用户名: 密码: 验证码:
多变量网络控制系统建模、控制与调度初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪90年代以来,随着计算机技术、通信技术、网络技术以及控制理论的发展,网络控制技术以及在网络平台上构筑而成的网络控制系统已成为自动化领域技术发展的热点。它不仅在实践上为解决远程实时控制中已经遇到或将要遇到的诸多技术难题带来新的解决思路和方法,而且在理论上将促进自动控制技术、计算机技术和通信技术等多学科的相互渗透和交叉发展。因此,进行网络控制系统的研究对我国工业、农业、军事与民用网络控制系统的建设具有十分重要的理论和应用价值。
     本文主要针对工业过程中日益广泛的多变量网络控制系统所特有的建模和控制难度大、调度复杂的问题,进行了系统的理论分析和实验研究,构建出该类网络控制系统连续、离散以及多采样时间模型;并采用时滞系统理论、线性矩阵不等式和自由权矩阵方法,得到系统存在诸多不确定性条件下保守性低的稳定性和鲁棒性条件,设计出一种新颖的自适应灰色预测动态反馈调度器和多种先进的鲁棒H∞控制器、鲁棒容错控制器以及非线性网络迭代学习跟踪控制器;最后,基于所得到的理论研究结果,以双并联倒立摆控制系统为对象,开发出一套基于局域网的多变量网络控制系统的实验平台。其主要研究成果概括如下:
     1.建立了多变量网络控制系统的模型:首先对多变量网络控制系统进行了详细地分析,得出一个具有多时延函数微分方程的连续时间模型;并依据离散系统理论,推导了传感器、控制器为时间驱动,执行器为事件驱动条件下的多变量网络控制系统的离散时间模型;最后,利用提升技术推导出一类多采样周期的多变量网络控制系统增广状态空间模型,为多采样网络控制系统的研究提供了基础。
     2.研究了多包、单包传输情况下多变量网络控制系统的稳定性和鲁棒性:充分考虑系统各状态之间的相关性以及系统参数的不确定,构造新的增广Lyapunov- Krasovskii函数,并采用线性矩阵不等式和自由权矩阵的方法对多变量网络控制系统的时滞独立和时滞依赖稳定性进行分析,从理论上推导出更加宽松的稳定性和鲁棒性定理。仿真实验验证了所提定理的有效性。
     3.设计了多变量网络控制系统鲁棒控制器和自适应灰色预测控制器:采用自由权矩阵方法,推导出更为简单、宽松的线性矩阵不等式形式的鲁棒性能指标的充分条件,设计了鲁棒H∞控制器以及执行器失效情况下的鲁棒容错控制器;在此基础上引入预测思想,利用新陈代谢原理建立等维新息GM(1,1)模型,提出了一种自适应灰色预测网络控制策略,以有效减小网络不确定性所带来的影响。
     4.研究了非线性多变量网络控制系统稳定性和迭代学习跟踪控制策略:针对一类通用不确定非线性多变量被控对象,采用时滞理论和线性矩阵不等式方法,推导该类系统网络控制环境下的渐近稳定性条件,并利用迭代学习策略设计出具有全局学习收敛能力和保证所构成系统稳健性的先进学习跟踪控制器。
     5.提出了一种新型自适应灰色预测动态反馈调度策略:首先对多变量网络控制系统信息调度原理进行了解析描述,推导出保证系统渐近稳定的条件;并基于反馈调度思想研究了一种基于灰色预测网络运行状况的动态调度方法,通过动态调整控制系统各回路采样周期和优先级来合理分配网络资源,给性能较差的回路分配较多的网络资源和较高的优先级,以减小该回路网络诱导时延,从而克服了现有RM等调度方法的不足,有效地处理动态网络环境下的系统控制,为多变量网络控制系统的联合设计提供一种新思路。
     6.基于局域网构建了一种多变量网络控制实验平台:详细探讨了多变量网络控制系统的软硬件实验设计方案,并采用自适应灰色预测控制和模型预测最优控制两种策略,分别对校园网环境下分布式两单级倒立摆的跟踪控制和双并联耦合倒立摆的稳定控制进行了仿真和实验研究。
     以上研究,进一步拓宽了网络环境下被控对象的适用范围,为网络控制系统的推广、应用提供了理论支持和实验基础。
With the fast development of computer technology, communication technology, network technology and control theory etc, the networked control technology and the networked control systems constructed upon network platform had been a hot research issue in the field of automation technology since the 1990s of the 20th century. It not only in practice can provide new ideas and methods to solve a lot of technical problems which had met or will meet in the remote real-time control systems, but also in theory can promote mutual infiltration and cross development of automatic control technology, computer technology and communication technology etc. Therefore the research of NCSs for our national industry, agriculture, military and civil is of great theory and application values.
