用户名: 密码: 验证码:
内模控制在汽车稳定控制中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的进步和经济的发展,汽车成为人们日常生活中所必需的交通工具之一,汽车主动安全控制也成为汽车研究的重点之一。汽车操纵稳定性是汽车主动安全控制非常重要的内容,车辆高速避障和紧急避险时起着至关重要的作用。
     汽车稳定控制系统可分为传感器部分、主控单元和执行机构三大部分,其中主控单元的核心部分是控制策略,控制策略直接决定着汽车稳定控制系统的性能,进而影响驾驶的安全性。本文着重对汽车稳定控制策略进行研究,针对不同操控方式的车辆首先解决了其中涉及的非线性问题,然后采用内模控制算法设计了不同的车辆内模稳定控制系统,并引入多种驾驶工况对控制策略进行了仿真测试,最后,在一辆试验车上装配了内模稳定控制系统,根据FMVSS-126测试评价标准设计并进行了实车试验,验证了控制策略的效果。
     本文的主要研究内容和成果概括如下:
     一、建立了简单、易行、精度高的车速和车身侧偏角的估测模型。本文在车载传感器的基础上,基于车辆动力学公式,通过理论推导得到了可测车辆运动参数与车速、车身侧偏角之间的关系,从而建立了简单、易行的车速和车身侧偏角估测模型,然后采用CarSim这一车辆动力学仿真软件对所建模型的估测结果进行了验证,验证结果显示该估测模型具有较高的估测精度,能够满足车辆稳定控制系统的精度要求。
     二、建立了MIMO线性内模稳定控制系统模型。本文从控制难易的角度出发,首先选择了符合MIMO线性系统特点的四轮主动转向车辆进行稳定控制建模。在对轮胎特性进行详细分析的基础上,提出了可行的线性控制理论,并基于此将4WS车辆的稳定控制纳入到MIMO线性系统控制之中。然后根据4WS车辆的特点,建立了3DOF线性内部车辆模型,并在该模型基础上设计了MIMO内模控制器。最后为了测试所建内模控制器的性能,又引入了线性二次型最优控制作为参考算法,通过在多种开环和闭环输入工况下的仿真测试,验证了MIMO线性内模稳定控制器良好的控制效果。
     三、建立了MIMO伪线性内模稳定控制模型。为了进一步验证内模控制算法的鲁棒性,本文又选择了具有明显非线性特点的主动前轮转向和主动制动的车辆进行控制建模。本文首先分析了前轮主动转向和四轮独立制动中存在的非线性特点,然后首次将逆系统方法和内模控制算法相结合,建立了MIMO伪线性内模控制器,最后引入多种开环和闭环的驾驶工况,对所建立的MIMO伪线性内模控制器进行了仿真测试,并将测试结果与MIMO线性内模稳定控制器进行了对比,对比结果显示MIMO伪线性内模稳定控制器具有响应速度快、控制精度高和鲁棒性强等特点。
     四、建立了MISO伪线性内模稳定控制模型。本文在MIMO伪线性内模稳定控制的基础上,又选择输入输出非对称的四轮独立制动车辆进行控制建模。首先,通过对四轮独立制动车辆的特点分析,确定了最优稳定制动控制策略,根据该控制策略四轮独立制动属于MISO系统,具有明显的输入输出非对称特点。然后,本文将逆系统和内模控制算法结合,并进行了适当的调整建立了MISO伪线性内模稳定控制器。最后,将本文所建立的各种内模控制器在开环和闭环工况下进行了综合比较,着重测试了其鲁棒性和抗干扰能力。
     五、设计并进行了实车实验。本文参考FMVSS-126测试标准,对安装了交大神舟自制液压执行机构的四轮独立制动试验车设计了稳定性测试方法,并完成了实车测试实验。经实验验证,本文设计的MISO伪线性内模控制器能够帮助试验车通过稳定性的测试实验。
With the development of society and economy, passenger vehiclesare more and more necessary in daily life, and the active safety controlfor vehicles become more and more urgent consequently. Vehiclehandling stability control is a key point for vehicle active safety control.It will prevent vehicle from accidents while fulfilling obstacle avoidancemaneuvers at high speeds.
