kane N M, Manara A R, et al., Near-infrared spectroscopy inadults: effects of extracranial ischaemia and intracranial hypoxia onestimation of cerebral oxygenation, British Journal of Anaesthesia, 1994,73(4): 503~506.
    [31] Belardinelli R, Barstow T J, Porszasz J, et al., Changes in skeletal muscle oxygenation during incremental exercise measured with near infrared spectroscopy, European Journal of Applied Physiology, 1995, 70(6):487~492
    [32] Star W M, Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry, Proc. SPIE, 1989, 1035: 146~154.
    [33] Farrell T J, Patterson M S, and Wilson B C, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo, Medical Physics, 1992,19(4): 879~888.
    [34] Nichols M G, Hull E L, and Foster T H, Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems, Applied Optics, 1997, 36(1):93~104.
    [35] Haskell R C, Svaasand L O, Tsay T-T, et al., Boundary conditions for the diffusion equation in radiative transfer, Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1994, 11(10): 2727~2741.
    [36] Keijzer M, Star W M, and Storchi P R M, Optical diffusion in layered media, Applied Optics, 1988, 27(9): 1820~1824.
    [37] Hielscher A H, Jacques S L, Wang L, et al., The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues, Physics in Medicine and Biology, 1995,40(11): 1957~1975.
    [38] Aronson R. Boundary conditions for diffusion of light, Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1995,12(11): 2532~2539.
    [39] Ripoll J, Nieto-Vesperinas M, Arridge S R, et al., Boundary conditions for light propagation in diffusive media with nonscattering regions. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 2000,17(9): 1671~1681.
    [40] Patterson M S, Chance B, and Wilson B C, Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties, Applied Optics, 1989, 28(12): 2331~2336.
    [41] Kim A D and Ishimaru A, Optical diffusion of continuous-wave, pulsed, and density waves in scattering media and comparisons with radiative transfer, Applied Optics, 1998, 37(22): 5313~5319.
    [42] Yoo K M, Liu F, and Alfano R R, When does the diffusion approximation fail to describe photon transport in random media, Physical Review Letters,1990, 64(22): 2647~2650.
    [43] Kop R H J, de Vries P, Sprik R, et al., Observation of anomalous transport of strongly multiple scattered light in thin disordered slabs, Physical Review Letters, 1997, 79(22): 4369~4372.
    [44] Martelli F, Bassani M, Alianelli L, et al., Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation, Physics in Medicine and Biology, 2000, 45(5):1359~1373.
    [45] Hielscher A H, Alcouffe R E, and Barbour R L, Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues, Physics in Medicine and Biology, 1998, 43(5): 1285~1302.
    [46] Arridge S R, Dehghani H, Schweiger M, et al., The finite element model for the propagation of light in scattering media: A direct method for domains with nonscattering regions., Medical Physics, 2000, 27(1): 252~264.
    [47] Chandrasekhar S. Radiative Transfer, Oxford: Clarendon Press, 1950.
    [48] Metropolis N and Ulam S. The Monte Carlo method, Journal of theAmerican Statistical Association, 1949, 44(247): 335~341.
    [49] J?reskog, K. G., Wold, H., Systems under indirect observation, Amsterdam: North-Holland,1982:1~54.
    [50]王惠文,吴载斌,孟洁等,偏最小二乘回归的线性与非线性方法,北京:国防工业出版社,2006.
    [51] B. C. Wilson, G Adam, A Monte Carlo model for the absorption and flux distributions of light in tissue, Medical Physics, 1983,10(6):824~830.
    [52] L. Wang, S.L. Jacques, and L. Zheng, MCML - Monte Carlo modeling of light transport in multi-layered tissues, Computer Methods and Programs in Biomedicine, 1995, 47:131~146.
    [53] G.M. Palmer, C. Zhu, T.M. Breslin, et al., Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis, Appl. Opt, 2006, 45(5), 1072~1078.
    [54] G.M. Palmer and N. Ramanujam, Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms, Appl. Opt,2006 ,459(5), 1062~1071.