     In this dissertation, these issues about modeling, control and scheduling of multi-variable networked control systems, which is increasing in the industry, are deeply studied. The complete continuous-time model, discrete-time model and multi-sample-time model are derived. The loose conservative sufficient conditions for convergence and robustness are given based on the research of time-delay systems theory, linear matrix inequality and free-weighting matrix method. And some new control methods are presented to perfectly solve the uncertainties problem about multi-variable networked control systems, such as dynamic feedback adaptive grey prediction scheduler, robust H∞controller, robust fault-tolerant controller and non-linear iterative learning tracking controller. At last, the local area network control systems of parallel coupled inverted pendulum are constructed to show the efficacy and feasibility of the proposed methods. The main research work is described as follows:
     1) The modeling of multi-variable networked control systems is presented. Based on the detailed analysis of networked control systems, the continuous-time differential mathematical model with multi-delay of networked control systems is described. Then using discrete-time system theory, the discrete-time mathematical model of networked control systems is proposed when the sensor node and controller node is time triggered, actuator is event triggered. At last the extended multi-sample-time mathematical model with short time-delay of multi-variable networked control systems is given by using lifting technology. It provides the basis for multi-sample-time networked control systems research.
     2)The issue of stability and robustness analysis for multi-variable networked control systems is researched under the condition of multi-packet transfer or single-packet transfer. Considering the correlation of the system states and the uncertainty of the system parameters, a new extended function of Lyapunov-Krasovskii is constructed. Then the delay-dependent sufficient conditions and the delay-independent sufficient conditions for systems are derived by using linear matrix inequality theory and free-weighting matrix method. Based on the above research, the more loose stability theorem and robustness theorem is given. The efficacy and feasibility of the proposed theory is shown by presenting simulation results.
     3) The robust controller and the adaptive grey predictive controller are designed. By using free-weighting matrix method, the simple and loose linear matrix inequality's condition for robust asymptotic stability is derived. The robust H∞controller and the robust fault-tolerant controller for uncertain continuous-time multi-variable networked control systems with actuators failure is designed based on the research of H∞control theory, where its network transmission is connected with network-induced delay and packet dropout. Then using grey theory and adaptive switching method, a new adaptive grey prediction control strategy for multi-variable networked control systems is proposed to reduce the effects of the system uncertainties. The whole modeling procedure of this method is established. The equal dimension GM (1,1) model is established by using metabolic principle. This method only identifies two parameters, and avoids online solving the Diophantine equation and inverse matrix. So the computation load of the algorithm can be reduced greatly, and real-time property is advanced.
     4) The stability and the iterative learning control approach for nonlinear multi-variable networked control systems are studied. By using the time-delay theory and linear matrix inequality method, the asymptotic stability conditions are derived for a class of general nonlinear plant with uncertainty. The tracking control method of iterative learning control for networked control systems is designed, which can track the desired trajectory for any arbitrary precision in a fixed finite interval. The tracking error of this approach tends to be zero as the number of iteration increases. And the convergence in the iteration domain can also be ensured.
     5) The issue of dynamic feedback scheduling strategy for multi-variable networked control systems is studied. A discrete time-variant mathematic model integrating control and information scheduling for multi-variable networked control systems is developed based on the research of the communication sequence notion and mixed logical dynamical framework. And the posedness conditions which can make system stable are derived too. Then using feedback scheduling ideas, the adaptive grey prediction dynamic feedback scheduling strategy is proposed. By on-line adjusting sample periods of the control systems sharing network resource, more network resources and higher priority is set for the control loop with poor performance. Then the network bandwidth are allocate to each control system dynamically so as to adapt to the variation of network load. The proposed algorithm can deal effectively with the dynamic network environment to overcome the shortcoming of traditional rate monotonic and reduce the network-induced delay, and can successfully give a solution to the problem of scheduling and control co-design.
     6) The novel multi-variable networked control systems experiment platform based on local area network is designed. The complete hardware and software design program of parallel coupled inverted pendulum is deeply researched. Then using adaptive grey prediction control and optimal control based model, the tracking control of campus network based distributed two inverted pendulum system and the stability control of campus network based parallel coupled inverted pendulum are realized on the developed networked control systems platform respectively. This platform can serves as a useful tool for theoretical researchers on multi-variable networked control systems. In conclusion, all the research work in this dissertation further expands the scope of plant in the application networked control systems, and provides the experimental foundation and the theoretical support for networked control systems promotion.
引文
[1] J.Nilsson, B.Bernhardsson and B.Wittenmark. Stochastic analysis and control of real-time systems with random time delays [J]. Automatica, 1998,Vol.34(1): 57-64.
    [2] Gao H., Meng X., Chen T. Stabilization of Networked Control Systems With a New Delay Characterization[J]. IEEE Transactions on Automatic Control, 2008, Vol.53(9): 2142-2148.
    [3] W.B. Wei, Y.D. Pan, and K. Furuta. Internet-based Tele-control System for Wheeled Mobile Robot[C]. Proceedings of the IEEE International Conference on Mechatronics & Automation, Niagara Falls,Ontario, Canada, 29 July-1 August, 2005: 1151-1156.
    [4] M.E.M.B. Gaid, A. Cela, and Y. Hamam. Optimal Integrated Control and Scheduling of Networked Control Systems with Communication Constraints: Application to a Car Suspension System[J]. IEEE Transaction on Control Systems Technology, 2006, Vol.14(4): 776-787.