     Vehicle handling stability control system is mainly composed ofthree parts which are sensors, ECU and actuators, of which the controlalgorithm is the core for ECU. The control algorithm directly decidesperformance of vehicle handling stability congrol system and then thedriving safety. This dissertation is mainly focus on the research of controlalgorithm, and firstly solves the nonlinearity involved in controls fordifferent actuators, and then introduces internal model control (IMC) todesign different IMC vehicle handling and stability control system whoseperformance is verified under different driving conditions. At last,prototype vehicle is equipped with an IMC vehicle handling and stabilitycontroller, and fulfils the experiments designed according to FMVSS-126(Federal Motor Vehicle Safety Standard No.126).
     The main contents of this dissertation are summarized as follows.
     Firstly, a simple, applicable and accurate model to estimate vehiclevelocity and side slip angle is put forward. Based on the on-board sensorsand vehicle dynamics equations, the relationship between vehicle speedand sideslip angle and the measurable ones are deduced, and then the estimation model is established. The accuracy of the estimated variales istestified in CarSim, and the model can meet the controller requirement ofvehicle handling and stability control system.
     Secondly, a linear multi-input-multi-output (MIMO) IMC controllerwas proposed. A four-wheel-steering (4WS) vehicle is selected first forhandling and stability controller design. Based on tyre characteristicsanalysis, the linear control theory is used for the stability control for4WSvehicle within linear regions. Then, according to the characteristics of4WS vehicle, the MIMO IMC controller is designed based on the internalmodel of a linear three-degree-of-freedom vehicle model. At last, in orderto investigate the controller’s effect, linear quadratic regulator (LQR) isintroduced as reference algorithm. In simulations, different drivingmaneuvers including both open-looped and close-loop are carried out andresults well show the effect effectivenes of the designed IMC.
     Thirdly, a nonlinear MIMO IMC controller was introduced. Tofurther examine the robustness of the IMC, a vehicle with active frontwheel steering and active braking exhibiting strong nonlinearity isselected. The nonlinearity of the active front wheel steering and activebraking vehicle is firstly analyzed. Then, the combination of internalmodel control and the inverse system theory is proposed for the first time,and the pseudo linear MIMO IMC controller is designed. At last, bothopen and close-looped driving maneuvers are introduce to testify thedesigned controller, and the simulation results are compared with linearMIMO IMC showing the good response rate, accuracy and robustness ofthe pseudo linear MIMO IMC controller.
     Fourthly, a pseudo linear MISO (multi-input-single-output) IMCcontroller was applied. Based on the pseudo linear MIMO IMC, active braking vehicle which is a multi-input-single-output nonlinear system ismodeled for handling and stability control. The unbanlanced MISOcharacteristic, which decided by the optimization of braking wheelsaccording to detaile analysis, for four wheel active braking vehicleworsenes handling and stability control. To solve this problem, properadjustment based on combination of IMC and inverse system theory isproposed, and then the pseudo linear MISO IMC controller is set up. Inthe end, comprehensive comparisons are made for all designed IMCcontrollers under both open-looped and close-looped driving condtions.
     Fively, an experiment is designed and performed. This dissertationdesigns and accomplishes experiments for an experimental vehicleequipped with the hydraulic actuators produced by Jiaoda Shenzhouaccording to FMVSS-126. The experiment results show that with the helpof pseudo linear MISO IMC controller, the experimental successfullypasses the test.