    [55] Chen yaqin, Lin ling, Li gang, et al., Hierarchical PICA-NN for retrieving the optical properties of two-layer tissue model, Lecture Notes in Computer Science,2004, 3173: 786~791.
    [56] Jessica Ramella-Roman, Scott Prahl, and Steve Jacques,Three Monte Carlo programs of polarized light transport into scattering media: part I, Opt. Express.2005,13: 4420~4438.
    [57] Vermaak, J,Godsill, S.J, and Perez, P, Monte Carlo filtering for multi target tracking and data association, Aerospace and Electronic Systems, IEEE Transactions.2005,41:309~332.
    [58]李刚,郑羽,林凌等,在多层介质中的频域OCT蒙特卡罗仿真,光学精密工程,2008,7(16):1285~1294.
    [59]李伟,何永红,马辉偏振,门用于对散射介质成像的蒙特卡罗模拟研究,光子学报,2008,37(3):518~522.
    [60]刘魁武,成芳,林宏建等,可见/近红外光谱检测冷鲜猪肉中的脂肪、蛋白质和水分含量,光谱学与光谱分析,2009,29(1):102~105.
    [61] Wu HX, Liu CH, Chen JG, et al., Melamine Detection in Infant Formula Powder Using Near and Mid-Infrared Spectroscopy, Journal of agricultural and food chemistry,2009,57(10): 3974~3980.
    [62]彭帮柱,岳田利,袁亚宏等,苹果酒发酵过程中糖度近红外光谱检测模型的建立,光谱学与光谱分析,2009,29(3): 652~655.
    [63]张愿,张录达,白琪林等,近红外光谱法快速无损识别普通、高油、超高油玉米籽粒,光谱学与光谱分析,2009,29(3): 686~689.
    [64] Nault JR, Preston CM, Trofymow JA, Prediction of Nuclear Magnetic Resonance Carbon Fractions in Decomposing Forest Litter Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Partial Least Squares Regression, Soil science, 2009,174(5) : 249~257.
    [65]成忠,诸爱士,近红外透射光谱结合规范变量分析用于化学模式分类,光谱学与光谱分析, 2009,29(3): 624~628.
    [66] Stéphane Perrey, Non-invasive NIR spectroscopy of human brain function during exercis, Methods,2008,45: 289~299.
    [67] David Weissbrodt, Ralf Müeller and Juergen Backhaus, American Journal of Ophthalmology,2005, 140(2):307~308.
    [68]陆婉珍,现代近红外光谱分析技术(第二版),北京:中国石化出版社,2007.
    [69]钱志余,陈仁文,顾月清等,生物组织光学参数:优化散射系数(μ’s)的实时在位测定,南京航空航天大学学报,2004,36(3):369~372.
    [70]张琳,张连顺,许棠等,生物组织光学参数的离体和在体无损测量,光子学报,2004,33(11):1377~1381.
    [71]朱苒,骆清铭,曾绍群等,用于组织光学特性参量测量的改进型双积分球系统,光子学报,2001,30(10):1175~1181.
    [72] W. M. Irvine and J. B. Pollack, Infrared optical properties of water and ice spheres, Icarus, 1968, 8 (1-3): 324~360.
    [73] G. M. Hale and M. R. Querry, Optical constants of water in the 200nm to200nm wavelength region, Appl. Opt., 1973,12: 555~563.
    [74]谭克竹,张长利,柴玉华,基于遗传多层前馈神经网络的大豆脂肪酸含量近红外光谱检测,东北农业大学学报,2008,39(7):112~117.
    [75]钱平,孙国琴,张存洲,基于近红外光谱技术的石油组分定量分析新方法,光谱学与光谱分析,2008,28(12):2851~2854.
    [76]蒋焕煜,彭永石,谢丽娟等,扫描次数对番茄叶漫反射光谱和模型精度的影响研究,光谱学与光谱分析,2008,28(8):1763~1766.
    [77]田高友,袁洪福,褚小立等,结合小波变换与微分法改善近红外光谱分析精度,光谱学与光谱分析2005,25(4):516~520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700