    [5] C.R. Weisbin. G. Rodriguez. NASA robotics research for planetary surface exploration[J]. IEEE Robotics & Automation Magazine, 2000, Vol.7(4): 25-34.
    [6] Schenato, L. Optimal Estimation in Networked Control Systems Subject to Random Delay and Packet Drop[J]. IEEE Transactions on Automatic Control, 2008, Vol.53(5): 1311-1317.
    [7] Patankar, R.P. A model for fault-tolerant networked control system using TTP/C communication[J]. IEEE Transactions on Vehicular Technology, 2004, Vol.53(5): 1461-1467.
    [8] Dan Huang, Sing Kiong Nguang. State Feedback Control of Uncertain Networked Control Systems With Random Time Delays[J]. IEEE Transactions on Automatic Control, 2008, Vol.53(3): 829-834.
    [9] Hespanha J.P.,Naghshtabrizi P.,Yonggang Xu. A Survey of Recent Results in Networked Control Systems[J]. Proceedings of the IEEE, 2007, Vol.95(1): 138-162.
    [10] Yang T.C. Networked control system: a brief survey[J]. IEE Proceedings Control Theory and Applications, 2006, Vol.153(4): 403-412.
    [11] Pratl G.,Dietrich D.,Hancke G.P.,Penzhorn W.T. A New Model for Autonomous, Networked Control Systems[J]. IEEE Transactions on Industrial Informatics, 2007, Vol.3(1): 21-32.
    [12]王艳.网络控制系统的控制与调度研究[D].南京理工大学, 2006.
    [13] Hokayem P.F.,Abdallah C.T. Inherent issues in networked control systems: a survey[C]. Proceedings of the 2004 American Control Conference, Boston. Massachusetts, USA, 30 June-2 July 2004: 4897-4902.
    [14]张庆灵,邱占芝.网络控制系统[M].科学出版社,北京, 2007.
    [15]周洪,邓其军,孟红霞.网络控制技术及应用[M].中国电力出版社,北京, 2007.
    [16] Y.Halevi, A.Ray. Integrated Communication and Control System: Part I- Analysis[J]. Journal of Dynamic Systems, Measurement, and Control, 1988, Vol.110: 367-373.
    [17] G.C.Walsh, H.Ye, L.Bushnell. Stability Analysis of Networked Control System[C]. Proceedings of American Control Conference. San Diego. USA. 2-4June,1999: 2876-2880.
    [18] Y.H.Kim, W.H.Kwon, H.S.Park. Stability and A Scheduling Method for Network-based Control Systems[C], Proceedings of the 22nd Annual Conference of the IEEE Industrial Electronics Society. Taipei, Taiwan. August 5-9, 1996. 934-939.
    [19] Shawn Hu, Wei-Yong Yan. Stability of Networked Control Systems Under a Multiple-PacketTransmission Policy[J]. IEEE Transactions on Automatic Control, 2008, Vol.52(7): 1706-1711.
    [20] Xiefu Jiang, Qing-Long Han. On Designing Fuzzy Controllers for a Class of Nonlinear Networked Control Systems[J]. IEEE Transactions on Fuzzy Systems, 2008, Vol.16(4): 1050-1060.
    [21] Robinson C.L.,Kumar P.R. Optimizing controller location in networked control systems with packet drops[J]. IEEE Journal on Selected Areas in Communications, 2008, Vol.26(4): 661-671.
    [22]岳东,彭晨, Qinglong Han.网络控制系统得分析与综合[M].科学出版社,北京, 2007.
    [23] Xie D., Chen X., Lv, L., Xu N. Asymptotical stability of networked control systems: time-delay switched system approach[J].IEE Proceedings Control Theory and Applications, 2008, Vol.2(9): 743-751.
    [24] R.Luck, A.Ray. An observer-based compensator for distributed delays[J], Automatica, 1990, Vol.26(5):903-908.
    [25]于之训,陈辉堂,蒋平.具有传输延迟的网络控制系统中状态观测器的设计[J].信息与控制, 2000, Vol.15(3):125-130.
    [26] R.Luck, A.Ray. An observer-based compensator for distributed delays[J]. Automatica, 1990, Vol.26(5):903-908.
    [27] Emmanuel Witrant, Carlos Canudas-de-Wit, Didier Georges, and Mazen Alamir. Remote Stabilization Via Communication Networks With a Distributed Control Law [J]. IEEE Tansactions on automatic control, 2007, Vol.52(8): 1480-1485.
    [28] J. Nilsson. Real-time control systems with delays[D]. Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, 1998.
    [29] S.Hu, Q.Zhu. Stochastic Optimal Control and Analysis of Stability of Networked Control Systems with Long Delay[J], Automatica, 2003, Vol.39: 1877-1884.
    [30] L.A.Montestruque, P.Antsaklis. Stability of Model-Based Networked Control Systems With Time-Varying Transmission Times[J], IEEE Transactions on Automatic Control, 2004, Vol.49(9): 1562-1572.