引文
[1]余志生,汽车理论[M],北京:机械工业出版社,2000
    [2]郭孔辉,汽车操纵动力学[M],长春:吉林科学技术出版杜,1991
    [3]黄安华,现代汽车的主动安全技术[J],商用汽车,2002,24(4):23-24
    [4]赵琢,我国高等级公路交通事故预测及对策研究[J],汽车运输研究,1997,16(2):71-77
    [5]吴龙,近期我国道路交通事故分析[J],汽车运输研究,1997,16(2):82-86
    [6]王德平,郭孔辉,高振海,汽车驱动防滑控制系统[J],汽车技术,1999,4:22-27
    [7]刘光明,汽车电子稳定性程序控制技术[J],公路与汽运,2006,8(4):10-11
    [8] Sugiyama M., Inoue H., Uchida K., Monzaki S., Inagaki S and Kido S. Development ofVSC (Vehicle Stability Control) System[R], TOYOTA Technical Review, Vol.46, No.2,61-68,1997
    [9]王景祜,奔驰轿车的行驶稳定性电子控制系统[J],汽车技术,2000
    [10]贺岩松,车辆操纵稳定性电子控制模型与系统[J],机械与电子,2004(3):20-22
    [11] Gunther Buschmann, Hans-Thomas Ebner, and Wieland Kuhn. Electronic Brake ForceDistribution Control: A Sophisticated Addition to ABS[J]. SAE paper, No.920646
    [12] Masaki Yamamoto. Active Control Strategy for Improved Handling and Stability[J].SAE paper, No.911902
    [13] Bang, M.S., Lee, S.H., Han, C.S., Maciuca, D.B., Hedrick, J.K.,2001. Performanceenhancement of a sliding mode wheel slip controller by the yaw moment control[J].Proc. Inst. Mech. Eng., Part D, J. Automob. Eng.215(4),455-468
    [14] Ghoneim, Y.A., Lin, W.C., Sidlosky, D.M., Chen, H.H., Chin, Y., Tedrak, M.J.,2000.Integrated chassis control system to enhance vehicle stability[J]. Int. J. Vehicle Des.23(1/2),124-144
    [15] S. Mammar, V. B. Baghdassarian, and L. Nouveliere. Speed scheduled vehicle lateralcontrol[C], Proc. of International Conference on Intelligent Transportation Systems, pp.80-85, Oct.1999
    [16] R.Kazemi M.Keshavarz Bahaghighat K.Panahi. Yaw moment control of four wheelsteering vehicle by fuzzy approach, Industrial Technology[C],2008. ICIT2008. IEEEInternational Conference on,21-24April2008, pp1-7
    [17] H. Fujimoto and N. Takahashi. Cornering stiffness and slip angle estimation of electricvehicle for direct yaw-moment control[J], IFAC Mechatronics, pp.496-501(2006)
    [18] Y. Hori, Y. Toyoda and Y. Tsuruoka. Traction control of electrical vehicles: Basicexperimental results using the test EV UOT march[J], IEEE Trans. IndustrialApplications,34,5, pp.1131-1138(1998)
    [19] K. Fujii and H. Fujimoto. Traction control based on slip ratio estimation withoutdetecting vehicle speed for electric vehicle[C], Power Conversion Conference, pp.688-693(2007)
    [20] Zheng, S., Tang, H., Han, Z., Zhang, Y.,2006. Controller design for vehicle stabilityenhancement[J]. Control Eng. Pract.14(12),1413-1421
    [21] M. Mirzaei. A new strategy for minimum usage of external yaw moment in vehicledynamic control system[J], Transport. Res. Part C,(2009), pp1-12
    [22] Shin-ichiro Sakai, Hideo Sado, and Yoichi Hori. Motion Control in an Electric Vehiclewith Four Independently Driven In-Wheel Motors[J], Transactions On Mechatronics,Vol.4, No.1, March1999, p9-16
    [23] Park, K., Heo, S., Baek, I.,2001. Controller design for improving lateral vehicledynamic stability[J]. JSAE Rev.22(4),481-486
    [24] Matthew C Best and Timothy J Gordon. Real-Time State Estimation of VehicleHandling Dynamics Using an Adaptive Kalman Filter[C]. International Symposium onAdvanced vehicle Control-AVEC,1998, No.9836590
    [25] J. Kim. Identification of lateral tyre force dynamics using an extended Kalman filterfrom experimental road test data[J], Control Engineering Practice,17(2009)357-367
    [26] Chenming Zhao, Weidong Xiang, Paul Richardson. Vehicle Lateral Control and YawStability Control through Differential Braking[C], IEEE ISIE2006, July9-12,2006,Montréal, Québec, Canada, pp384-389
    [27] Abe, M., Kano, Y., Suzuki, K., Shibahata, Y., Furukawa, Y.,2001. Side-slip control tostabilize vehicle lateral motion by direct yaw moment[J]. JSAE Rev.22(4),413-419
    [28] Jadranko Matu ko, Ivan Petrovi, Nedjeljko Peri. Neural network based tire/roadfriction force estimation[J], Engineering Applications of Artificial Intelligence,21(2008)442-456
