用户名: 密码: 验证码:
纤维蛋白在多发性硬化发病机制中的作用及视神经脊髓炎特异性自身抗体诊断价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究降低纤维蛋白对多发性硬化(MS)动物模型实验性自身免疫性脑脊髓炎(EAE)小鼠的预防及治疗作用,初步探讨纤维蛋白沉积在多发性硬化中的作用机制。
     方法:采用MOG_(35-55)免疫的C57BL/6雌性小鼠,诱发EAE动物模型,分别在免疫后立即(预防组)及免疫后出现症状(治疗组)隔日连续给予降纤药巴曲酶(30BU/kg)注射至实验结束,观察发病情况并进行临床症状评分。于免疫后30天、40天及60天分别将预防组、治疗组及EAE对照组小鼠脊髓与小脑组织取材后进行组织病理学与免疫组化染色分析,Western-blot和实时荧光定量PCR技术及体外]RAW264.7巨噬细胞培养观察药物干预对炎性浸润、脱髓鞘、纤维蛋白沉积及胶质细胞活化的影响。此外,还采用神经电生理技术观察小鼠视觉诱发电位(VEP)P100的潜伏期和波幅的变化。
     结果:降纤预防组及治疗组均可明显减轻EAE小鼠的发病症状、降低临床评分。巴曲酶预防组和治疗组较EAE未用药对照组小鼠炎性细胞浸润明显减少、髓鞘脱失及胶质细胞活化减轻,但轴索损害的改善作用不明显。免疫组化及免疫荧光双标结果表明,预防组和治疗组较EAE未用药对照组的小脑MBP表达升高而GFAP表达降低。Western-blot结果示MHC-I类分子蛋白表达无显著差异,p-Akt表达降低而MBP蛋白表达升高。实时荧光定量PCR技术也证实了巴曲酶预防及治疗组MBP的mRNA表达升高,t-PA的mRNA表达也升高。此外,纤维蛋白和LPS一样可诱导体外培养的RAW264.7巨噬细胞发生炎症反应,表现为细胞体积变大并有树突样改变,巴曲酶加入后可逆转这种巨噬细胞的树突样变化。同时,纤维蛋白免疫荧光检测,在预防组和治疗组阳性信号较EAE对照组降低,但通过检测小鼠眼静脉血的纤维蛋白原浓度发现,预防和治疗组有降低趋势,但与对照组相比差异无明显统计学意义。神经电生理技术观察结果提示,EAE组小鼠较空白对照组小鼠的闪光VEP的P100潜伏期延长、波幅减低,而巴曲酶用药组小鼠的P100潜伏期延长、波幅减低有所改善。
     结论:在EAE的发病过程中纤维蛋白沉积发挥了重要作用,巴曲酶通过有效降低EAE小鼠体内的纤维蛋白从多个方面改善临床症状和发病过程。
     目的研究血清AQP-4抗体对视神经脊髓炎的诊断价值。
     方法收集解放军总医院2008年11月至2009年6月住院和门诊临床诊断的患者共80例,其中NMO及高危NMO患者23例(NMO 11例,HR-NMO 12例),经典MS患者36例,临床孤立综合征(clinical isolated syndrom, CIS)11例(单次发病的视神经炎2例,脊髓炎5例及颅内脱髓鞘4例),其他神经系统疾病患者10例(包括亚急性联合变性1例、脑梗死5例、脑出血3例、神经纤维瘤1例)。采用细胞间接免疫荧光法检测所有患者血清AQP-4抗体滴度水平,比较各组患者临床特点及AQP-4水平。
     结果NMO、HR-NMO组与MS. CIS组相比,发生严重视神经炎、横贯性脊髓炎、有颅脑MRI正常表现、脊髓病灶超过3个椎体节段及血清AQP-4抗体阳性均有统计学意义(p<0.05).NMO与HR-NMO组血清AQP-4抗体水平显著高于MS组,而MS组血清AQP-4抗体又略高于CIS组与其他疾病组。血清AQP-4抗体对诊断NMO的灵敏度达82.6%,特异性达96.2%。
     结论血清AQP-4抗体的检测对视神经脊髓炎的诊断及鉴别诊断有一定的价值。
     目的研究中枢神经系统炎性脱髓鞘疾病患者血清AQP-4抗体、细胞因子干扰素-Y (IFN-γ)及白细胞介素-4 (IL-4)水平,以及AQP-4抗体与IFN-y和IL-4间的相关性,探讨视神经脊髓炎(NMO)和多发性硬化(MS)的发病机制。
     方法入选患者共130例,其中NMO患者41例,MS患者59例,临床孤立综合征(CIS)患者15例,其他神经系统疾病患者15例。采用细胞转染的间接免疫荧光法检测患者血清AQP-4抗体滴度,ELISA法检测患者血清IFN-y和IL-4水平,比较各组患者血清AQP-4抗体、IFN-y和IL-4水平并分析AQP-4抗体与IFN-y及IL-4的相关性。
     结果与MS组比较,NMO组患者女性更多见,平均发病年龄偏大,其血清AQP-4抗体水平显著高于MS组、CIS组及其他疾病组(p<0.05),而IFN-y和IL-4水平与另3组比较差异无统计学意义(p>0.05);MS组血清AQP-4抗体水平与CIS组及其他疾病组比较差异均无统计学意义(p>0.05)。NMO组血清AQP-4抗体水平与IFN-y和IL-4呈正相关(r分别为0.36、0.35,p<0.05),MS组血清AQP-4抗体水平与IFN-y及IL-4无明显相关性(r分别为0.03、-0.10,p>0.05)。
     结论血清AQP-4抗体可用于鉴别NMO和MS及其他炎性脱髓鞘病;NMO患者血清AQP-4抗体增高可能与细胞因子IFN-y和IL-4有一定关系。