    [31] A.S.Matveev, A.V.Savkin. The Problem of LQG Optimal Control via a Limited Capacity Communication Channel[J], System & Control Letters, 2004, Vol.53: 51-64.
    [32]于之训,陈辉堂,王月娟.具有Markov延迟特性的网络系统的控制研究[C]. Proceedings of the 3rd World Congress on Intelligent Control & Automation. Hefei, China. June 28-July 2, 2000:3636-3640.
    [33] R.Krtolica, U.Ozguner, H.Chan. Stability of linear feedback systems with random communication delays[J]. International Journal of Control, 1994, Vol.59(4): 925-953.
    [34] W.Zhang. Stabability Analysis of Networked Control Systems[D]. CaseWestern Reserve University, USA, 2001.
    [35] L.Xiao, A.Hassibi, J.P.How. Control with random communication delays via a discrete-time jump system approach[C]. Proceeding of the ACC, Chicago, Illinois, 30 October-1 November, 2000: 2199-2204.
    [36] Minyi Huang, Subhrakanti Dey. Stability of Kalman filtering with Markovian packet losses[J]. Automatica, 2007, Vol.43: 598-607.
    [37]张喜民,李建东,陈实.具有时延和数据包丢失的网络控制系统稳定性[J],控制理论与应用, 2007, Vol.24(3): 494-497, 502.
    [38] Montestruque L.A., Antsaklis, P. Stability of model-based networked control systems with time-varying transmission times[J]. IEEE Transactions on Automatic Control,2004, Vol.49(9): 1562-1572.
    [39]李德伟,席裕庚.预估网络控制系统的设计和分析[J].控制与决策, 2007, Vol.22 (9):1065-1069.
    [40]黄四牛,陈宗基,魏晨.网络控制中基于DR模型的预估算法[J].自动化学报, 2004, Vol.30(5): 688-695.
    [41] L.Qiang, M.D.Lemmon. Robust performance of soft real-time networked control systems with data dropouts[C]. In Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, 10-13 December, 2002: 1225-1230
    [42] H.Lin, G.S.Zhai, Antsaklis. Robust stability and disturbance attenuation analysis of a class of networked control systems[C]. Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, HI, 9-12 December, 2003: 1182-1187
    [43]周祖德.基于网络环境的智能控制[M].北京:国防工业出版社,2004
    [44]孙增圻,张再兴,邓志东.智能控制理论与技术[M].北京:清华大学出版社, 1997
    [45] JianXin Xu, Jing Xu, Observer Based Learning Control for a Class of Nonlinear Systems With Time-Varying Parametric Uncertainties[J], IEEE Transactions on Automatic Control. 2004, Vol.49(2): 275-282
    [46] S.Arimoto, S.Kawamura and F.Miyazaki. Bettering Operation of Robots by Learning[J]. Journal of Robotic Systems, 1984, Vol.1(2):123-140
    [47] Almutairi N.B., Mo-Yuen Chow. PI parameterization using adaptive fuzzy modulation (AFM) for networked control systems. II. Full adaptation[C]. The 28th Annual Conference of the IEEE Industrial Electronics Society, Sevilla, Spain, 5-8 Nov, 2002: 3158-3163.
    [48] Y.J. Pan, H.J. Marquez, and T. Chen. Sampled-data Iterative Learning Control for a Class of Nonlinear Networked Control Systems[C]. Proceeding of the 2006 American Control Conference Minneapolis, Minnesota, USA, 14-16 June, 2006:3494-3499.
    [49] Y. Tipsuwan, M.Y. Chow. Neural Network Middleware for Model Predictive Path Tracking of Networked Mobile Robot over IP Network[C]. The 29th Annual Conference of the IEEE Industrial Electronics Society, 2-6 Nov, 2003:1419-1424.
    [50] Z. Li, H.J. Fang. A novel controller design and evaluation for networked control systems with time-variant delays[J]. Journal of the Franklin Institute, 2006:161-167.
    [51] Wang Yan, Hu Weili, Fan Weihua. Fuzzy model and control for nonlinear networked control systems[C]. International conference on wireless communications networking and mobile computing, 2005:1060-1063.
    [52]费敏锐,李力雄.基于网络学习的控制系统[C],中国智能自动化大会论文集,香港,中国, 12月15至17日, 2003: 180-185,168.
    [53] Lixiong Li, Minrui Fei and Xianya Xie, Adaptive Control Systems with Network Closed Identification Loop[J], Springer's Lecture Notes in Artificial Intelligence, 2006: 1037-1048.
    [54] Xiaobing Zhou, Minrui Fei, Predictive PID Networked Controller Based on Modeling by Least Squares Support Vector Machines[J]. Dynamics of Continuous, Discrete and Impulsive Systems, 2006, Vol.13: 246-250.
    [55] Minrui Fei, Jun Yi. Research on Networked Learning Control System For UnknownControlled Object Model[C], The Sixth World Congress on Intelligent Control and Automation, Dalian, China, 21-23 June, 2006: 4526-4530.