    [29] Pal, C., Higiwara, I., Morishita, S., Inoue, H.,1994. Application of neural networks inreal time identifcation of dynamic structural response and prediction of road frictioncoeffcient m from steady state automobile response[C]. International Symposium onAdvanced Vehicle Control, AVEC1994, Hiroshima, Japan
    [30] Pasterkamp, W. R., and Pacejka, H. B.,1997. Application of Neural Networks in theEstimation of Tire/Road Friction Using the Tire as a Sensor[J], SAE paper number971122
    [31] El-Gindy, M., Palkovics, L. Possible application of artificial neural networks to vehicledynamics and control: a literature review[J], International Journal of Vehicle Design, v14, n5-6,592-614,1993
    [32] Li Jianfeng1, Gao Li. Neural network control approach of vehicle active yawmoment[C],2006Chinese Control Conference (IEEE Cat. No.06EX1357),4pp.,2006
    [33] Zhenhai, G., Bo, Z. Vehicle lane keeping of adaptive PID control with BP neuralnetwork self-tuning[C],2005IEEE Intelligent Vehicles Symposium Proceedings (IEEECat. No.05TH8792),84-7,2005
    [34] Gao Zhenhai, Jiang Liyong. Vehicle lane keeping system control with BP neuralnetwork[J], China Mechanical Engineering, v16, n3,272-7,2005
    [35] Lin, Y., Tang, P., Zhang, W.J., Yu, Q. Artificial neural network modeling of driverhandling behaviour in a driver-vehicle-environment system[J], International Journal ofVehicle Design, v37, n1,24-45,2005
    [36] Baumal, A., McPhee, J., and Calamai, P.,1998, Comp. Application of geneticalgorithms to the design optimization of an active vehicle suspension system[J], Meth.Appl. Mech. Eng.,163,87-94
    [37] Cai, L., Rad, A.B., Wai-Lok Chan. A Genetic Fuzzy Controller for Vehicle AutomaticSteering Control[J], IEEE Transactions on Vehicular Technology, v56, n2,529-43,March2007
    [38] He, Y., McPhee, J. A design methodology for mechatronic vehicles: application ofmultidisciplinary optimization, multibody dynamics and genetic algorithms[J], VehicleSystem Dynamics, v43, n10,697-733, Oct.2005
    [39] Ono, O., Kobayashi, B., Kato, H. Optimal dynamic motion planning of autonomousvehicles by a structured genetic algorithm[C], Proceedings of the13th World Congress,International Federation of Automatic Control. Vol. Q. Automotive, Marine,Autonomous Vehicles,435-40,1997
    [40]周洪亮,刘志远.基于模型预测控制的车辆横摆稳定控制器设计[C], Proceedingsof the27th Chinese Control Conference July16-18,2008, Kunming, Yunnan, China,pp677-681
    [41]吴义虎,宋丹丹,侯志祥,袁翔.车辆横摆角速度的广义预测控制研究[C],Proceedings of the26th Chinese Control Conference July26-31,2007, Zhangjiajie,Hunan, China, pp30-33
    [42] Falcone, P., Tseng, H.E., Borrelli, F., Asgarib, J., Hrovat, D. MPC-based yaw and lateralstabilisation via active front steering and braking[J], Vehicle System Dynamics, v46,suppl.1,611-28,2008
    [43] Borrelli, F., Falcone, P., Keviczky, T., Asgari, J., Hrovat, D. MPC-based approach toactive steering for autonomous vehicle systems[J], International Journal of VehicleAutonomous Systems, v3, n2-4,265-91,2005
    [44] Peni, T., Bokor, J. Robust model predictive control for controlling fast vehicledynamics, Proceedings of the14th Mediterranean Conference on Control andAutomation,5pp.,2006
    [45] Line, C., Manzie, C., Good, M.C. Electromechanical brake modeling and control: fromPI to MPC[J], IEEE Transactions on Control Systems Technology, v16, n3,446-57,May2008
    [46] Lv Hongming, Chen Nan and Li Pu. Closed-loop Handling and Stability of Four-wheelSteering Vehicle with Yaw-rate Tracking Control[J]. Journal of AutomobileEngineering, Vol.27, No.3,2005, pp.337-339
    [47] Raharijaona, M.T., Duc, M.G., Mammar, M.S. Linear parameter-varying control andH-infinity synthesis dedicated to lateral driving assistance[C],2004IEEE IntelligentVehicles Symposium (IEEE Cat. No.04TH8730),407-12,2004
    [48] Daiss, A., Kiencke, U. Estimation of vehicle speed fuzzy estimation in comparison withKalman-filtering[C], Proceedings of the4th IEEE Conference on Control Applications(Cat. No.95CH35764),281-4,1995