Objective Multiple sclerosis (MS) was characterized with widespread inflammatory demyelination and axonal loss of central nervous system (CNS). Fibrinogen (fibrin) deposition was considered as one of the pathogenesis of MS. In the present study, we explored the capacity of prophylactic and therapeutic potential of fibrin depletion by batroxobin to affect the inflammatory demyelination process in experimental autoimmune encephalomyelitis (EAE) mice model.
     Methods In MOG-induced EAE, batroxobin was separately injected after disease inducement immediately (prevention) and after the appearance of clinical manifestations (suppression). At the time of postimmunization(p.i.) day 30,40,60, spinal cords and cerebellum tissue samples from EAE mice were collected for histopathologic and immunohistochemical methods. Molecular biological methods such as Western-blot and Real-time PCR were supplied to detect MBP, p-Akt, MHC-I and t-PA. Meantime, RAW264.7 cells were cultured for immunofluorescence to obseve the activation of macrophages irritated by fibrinogen after supplement of batroxobin. In addition, the latency and amplitude of P100 in flash VEP of batroxobin-treated mice and EAE control mice were observed.
     Results Our study found that prevention and suppression with batroxobin significantly ameliorated clinical severity of EAE, reduced inflammatory cells infiltration, demyelination and suppressed the activation of astrocytes and macrophages comprising the CD11b+population. The expressions of p-Akt were downregulated, while those of MBP were upregulated in prevention and suppression with batroxobin mice as compared to control mice. Moreover, our results showed that in vitro adding of batroxobin reversed the dendric-like formation of macrophages irritated by fibrinogen under inflammatory conditions. Furthermore, the latency was slightly prolonged and amplitude decreased of P100 in flash VEP of batroxobin-treated mice than those of EAE control mice.
     Conclusions In conclusion, fibrinogen depleting agent batroxobin has a benefical effect on EAE, therefore, strategy targeting fibrin as a potential therapy for EAE maybe helpful for the treatment of MS patients.
     Objective To investigate the value of AQP-4 antibody in diagnosis of neuromyelitis optica (NMO).
     Methods A total of 80 patients with NMO, high-risk NMO(HR-NMO),multiple sclerosis (MS), clinical isolated syndrome(CIS) and other neurological diseases (subacute combined degeneration, cerebral infarction, intracranial hemorrhage and neurofibroma) were included in the study. The titres of all patients' serum AQP-4 antibody were detected by indirect immunofluorence.