    [56] Minrui Fei, Jun Yi, and Huosheng Hu, Robust Stability Analysis of a Class of Uncertain Nonlinear Networked Control System[J], International Journal of Control, Automation, and Systems, 2006, Vol.4(2):1-6.
    [57]易军,费敏锐,基于三次样条滚动优化多步预测算法的网络学习控制[J],信息与控制, 2006, Vol.35(1): 1-5.
    [58] G.C.Walsh, H.Ye. Scheduling of Networked Control Systems[J]. IEEE Control Systems Magazine, 2001, Vol.21(1): 57-65.
    [59] G.C.Walsh, Octavian Beldiman, Linda G.Bushnell. Asymptotic behavior of nonlinear networked control systems[J]. IEEE Transaction on Automatic Control, 2001, Vol.46(7): 1093-1097.
    [60] D.S.Kim, Y.S.Lee, W.H.Kwon H.S.Park. Maximum allowable delay bounds of networked control systems[J]. Control Engineering Practice, 2003:1301-1313.
    [61] Luo Lieheng, Zhou Chuan, Cai Hua, Chen Qingwei, Hu Weili. Scheduling and control co-design in Networked Control Systems[C]. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hang Zhou, China, 15-19 June, 2004: 1088-1091.
    [62] Fengli Lian. Analysis,Design,Modeling and Control of Networked Control Systems[D], University of Michigan, USA, 2001.
    [63]樊卫华,蔡骅,周川,胡维礼.MIMO网络化控制系统的建模与分析[J].控制理论与应用. 2005, Vol.22(3): 487-490.
    [64]邱占芝,张庆灵.一类多输入、多输出网络化控制系统的稳定性分析[J].控制与决策. 2005, Vol.20(5): 525-1344.
    [65] Liu C.L., Layland J.W. Scheduling Algorithms for Multi-Programming in a Hard-Real-Time Environment[J], Journal of the ACM, 1973, Vol.20(1): 46-63.
    [66] M.S.Brannicky, S.M.Phillps and W.Zhang, Scheduling and feedback co-design for networked control systems[C], Proceeding of the 41st IEEE Conference on Decision and Control, LasVegas, USA, 10-13 December, 2002: 10-13.
    [67] Zhao Y.B., Liu G.P., Rees, D. Integrated predictive control and scheduling co-design for networked control systems[J]. IET Control Theory & Applications, 2008, Vol.2(1): 7-15.
    [68] Wei Zhang, Michael S. Branicky, Stephen M. Phillips. Stability of networked control systems[J]. IEEE Control Systems Magazine, 2001, Vol.21(1): 85-99.
    [69] J.Jonssons, H.Lonn, and K.G.Shin, Non-preemptive scheduling of real-time threads on multi-level-context architecture[C]. Proceedings of the 7th International Workshop on Parallel and Distributed Real-time Systems, San Juan, Puerto Rico, April 12–13, 1999: 363-374.
    [70] S.H.Hong, Scheduling algorithm of data sampling times in the integrated communication and control system[J]. IEEE Transactions on Control Systems Technology, 1995, Vol.3(2): 225-230.
    [71]刘鲁源,万仁君,李斌.基于TTCAN协议的网络控制系统静态调度算法[J].控制与决策, 2004, Vol.19(7): 814-816.
    [72] Gerhard F. Joint scheduling of distributed complex periodic and hard periodic tasks in statically scheduled systems[C]. 16th IEEE Real-Time Systems Symposium, Palazzo deiCongressi, Via Matteotti, Italy, December 4-7, 1995: 152-161.
    [73] Kopetz H, Real-time Systems: Design Principles for Distributed Embedded Application[M]. Boston, 1997.
    [74] Martinez A, Apostolopoulos G, Alfaro FJ, et al. Efficient deadline-based QoS algorithms for high-performance networks[J]. IEEE Transactions ON Computers, 2008, Vol.57(7): 928-939.
    [75] Kargahi M, Movaghar A. A method for performance analysis of earliest-deadline-first scheduling policy[J]. Journal OF Supercomputing, 2006, Vol.37(2): 197-222.
    [76] Yepez J., Marti P., Fuertes J.M. Control loop scheduling paradigm in distributed control systems[C]. The 29th Annual Conference of the IEEE Industrial Electronics Society, Roanoke, Virginia, USA, November 2-6, 2003: 1441-1446.
    [77] Manel Velasco, Josep M. Fuertes, Caixue Lin, Pau Marti and Scott Brandt. A Control Approach to Bandwidth Management in Networked Control Systems[C]. The 30th Annual Conference of the IEEE Industrial Electronics Society. Busan, Korea, November 2-6, 2004: 2343-2348.
    [78] Otanez P, Moyne J, Tilbury D. Using deadbands to reduce communication in networked control systems[C]. American control conference, Orlando, FL, USA, 9-13 June, 2002: 615-619.
    [79] Kewon S K, Shin K G, Zheng Z. Statistical real-time communication over Ethernet for manufacturing automation systems [C]. Proceeding of the 15th IEEE Real-Time Technology and Applications Symposium, Vancouver, British Columbia, Canada, June 2-4, 1999: 192-202.