    [49] Sohel Anwar. Predictive Yaw Stability Control of a Brake-By-Wire Equipped Vehiclevia Eddy Current Braking[C], Proceedings of the2007American Control Conference,pp2308-2313
    [50] Mahdi Jalili-Kharaajoo and Farhad Besharati. Sliding Mode Traction Control of anElectric Vehicle with Four Separate Wheel Drives[J],02003IEEE, pp291-296
    [51] Abe, M.,1999. Vehicle dynamics and control for improving handling and active safety:from four-wheel steering to direct yaw moment control[J]. Proc. Inst. Mech. Eng., PartK: J. Multi-body Dynamics.213(2),87-101
    [52] Mokhiamar, O., Abe, M.,2002. Effects of model response on model following type ofcombined lateral force and yaw moment control performance for active vehiclehandling safety[J]. JSAE Rev.23(4),473-480
    [53] S. Saito, K. Nonaka and D. N. Nenchev. Sliding mode control of a skidding car [C],SICE Annual Conference in Sapporo, August4-6,2004
    [54] Shuen Zhao, Yinong Li, Ling Zheng and Shaobo Lu. Vehicle Lateral Stability ControlBased on Sliding Mode Control[C], Proceedings of the IEEE International Conferenceon Automation and Logistics August18-21,2007, Jinan, China
    [55] Shijing Wu, Enyong Zhu, Ming Qin, Hui Ren, Zhipeng Lei. Control ofFour-Wheel-Steering Vehicle Using GA Fuzzy Neural Network[C],2008InternationalConference on Intelligent Computation Technology and Automation
    [56] Kaoru Sawase, Yuichi Ushiroda. S-AWC (Super All Wheel Control),Integrated VehicleDynamics Control for High Performance All Wheel Drive Vehicle[C],9th EuropeanAll-Wheel Drive Congress Graz, April16-17,2009
    [57] B. Zheng, S. Anwar. Yaw stability control of a steer-by-wire equipped vehicle via activefront wheel steering[J], Mechatronics,19(2009), pp799-804
    [58] Paul Yih, J. Christian Gerdes. Steer-by-Wire for Vehicle State Estimation andControl[C], AVEC '04
    [59] Paul Yih, Jihan Ryu, J. Christian Gerdes. Modification of Vehicle HandlingCharacteristics via Steer-by-Wire[C], American Control Conference,2003. Proceedingsof the2003, Vol.3, pp2578-2583
    [60] Riccardo Marino, Stefano Scalzi And Fabio Cinili. Nonlinear PI front and rear steeringcontrol in four wheel steering vehicles[J], Vehicle System Dynamics, Vol.45, No.12,December2007, pp1149-1168
    [61] Shijing Wu, Enyong Zhu, Ming Qin, Hui Ren, Zhipeng Lei. Control ofFour-Wheel-Steering Vehicle Using GA Fuzzy Neural Network[C],2008InternationalConference on Intelligent Computation Technology and Automation
    [62] J.Ackerman.Robust car steering by yaw rate control[C]. Proceedings of the29thConference on Decision and Control, Honolulu, Hawall, December,1990
    [63] J.Ackerman.Robust yaw damping of cars with front and rear wheel steering[C].Proceedings of the31stConference on Decision and Control, Tucson, Arizona,December,1992
    [64] J.Ackermann and T.Biinte.Yaw disturbance attenuation by robust decoupling of carsteering[J]. Control Eng.Practice,1997,5(8):1131-1136
    [65] Yuhara N, Horiuehi S, Arato Y. A robust adaptive rear wheel steering control system forhandling improvement of four wheel steering vehieles[J]. Vehiele System Dynamies,1991,20:666-680
    [66] Wang Y Q, Gnadler R, Schieschke R. Vertical load-deflection behavior of a pneumatictire subjected to slip and camber angles[J].Vehicle System Dynamics,1996,25:137-146.
    [67] Wang Y Q, Gnadler R, Sehiesehke R. Vertieal load deflection behavior of a pneumatietire subjected to slip and camber angles[J]. Vehicle System Dynamies,1996,25:137-146
    [68] YOUNG H.CHO, J.KIM. Design of Optimal Four Wheel Steering System[J], VehicleSystem Dynamics,1995,24:661-682
    [69] Laszlo PALKOVICS.Effect of the Controller Parameters on the Steerability of the FourWheel Steered Car[J], Vehicle System Dynamics,1992,21:109-128
    [70] Higuchi, Y Saitoh. Optimal Control of Four Wheel Steering Vehicle[J]. Vehicle SystemDynamics,1993,397-410
    [71] Masugi KAMINAGA.J.Karl HEDRICK.Adaptive sliding mode control in thepresence of saturating tire forces[J].JSME International Journal Series C,1999,42(2):281-86.