     Results There were significantly differences between patients with NMO, HR-NMO and MS, CIS, who experienced severe optical neuritis, transverse myelitis, brain normal in MRI scan, spinal-cord lesion more than 3 segments and serum AQP-4 antibody positive(p<0.05). The level of serum AQP-4 antibody of NMO, HR-NMO was higher than that of MS, while the level of serum AQP-4 antibody of MS was slightly higher than that of CIS and other diseases. The sensitivity and specificity of AQP-4 antibody were 82.6%,96.2%respectively in diagnosis of NMO.
     Conclusion AQP-4 antibody is valuable to diagnose NMO and differentiate from MS.
     Objective To investigate serum titres of AQP-4 antibody, levels of interferon-y (IFN-y) and interleukin-4 (IL-4) and their correlations in patients with neuromyelitis optica (NMO), multiple sclerosis (MS) and clinical isolated syndrome (CIS) in order to study the pathogenesis of NMO and MS.
     Methods A total of 130 patients with NMO including high-risk NMO (n=41), MS (n=59), CIS (n=15) and other neurological diseases (n=15) were included in the study. The titres of all patients'serum AQP-4 antibody were detected by indirect immunofluorence, and the levels of IFN-y and IL-4 were measured by ELISA kits.
     Results The titre of serum AQP-4 antibody in patients with NMO is much higher than those of patients with MS, CIS, and other diseases (p<0.05). However, there is also no significant difference of serum AQP-4 antibody among MS, CIS and other diseases(p>0.05). There is no significant difference of serum IFN-y and IL-4 among NMO, MS and other diseases(P>0.05). The titres of serum AQP-4 antibody in patients with NMO have positive correlation with IFN-y and IL-4 (r=0.36,0.35 respectively, p<0.05),on the other hand, the titres of serum AQP-4 antibody in patients with MS have not significant correlation with IFN-y and IL-4 (r=0.03,-0.10 respectively,p>0.05)。
     Conclusions AQP-4 antibody is not only valuable to differentiate NMO, MS and other diseases, but also may be have related to cytokines IFN-y and IL-4.
引文
1. Adams RA, Passino M, Sachs BD, Nuriel T, Akassoglou K:Fibrin mechanisms and functions in nervous system pathology. Molecular interventions 2004,4(3):163-176.
    2. Gveric D, Herrera B, Petzold A, Lawrence DA, Cuzner ML:Impaired fibrinolysis in multiple sclerosis:a role for tissue plasminogen activator inhibitors. Brain 2003,126(Pt 7):1590-1598.
    3. Altieri DC:Regulation of leukocyte-endothelium interaction by fibrinogen. Thrombosis and haemostasis 1999,82(2):781-786.
    4. Suehiro K, Gailit J, Plow EF:Fibrinogen is a ligand for integrin alpha5betal on endothelial cells. The Journal of biological chemistry 1997,272(8):5360-5366.
    5. Rubel C, Fernandez GC, Rosa FA, Gomez S, Bompadre MB, Coso OA, Isturiz MA, Palermo MS:Soluble fibrinogen modulates neutrophil functionality through the activation of an extracellular signal-regulated kinase-dependent pathway. J Immunol 2002, 168(7):3527-3535.
    6. Lu H, Smith CW, Perrard J, Bullard D, Tang L, Shappell SB, Entman ML, Beaudet AL, Ballantyne CM:LFA-1 is sufficient in mediating neutrophil emigration in Mac-1-deficient mice. The Journal of clinical investigation 1997,99(6):1340-1350.
    7. Forsyth CB, Solovjov DA, Ugarova TP, Plow EF:Integrin alpha(M)beta(2)-mediated cell migration to fibrinogen and its recognition peptides. The Journal of experimental medicine 2001, 193(10):1123-1133.
    8. Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA:Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CDllb/CD18. Blood 1996,88(1):146-157.
    9. Gailit J, Clarke C, Newman D, Tonnesen MG, Mosesson MW, Clark RA: Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3. Experimental cell research 1997,232(1):118-126.
    10. Sans E, Delachanal E, Duperray A:Analysis of the roles of ICAM-1 in neutrophil transmigration using a reconstituted mammalian cell expression model:implication of ICAM-1 cytoplasmic domain and Rho-dependent signaling pathway. J Immunol 2001,166(1):544-551.