    [80] Gianluca Cena, Adriaro Valenzano. An improved CAN feildbus for industrial application[J]. IEEE Transactions on Industrial Electronics, 1997, Vol.44 (4): 553-564.
    [81] Raja P, Ullaoa G. Priority polling and dynamic time-window mechanisms in a multi-cycle Fieldbus[C]. Proceedings of the computers and design, manufacturing and production. Paris-Evry, France, May 24-27, 1993: 452-460.
    [82] Hongbo Li, Zengqi Sun, Badong Chen, Huaping Liu, and Fuchun Sun. Intelligent Scheduling Control of Networked Control Systems with Networked-induced Delay and Packet Dropout[J]. International Journal of Control Automation and Systems, 2008, Vol.6(6): 915-927.
    [83]李祖欣,王万良,雷必成,陈惠英.网络控制系统中基于模糊反馈的消息调度[J].自动化学报, 2007, Vol.33(11): 1229-1232.
    [84] SETO D, LEHOCZKYJ P, SHA L, et al. On task schedulability in real-time control systems[C]. 17th IEEE Real Time Systems Symposium. Washington, D.C., December 4-6, 1996: 13-21.
    [85] SETO D, LEHOCZKYJ P, SHA L. Task period selection and schedulability in real-time systems[C]. 19th IEEE Real-time Systems Symposium. Madrid, Spain, December 2-4, 1998: 188-198.
    [86] Cervin A. Integrated Control and Real-time Scheduling[D]. Sweden, Lund Institute of Technology, 2003.
    [87]王俊波,胥布工.资源受限的网络控制系统调度[J].控制与决策, 2008, Vol.23(5): 551-554,559.
    [88]汤贤铭,钱凯,俞金寿.网络控制系统动态死区反馈调度[J].华东理工大学学报, 2007,Vol.33(5): 716-722.
    [89] Tipsuwan Y, Chow M Y. Network-based controller adaptation for network QoS negotiation and deterioration[C]. 27th annual conference of IEEE Industrial Electronics Society, Denver CO, Nov.29-Dec.2, 2001: 1794-1799.
    [90]夏锋,孙优贤.多回路网络化控制系统级联反馈调度[J].信息与控制, 2007, Vol.36(3): 328-333, 339.
    [91] Martin Ohlin, Dan Henriksson, Anton Cervin. TrueTime 1.5 Reference Manual[M]. Lund University, 2008.
    [92] Eker, J. Cervin, A. A matlab toolbox for real-time and control systems co-design[C]. Proceedings of the 6th International Conference an Real-Time Computing Systems and Applications, HongKong, China,13-15 Dec, 1999: 320-327.
    [93]许雷鸣,庞博,赵耀. NS与网络模拟[M].北京:人民邮电出版社, 2003.
    [94] Yang T.C. Intro_NCS_simu.pdf. http://www.sussex.ac.uk/Users/taiyang/.
    [95] Kim Young Shin, Kim Hyung Seok, Kwon Wook Hyun. A design of a network-based robot control system using FIP[C]. In Proceedings of the 3rd Asian Control Conference. Shanghai, China, 4-7 July, 2000: 2229-2234.
    [96] Lee Kyung Chang, Lee Suk, Lee Man Hyung, Remote fuzzy logic control of networked control system via Profibus-DP[J].IEEE Transactions on Industrial Electronics, 2003, Vol.50(4): 784-792.
    [97] J.W.Overstreet, A.Tzes. An Internet-based real-time control engineering laboratory[J]. IEEE Control Systems Magazine, 1999, Vol.19(5): 19-34.
    [98]聂雪媛,刘国平.基于Simulink的嵌入式网络化控制仿真实现[J].系统仿真学报, 2005, Vol.17(7): 1613-1620.
    [99]于之训.闭环网络控制系统的理论与实验研究[D],同济大学,上海, 2000.
    [100]魏震,沈钢,谢剑英.基于CANbus的分布式实时系统仿真平台[J].系统仿真学报, 2002, Vol.14(5): 588-591.
    [101]黄海.网络控制系统实验平台建设与算法设计[D].浙江大学,杭州, 2007.
    [102]窦连旺,刘鲁源,陈玉柱.基于时滞理论的网络控制系统稳定性分析[J].天津大学学报, 2005, Vol.38(1): 22-26.
    [103]邱占芝,张庆灵.一类多输入多输出网络控制系统的稳定性分析[J].控制与决策, 2005, Vol.20(5): 525-528,544.
    [104] FengLi Lian, James Moyne, Dawn Tilbury. Optimal controller design and evaluation for a class of networked control systems with distributed constant delays[C]. Proceeding of the American Control Conference. Anchorage, AK, 8-10 May, 2002: 3009-3014.
    [105]樊卫华,蔡骅,周川,胡维礼. MIMO网络控制系统的建模与分析[J].控制理论与应用, 2005, Vol.22(3): 487-497.
    [106]窦连旺.网络控制系统建模、稳定性分析及控制器设计[D].天津大学,天津, 2004.
    [107]肖建.多采样率数字控制系统[M].科学出版社,北京, 2003.