    [72] Shiotsuka T.Adaptive control of4WS system by using neural network[J].VehicleSystem Dynamics,1993,22:41l-424.
    [73] Nagai M, Ueda E,Moran A.Nonlinear design approach to four-wheel-steering systemsusing neural networks[J].Vehicle System Dynamics,1995,24:329-342.
    [74]李普,陈南,孙庆鸿.基于状态观测器的4WS车辆最优随动操纵研究[J].机械工程学报,2004,40(l):50-55
    [75]殷国栋,陈南,李普.基于降阶观测器的四轮转向车辆随动操纵瞬态稳定性分析[J].中国机械工程,2004,15(14):1298-1301
    [76]殷国栋,陈南.4WS车辆μ综合鲁棒主动侧倾操纵性能控制[J].东南大学学报(自然科学版),2006,36(3):384-388
    [77]刘奋,张建武,屈求真.基于定量反馈理论的汽车转向控制系统设计[J].上海交通大学学报,2002,36(8):1191-1195
    [78]刘奋,张建武,屈求真等.基于QFT的四轮转向控制系统设计[J].汽车工程,2002,24(l):68-72
    [79]刘兴初,张建武,刘奋.四轮转向非线性侧向动力学模型[J].上海交通大学学报,2005,39(9):1466-1469
    [80]王洪礼,胡斌.汽车四轮转向非线性系统的神经网络控制[J],汽车工程,2003,25(3):236-238
    [81] Qiao Yu, Wang Hongli, Zhang Feng, Liu Yong. Stochastic pitchfork bifurcation ofVehicle steering system[C], APVC2001, Hangzhou, China, November2001,487-490
    [82]余卓平,赵治国,陈慧,主动前轮转向对车辆操纵稳定性能的影响[J],中国机械工程第16卷第7期
    [83]宗长富,郑宏宇,田承伟,潘钊,董益亮,袁登木;基于直接横摆力矩控制的汽车稳定性控制策略[J],吉林大学学报(工学版),2008,38(5)
    [84]郑水波.提高汽车操纵稳定性和主动安全性的研究[D].上海交通大学,2006
    [85] M. Canale, L. Fagianoa, M. Milanese, P. Borodani. Robust vehicle yaw control usingan active differential and IMC techniques[J] Control Engineering Practice,15(2007)923-941
    [86] Canale, M. and Fagiano, L.,2008. Stability control of4WS vehicles using robust IMCtechniques[J], Vehicle System Dynamics,46:11,991-1011
    [87]周涌,陈庆伟,胡维礼.内模控制研究的新发展[J],控制理论与应用,2004,21(3),475-479
    [88] Garcia,C.E,Morari,M.Internal model control.A Unifying Review and Some Newresults[J].Int.Eng.Chem.Process Des.Dev., l982,21,308-323
    [89] Morari, M., ZAFIRIOUS E. Robust Process Control[M].New Jersey, Prentice-Hall,1989
    [90]刘开培.基于Pade逼近的纯滞后系统增益自适应内模PID控制[J].武汉大学学报(工学版).2001(34),93-95
    [91]张井刚,刘志远,裴润.一类非自衡对象的二自由度PID控制[J].控制与决策.2002,17(6),886-889
    [92] Qiuping Hu, Gade Pandu Rangaiah. Adaptive internal model control of nonlinearprocesses[J].Chemical Engineering Science,1999(54),1205-1220
    [93]金秀章,刘吉臻,牛玉广,田沛.自适应内模控制在主蒸汽温度控制系统中的应用研究[J].中国电机工程学报.2003(23),225-229
    [94]郑恩让,张玲.内模控制在造纸生产定量控制中的应用化工自动化及仪表[J].2001(28),23-24
    [95] ZHOU Lifang,QIAN Jixin.The IMC Structure of Multi-rate Multivariable PredictiveControl Systems and an Improved Algorithm[J].Chinese J. of Chem. Eng.2001(9),273-279
    [96] ERIC COULIBALY, SANDIP MAITI, COLEMAN BROSILOW.Internal ModelPredictive Control(IMPC)[J]. Automatica.1995(31),1471-1482
    [97]汪宁,严德昆.多变量系统CARMA模型近似解耦法[J].工业仪表与自动化装置.2002,11-13
    [98]陈平,潘立登.一类非线性多变量对象的解耦内模控制[J].控制工程,2005(12),14-17
    [99] Wen Tan, Horacio J. Marquez, Tongwen Chen. IMC design for unstable processes withtime delays[J]. Journal of Process Control,2003(13),203-213