    11. Languino LR, Duperray A, Joganic KJ, Fornaro M, Thornton GB, Altieri DC:Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proceedings of the National Academy of Sciences of the United States of America 1995,92(5):1505-1509.
    12. Duperray A, Languino LR, Plescia J, McDowall A, Hogg N, Craig AG, Berendt AR, Altieri DC:Molecular identification of a novel fibrinogen binding site on the first domain of ICAM-1 regulating leukocyte-endothelium bridging. The Journal of biological chemistry 1997,272(1):435-441.
    13. Martinez J, Ferber A, Bach TL, Yaen CH:Interaction of fibrin with VE-cadherin. Annals of the New York Academy of Sciences 2001, 936:386-405.
    14. Chalupowicz DG, Chowdhury ZA, Bach TL, Barsigian C, Martinez J: Fibrin Ⅱ induces endothelial cell capillary tube formation. The Journal of cell biology 1995,130(1):207-215.
    15. Odrljin TM, Francis CW, Sporn LA, Bunce LA, Marder VJ, Simpson-Haidaris PJ: Heparin-binding domain of fibrin mediates its binding to endothelial cells. Arteriosclerosis, thrombosis, and vascular biology 1996,16(12):1544-1551.
    16. Campbell PG, Durham SK, Hayes JD, Suwanichkul A, Powell DR: Insulin-like growth factor-binding protein-3 binds fibrinogen and fibrin. The Journal of biological chemistry 1999,274(42):30215-30221.
    17. Sahni A, Sporn LA, Francis CW:Potentiation of endothelial cell proliferation by fibrin(ogen)-bound fibroblast growth factor-2. The Journal of biological chemistry 1999,274(21):14936-14941.
    18. Sahni A, Odrljin T, Francis CW: Binding of basic fibroblast growth factor to fibrinogen and fibrin. The Journal of biological chemistry 1998, 273(13):7554-7559.
    19. Sahni A, Francis CW:Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 2000,96(12):3772-3778.
    20. Lijnen HR:Elements of the fibrinolytic system. Annals of the New York Academy of Sciences 2001,936:226-236.
    21. Levin EG:Latent tissue plasminogen activator produced by human endothelial cells in culture:evidence for an enzyme-inhibitor complex. Proceedings of the National Academy of Sciences of the United States of America 1983,80(22):6804-6808.
    22. Esmon CT:Does inflammation contribute to thrombotic events? Haemostasis 2000,30 Suppl 2:34-40.
    23. Davalos D, Lee JK, Smith WB, Brinkman B, Ellisman MH, Zheng B, Akassoglou K:Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy. Journal of neuroscience methods 2008,169(1):1-7.
    24. East E, Baker D, Pryce G, Lijnen HR, Cuzner ML, Gveric D:A role for the plasminogen activator system in inflammation and neurodegeneration in the central nervous system during experimental allergic encephalomyelitis. The American journal of pathology 2005, 167(2):545-554.
    25. Adams RA, Bauer J, Flick MJ, Sikorski SL, Nuriel T, Lassmann H, Degen JL, Akassoglou K:The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. The Journal of experimental medicine 2007,204(3):571-582.
    26. Akassoglou K, Adams RA, Bauer J, Mercado P, Tseveleki V, Lassmann H, Probert L, Strickland S:Fibrin depletion decreases inflammation and delays the onset of demyelination in a tumor necrosis factor transgenic mouse model for multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(17):6698-6703.
    27. Inoue A, Koh CS, Shimada K, Yanagisawa N, Yoshimura K:Suppression of cell-transferred experimental autoimmune encephalomyelitis in defibrinated Lewis rats. Journal of neuroimmunology 1996, 71(1-2):131-137.
    28. Inoue A, Koh CS, Yamazaki M, Yanagisawa N, Ishihara Y, Kim BS: Fibrin deposition in the central nervous system correlates with the degree of Theiler's murine encephalomyelitis virus-induced demyelinating disease. Journal of neuroimmunology 1997, 77(2):185-194.
    29. Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, Koki AT:COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 2000,89(12):2637-2645.