    [108] Walsh G C, Ye H, Bushnell L. Stability analysis of networked control systems[J]. IEEE Transactions on Control Systems Technology, 2002, Vol.10(3): 438-446.
    [109] Lian Fengli, James Moyne, Dawn Tibury. Analysis and modeling of networked control system: MIMO case with multiple time delay[C]. Proceeding of the American Control Conference. Arlington, VA, USA, 25-27 June, 2001: 4306-4312.
    [110] Zhang W, Branicky M.S., Philips S.M. Stability of networked control systems [J]. IEEE Control Systems Magazine, 2001, Vol.21(1): 85-99.
    [111]樊卫华,蔡骅,周川,胡维礼. MIMO网络控制系统的建模与分析[J].控制理论与应用, 2005, Vol.22(3): 487-490.
    [112]郭彩霞,向峥嵘. MIMO网络控制系统的控制器设计[J].控制工程, 2007, Vol.14(3): 263-265.
    [113]吴敏,何勇.时滞系统鲁棒控制——自由权矩阵方法[M].科学出版社,北京, 2008.
    [114]俞立.鲁棒控制-线性矩阵不等式处理方法[M].清华大学出版社,北京, 2002.
    [115]邱占芝.广义网络控制系统分析、建模与控制[D].东北大学. 2006.
    [116] Peterson I R, Hollot C V. A Riccati equation approach to the stabilization of certain linear systems[J]. Automatica, 1986, Vol.22(4): 397-411.
    [117] Yong He, Qing-Guo Wang, Lihua Xie, and Chong Lin. Further Improvement of Free-Weighting Matrices Technique for Systems With Time-Varying Delay[J]. IEEE Trancactions on automatic control, 2007, Vol.52(2): 293-299.
    [118]严怀成,黄心汉,王敏.不确定多时变时滞网络控制系统的时滞相关稳定性[J].控制理论与应用, 2008, Vol.25(2): 303-306.
    [119] Huang Jian, Guan Zhihong and Wang Zhongdong. Robust stabilization of uncertain networked control systems with data packet dropouts[J]. Acta Automatica Sinica, 2005, Vol.31(3): 440-445.
    [120] Li Shanbin, Yu Li, Wang Zhi, Sun Youxian. LMI Approach to Guaranteed Cost Control for Networked Control Systems[J], Developments in Chemical Engineering and Mineral Processing: Special Issue on Advanced Control and Real-Time Systems, 2005, Vol.13(3): 351-360.
    [121]宋洪波,俞立,张文安.存在通信约束和时延的多输入多输出网络控制系统镇定研究[J].信息与控制, 2007, Vol.36(3): 334-339.
    [122]陈雨,张颖伟, Joe QinS. MIMO多输入输出网络控制系统的容错控制[J].清华大学学报, 2007, Vol.47(S2): 1844-1847.
    [123] Yue D, Han Q L, Lam J. Networked-based robust H∞control of system with uncertainty[J]. Automatica, 2005, Vol.41(6): 999-1007.
    [124] Gu K. A further refinement of discretized Lyapunov functional method for the stability of time-delay systems[J]. International Journal of Control, 2001, Vol.74(10): 967-976.
    [125] Ghaoui E.L., Oustry F., AitRami M. A cone complementarity linearization algorithms for static output feedback and related problems[J]. IEEE Transaction on Automatic Control, 1997, Vol.42(8): 1171-1176.
    [126] Yan Huai-cheng,Huang Xin-han,Wang Min,et al. Delay-dependent stability criteria for a class of networked control systems with multi-input and multi-output[J].Chaos,Solitons and Fractals,2007, Vol.34(3):997-1005.
    [127] Moon Y.S., Park P., Kwon W.H., Lee Y.S. Delay-dependent robust stabilization of uncertain state-delayed systems[J]. International Journal of Control, 2001, Vol.74(14): 1447-1455.
    [128]霍志红,方华京.一类随机时延网络控制系统的容错控制研究[J].信息与控制, 2006, Vol.35(5): 584-587.
    [129]郑英,方华京.不确定网络控制系统的鲁棒容错控制[J].西安交通大学学报, 2004, Vol.38(8): 804-807.
    [130] Zhang Jian-hua,Gong Dun-wei,Guo Yi-nan.Robust fault-tolerant control for networked control systems[C].The 1st International Conference on Complex System and Applications. Huhhot, China, 15-18 June, 2006:445-458.
    [131]郭一楠,张芹英,巩敦卫,张建化.一类时变时延网络控制系统的鲁棒容错控制[J].控制与决策, 2008, Vol.23(6): 689-692,696.
    [132]邓聚龙.灰理论基础[M].华中科技大学出版社,武汉, 2002.
    [133]邓聚龙.灰预测与灰决策[M].华中科技大学出版社,武汉, 2002.
    [134] C.C. Wong, W.C. Liang, H.M. Feng and D.A. Chiang. Grey Prediction Controller Design[J]. The Journal of Grey System, 1998, 2:123-131.