    [100] TAYEBI A, ZAREMBA M B. Internal model-based robust iterative learning control foruncertain LTI systems[C]. Proc of IEEE Conf on Decision and Control. Sydney: IEEEPress,2000,4,3439-3444
    [101]张井岗,李临生,陈志梅,赵志诚,二自由度PID调节器的内模整定方法[J],仪器仪表学报,2002,23(1),28-30
    [102] TSYPKIN Y Z, HOLMBERG U. Robust stochastic control using internal modelprinciple and internal model control[J].Int J Control,1995,61(4),809-822
    [103]王文新,潘立登,IMC-PID鲁棒控制器设计及其在蒸馏装置上的应用[J],北京化工大学学报,2004,31(5),93-96
    [104] Morari, M., Skogestad.S., Rivera.D.E. Implications of Internal Model Control for PIDControllers[C], Proc.of American Control Conference, San Diego, CA, l984,661-666
    [105] Lideng Pan, Wenxin Wang, Ningchuan Wu, Junying Ma. The Design of RobustIMC-PID Controller and its Application to Atmospheric and Vacuum DistillationUnit[C], The6th World Multiconference on Systemics, Cybernetics and Informatics,July14-18,2002, Orlando, Florida, USA, Proceedings, Volume VI, IndustrialSystems and Engineering,353-358
    [106] Ibrahim Kaya. IMC based automatic tuning method for PID controllers in a Smithpredictor configuration[J], Computers and Chemical Engineering,2004,28,281-290
    [107]鲁鹰,谷明章,陈志强,等.内模控制器应用一例[J].自动化博览-仪器与测控,2003,(1):25-27
    [108]郑恩让,张玲.内模控制在造纸生产定量控制中的应用[J].化工自动化及仪表,2001,28(3):23-24
    [109]程志强,戴连奎,孙优贤.加热炉热效率软测量与内模控制[J].信息与控制,2004,33(1):85-88
    [110]王东风,王剑东,韩璞,等.基于内模原理的PID控制器参数整定[J].华北电力大学学报,2003,30(4):42-46
    [111]许天舒,史小平.核电站反应堆冷却剂平均温度内模控制系统仿真[J].哈尔滨理工大学学报,2001,26(2):26-30
    [112]李建秋,田光宇,卢青春,陈全世,欧阳明高.利用V型开发模式研制燃料电池混合动力客车的整车控制器[J],机械工程学报,2005,41(12):30-35
    [113] Pacejka H B, Sharp R S. Shear force development by pneumatic tyres in steady stateconditions: a review of modeling aspects[J]. Vehicle System Dynamics,1991,20(3/4):121-176.
    [114]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005
    [115]安部正人著,陈辛波译.汽车的运动和操纵[M].北京:机械工业出版社,1998
    [116] J. Kim. Identification of lateral tyre force dynamics using an extended Kalman filterfrom experimental road test data[J], Control Engineering Practice,17(2009)357-367
    [117]杜峰.基于线控技术的四轮主动转向汽车控制策略仿真研究[D].长安大学,2009
    [118] Song J G, Yoon Y S. Feedback control of four-wheel steering using time delaycontrol[J]. International Journal of Vehicle Design.1998,19(3):282-298
    [119] FurukawaY, Yuhara N, Sano S et a1. A review of four-wheel steering studies from theviewpoint of vehicle dynamics and control[J],Vehicle System Dynamics,1989,18:151-186
    [120]于长官.现代控制理论及应用[M].哈尔滨:哈尔滨工业大学出版社,2005
    [121]沈晓鸣.基于广义执行器-受控对象的车辆底盘集成控制的研究[D].上海交通大学,2006
    [122] International standard.Road vehicle-test procedure for a severe lane-change maneuver.ISO/3888,1975
    [123]孟涛,陈慧,余卓平等.电动助力转向系统的回正与主动阻尼控制策略研究[J].汽车工程.2006,28(12):1125-1128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700