    30. Tsunoda I, Tanaka T, Terry EJ, Fujinami RS:Contrasting roles for axonal degeneration in an autoimmune versus viral model of multiple sclerosis:When can axonal injury be beneficial? The American journal of pathology 2007,170(1):214-226.
    31. Sobel RA, Schneeberger EE, Colvin RB:The immunopathology of acute experimental allergic encephalomyelitis. V. A light microscopic and ultrastructural immunohistochemical analysis of fibronectin and fibrinogen. The American journal of pathology 1988,131(3):547-558.
    32. Inaba Y, Ichikawa M, Inoue A, Itoh M, Kyogashima M, Sekiguchi Y, Nakamura S, Komiyama A, Koh C:Plasma thrombin-antithrombin III complex is associated with the severity of experimental autoimmune encephalomyelitis. Journal of the neurological sciences 2001, 185(2):89-93.
    33. Koh CS, Kwaan HC, Paterson PY:Neurovascular fibrinolytic activity in normal Lewis rats and rats with cell-transferred experimental allergic encephalomyelitis. Journal of neuroimmunology 1990,28(3):189-200.
    34. Paterson PY, Koh CS, Kwaan HC:Role of the clotting system in the pathogenesis of neuroimmunologic disease. Federation proceedings 1987,46(1):91-96.
    35. Akassoglou K, Strickland S:Nervous system pathology:the fibrin perspective. Biological chemistry 2002,383(1):37-45.
    36. Friedmann I, Yoles E, Schwartz M:Thrombin attenuation is neuroprotective in the injured rat optic nerve. Journal of neurochemistry 2001,76(3):641-649.
    37. Kornek B, Lassmann H:Neuropathology of multiple sclerosis-new concepts. Brain research bulletin 2003,61(3):321-326.
    38. Petzold A, Eikelenboom MJ, Gveric D, Keir G, Chapman M, Lazeron RH, Cuzner ML, Polman CH, Uitdehaag BM, Thompson EJ et al: Markers for different glial cell responses in multiple sclerosis:clinical and pathological correlations. Brain 2002,125(Pt 7):1462-1473.
    39. Bjartmar C, Wujek JR, Trapp BD:Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. Journal of the neurological sciences 2003,206(2):165-171.
    40. Bruck W, Stadelmann C:Inflammation and degeneration in multiple sclerosis. Neurol Sci 2003,24 Suppl 5:S265-267.
    41. De Stefano N, Guidi L, Stromillo ML, Bartolozzi ML, Federico A: Imaging neuronal and axonal degeneration in multiple sclerosis. Neurol Sci 2003,24 Suppl 5:S283-286.
    42. Arnold DL:Magnetic resonance spectroscopy:imaging axonal damage in MS. Journal of neuroimmunology 1999,98(1):2-6.
    43. Rocca MA, Mezzapesa DM, Falini A, Ghezzi A, Martinelli V, Scotti G, Comi G, Filippi M:Evidence for axonal pathology and adaptive cortical reorganization in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Neurolmage 2003, 18(4):847-855.
    44. Parry AM, Scott RB, Palace J, Smith S, Matthews PM:Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine. Brain 2003,126(Pt 12):2750-2760.
    45. Dutta R, Trapp BD:Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology 2007,68(22 Suppl 3):S22-31; discussion S43-54.
    46. Chen ZL, Strickland S:Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 1997, 91(7):917-925.
    47. Lowe GD, Rumley A:Fibrinogen and its degradation products as thrombotic risk factors. Annals of the New York Academy of Sciences 2001,936:560-565.
    48. Suh TT, Holmback K, Jensen NJ, Daugherty CC, Small K, Simon DI, Potter S, Degen JL:Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes & development 1995,9(16):2020-2033.
    1. Wingerchuk DM, Hogancamp WF, O'Brien PC, Weinshenker BG:The clinical course of neuromyelitis optica (Devic's syndrome). Neurology 1999,53(5):1107-1114.
    2. Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG:Revised diagnostic criteria for neuromyelitis optica. Neurology 2006,66(10):1485-1489.
    3. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG:The spectrum of neuromyelitis optica. Lancet neurology 2007, 6(9):805-815.