    [135]魏利胜,费敏锐,张波.一种基于数据融合的新型GM(1,1)建模研究[J],系统仿真学报,2006, Vol.18(S2): 62-65.
    [136] Wei Lisheng, Fei Minrui, Wang Haikuan. New Grey Modeling Method of GM(1,N)based on self-adaptive data fusion[C], 1st International Symposium on Test Automation and Instrumentation, Beijing, China, 13-16 Sep, 2006: 1791-1795.
    [137] Lisheng Wei, Minrui Fei and Huosheng Hu, Modeling and stability analysis of grey fuzzy predictive control[J], Neurocomputing, 2008, Vol.72(1-3): 197-202.
    [138] Wei Li-sheng, Fei Min-rui. Research on Stability and Simulation of Adaptive Grey Predictive Control[J], Journal of System Simulation, Accept.
    [139] Lisheng Wei, Minrui Fei, Taicheng Yang and Huosheng Hu, A New Grey Prediction Based Fuzzy Controller for Networked Control Systems[J], Lecture Notes in Computer Science, 2007: 368-377.
    [140] Xiefu Jiang, Qing-Long Han. On Designing Fuzzy Controllers for a Class of Nonlinear Networked Control Systems[J]. IEEE Transactions on Fuzzy Systems, 2008, Vol.16(4): 1050-1060.
    [141] Yang Jun, Wang Xiangdong. Stability of a class of non-linear networked control systems[C]. The 5th World Congress on Intelligent Control and Automation. Hangzhou, China, 15-19 June, 2004: 1401-1405.
    [142]王艳,胡维礼.非线性网络控制系统的稳定性分析[J].东南大学学报, 2005, Vol.35(S2): 142-145.
    [143]马丹,赵军.一类仿射非线性网络控制系统的稳定性分析[J].控制与决策, 2006, Vol.21(9): 1001-1005,1010.
    [144] Minrui Fei, Jun Yi and Huosheng Hu. Robust Stability Analysis of an Uncertain Nonlinear Networked Control System Category[J]. International Journal of Control, Automation, and Systems, 2006, Vol.4(2): 1-6.
    [145]黄海,张柯,张建明,王树青.基于Agent技术的网络控制系统研究[J].仪器仪表学报, 2008, Vol.129(18): 1679-1685.
    [146]吕明,吴晓蓓,徐志良.一类非线性网络控制系统的故障检测[J].控制工程, 2007, Vol.14(5): 515-517,543.
    [147] Yajun Pan, Horacio J. Marquez, Tongwen Chen. Sampled-data Iterative Learning Control for a class of Nonlinear Networked Control Systems[C]. 2006 American Control Conference, Minneapolis, USA, 14-16 June, 2006: 3494-3499.
    [148]于少娟,齐向东,吴聚华.迭代学习控制理论及应用[M].机械工业出版社,北京, 2005.
    [149] W.Zhang. Stabability Analysis of Networked Control Systems[D]. CaseWestern ReserveUniversity, 2001.
    [150] Stankovic J A, Lu C Y, Son S H, et al. The case for feedback control real-time scheduling[C]. The 11th Euro-micro Conference on Real Time Systems. York, England, 6-11 June, 1999: 11-20.
    [151]谢林柏.网络化控制系统中若干问题的研究[D].华中科技大学,武汉, 2004,.
    [152] JoséYépez, Pau Martí, Jordi Ayza, Josep M. Fuertes. LEF closed-loop scheduling policy for real-time control systems[C].10th IEEE Conference on Emerging Technologies and Factory Automation, Facolta'di Ingegneria, Catania, Italy, 19-22 Sept, 2005: 277-280.
    [153]罗晓东.倒立摆网络实验系统的研究[D].南京理工大学,南京, 2004.
    [154]林光云,王万良. Java技术在基于Web分布式倒立摆远程实验的应用[J].中国有线电视. 2004: 90-93.
    [155] M.Ikeda, D.D.Siljak. Optimality and robustness of linear quadratic control for nonlinear systems[J]. Automatica, 1990, Vol.26(3): 499-511.
    [156] T.C.Yang, M.R.Fei, D.Y.Xue, H.N.Yu. Some Issues in the Study of Networked Control System[C]. the 45th IEEE Conference on Decision and Control, San Diego, California, USA, 13-15 Dec, 2006: 5604-5608.
    [157] T.C.Yang. Networked Control System: A Brief Survey[J]. IEE Proceedings: Control Theory and Applications, 2006, Vol. 153(4): 403-412.
    [158]张姝.倒立摆网络系统的研究与实现[D].浙江大学,杭州, 2005.
    [159] Tipsuwan Y, Chow M.Y. Control methodologies in networked control systems[J], Control Engineering Practice, 2003, Vol.11(10): 1099-1111.
    [160]固高科技(深圳)有限公司.倒立摆与自动控制原理实验V2.0[M]. 2005.
    [161]赵万青,魏利胜,费敏锐,基于LQR算法的双并联倒立摆控制系统的建模与仿真研究[C],第九届工业仪表与自动化学术会议,上海,中国, 2008年6月3-4日, 2008: 209-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700