    4. Misu T, Fujihara K, Nakashima I, Miyazawa I, Okita N, Takase S, Itoyama Y:Pure optic-spinal form of multiple sclerosis in Japan. Brain 2002, 125(Pt11):2460-2468.
    5. Osoegawa M, Niino M, Tanaka M, Kikuchi S, Murai H, Fukazawa T, Minohara M, Miyagishi R, Taniwaki T, Tashiro K et al: Comparison of the clinical courses of the opticospinal and conventional forms of multiple sclerosis in Japan. Internal medicine (Tokyo, Japan) 2005, 44(9):934-938.
    6. Nakashima I, Fukazawa T, Ota K, Nohara C, Warabi Y, Ohashi T, Miyazawa I, Fujihara K, Itoyama Y:Two subtypes of optic-spinal form of multiple sclerosis in Japan:clinical and laboratory features. Journal of neurology 2007,254(4):488-492.
    7. O'Riordan JI, Gallagher HL, Thompson AJ, Howard RS, Kingsley DP, Thompson EJ, McDonald WI, Miller DH:Clinical, CSF, and MRI findings in Devic's neuromyelitis optica. Journal of neurology, neurosurgery and psychiatry 1996,60(4):382-387.
    8. Fukazawa T, Kikuchi S, Sasaki H, Hamada K, Hamada T, Miyasaka K, Tashiro K:Anti-nuclear antibodies and the optic-spinal form of multiple sclerosis. Journal of neurology 1997,244(8):483-488.
    9. Kikuchi S, Fukazawa T:"OSMS is NMO, but not MS":confirmed by AQP-4抗体?Lancet neurology 2005,4(10):594-595.
    10. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG:A serum autoantibody marker of neuromyelitis optica:distinction from multiple sclerosis. Lancet 2004,364(9451):2106-2112.
    11. Pittock SJ, Weinshenker BG, Lucchinetti CF, Wingerchuk DM, Corboy JR, Lennon VA:Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Archives of neurology 2006,63(7):964-968.
    12. Weinshenker BG, Wingerchuk DM, Vukusic S, Linbo L, Pittock SJ, Lucchinetti CF, Lennon VA:Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis. Annals of neurology 2006,59(3):566-569.
    13. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC et al: Recommended diagnostic criteria for multiple sclerosis:guidelines from the International Panel on the diagnosis of multiple sclerosis. Annals of neurology 2001,50(1):121-127.
    14. Takahashi T, Fujihara K, Nakashima I, Misu T, Miyazawa I, Nakamura M, Watanabe S, Ishii N, Itoyama Y:Establishment of a new sensitive assay for anti-human aquaporin-4 antibody in neuromyelitis optica. The Tohoku journal of experimental medicine 2006,210(4):307-313.
    15. Waters P, Vincent A:Detection of anti-aquaporin-4 antibodies in neuromyelitis optica:current status of the assays. International MS journal/MS Forum 2008,15(3):99-105.
    16. Jacob A, Matiello M, Wingerchuk DM, Lucchinetti CF, Pittock SJ, Weinshenker BG:Neuromyelitis optica:changing concepts. Journal of neuroimmunology 2007,187(1-2):126-138.
    1. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG:A serum autoantibody marker of neuromyelitis optica:distinction from multiple sclerosis. Lancet 2004, 364(9451):2106-2112.
    2. Wingerchuk DM, Hogancamp WF, O'Brien PC, Weinshenker BG:The clinical course of neuromyelitis optica (Devic's syndrome). Neurology 1999,53(5):1107-1114.
    3. Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG:Revised diagnostic criteria for neuromyelitis optica. Neurology 2006, 66(10):1485-1489.
    4. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC et al: Recommended diagnostic criteria for multiple sclerosis:guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001, 50(1):121-127.
    5. Takahashi T, Fujihara K, Nakashima I, Misu T, Miyazawa I, Nakamura M, Watanabe S, Ishii N, Itoyama Y: Establishment of a new sensitive assay for anti-human aquaporin-4 antibody in neuromyelitis optica. The Tohoku journal of experimental medicine 2006,210(4):307-313.
    6. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, Trebst C, Weinshenker B, Wingerchuk D, Parisi JE et al: A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 2002,125(Pt 7):1450-1461.
    7. Waters P, Jarius S, Littleton E, Leite MI,Jacob S, Gray B, Geraldes R, Vale T, Jacob A, Palace J et al: Aquaporin-4 antibodies in neuromyelitis optica and longitudinally extensive transverse myelitis. Archives of neurology 2008,65(7):913-919.
    8. Jarius S, Paul F, Franciotta D, Waters P, Zipp F, Hohlfeld R, Vincent A, Wildemann B:Mechanisms of disease:aquaporin-4 antibodies in neuromyelitis optica. Nature clinical practice 2008,4(4):202-214.
    9. Jarius S, Aboul-Enein F, Waters P, Kuenz B, Hauser A, Berger T, Lang W, Reindl M, Vincent A, Kristoferitsch W: Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 2008,131 (Pt 11):3072-3080.
    10. Correale J, Fiol M:Activation of humoral immunity and eosinophils in neuromyelitis optica. Neurology 2004,63(12):2363-2370.
    [1]Adams RA, Passino M, Sachs BD, et al. Fibrin mechanisms and functions in nervous system pathology. Mol Interv JT-Molecular interventions,2004,4(3):163-76.
    [2]Gveric D, Herrera B, Petzold A, et al. Impaired fibrinolysis in multiple sclerosis: a role for tissue plasminogen activator inhibitors. Brain JT Brain:a journal of neurology,2003,126(Pt 7):1590-8.
    [3]Rubel C, Fernandez GC, Dran G, et al. Fibrinogen promotes neutrophil activation and delays apoptosis. J Immunol JT-Journal of immunology (Baltimore, Md:1950),2001,166(3):2002-10.
    [4]Fuller GM, Zhang Z. Transcriptional control mechanism of fibrinogen gene expression. Ann N Y Acad Sci JT-Annals of the New York Academy of Sciences,2001,936:469-79.
    [5]Esmon CT. Does inflammation contribute to thrombotic events?. Haemostasis JT-Haemostasis,2000,30 Suppl 2:34-40.
    [6]Akassoglou K, Yu WM, Akpinar P, et al. Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron JT-Neuron,2002,33(6):861-75.
    [7]Sahni A, Odrljin T, Francis CW. Binding of basic fibroblast growth factor to fibrinogen and fibrin. J Biol Chem JT-The Journal of biological chemistry,1998,273(13):7554-9.
    [8]Sahni A, Sporn LA, Francis CW. Potentiation of endothelial cell proliferation by fibrin(ogen)-bound fibroblast growth factor-2. J Biol Chem JT-The Journal of biological chemistry, 1999,274(21):14936-41.
    [9]Sahni A, Francis CW. Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood JT-Blood,2000,96(12):3772-8.
    [10]Akassoglou K, Kombrinck KW, Degen JL, et al. Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury. J Cell Biol JT-The Journal of cell biology,2000,149(5):1157-66.
    [11]Akassoglou K, Adams RA, Bauer J, et al. Fibrin depletion decreases inflammation and delays the onset of demyelination in a tumor necrosis factor transgenic mouse model for multiple,sclerosis. Proc Natl Acad Sci U S A JT-Proceedings of the National Academy of Sciences of the United States of America,2004,101 (17):6698-703.
    [12]Davalos D, Lee JK, Smith WB, et al. Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy. J Neurosci Methods JT-Journal of neuroscience methods,2008,169(1):1-7.
    [13]East E, Baker D, Pryce G, et al. A role for the plasminogen activator system in inflammation and neurodegeneration in the central nervous system during experimental allergic encephalomyelitis. Am J Pathol JT-The American journal of pathology,2005,167(2):545-54.
    [14]Mahad DJ, Ransohoff RM. The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol JT-Seminars in immunology, 2003,15(1):23-32.
    [15]Huang DR, Wang J, Kivisakk P, et al. Absence of monocyte chemoattractant protein 1'in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med JT-The Journal of experimental medicine,2001,193(6):713-26.
    [16]Gonsette RE. Oxidative stress and excitotoxicity:a therapeutic issue in multiple sclerosis?. Mult Scler JT-Multiple sclerosis (Houndmills, Basingstoke, England),2008,14(1):22-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700