用户名: 密码: 验证码:
不确定系统的终端滑模变结构控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑模变结构控制作为控制系统的一种综合方法,适用于线性系统、非线性系统、时变系统、不确定系统,是一种有效的鲁棒控制方法。滑模变结构控制中,通过选择滑模面,设计滑模控制器,使得系统到达滑模面后,在满足一定匹配条件下,系统在滑模面上的运动即滑动模态对参数摄动和外部扰动影响具有完全的鲁棒性或不变性,表现出比普通鲁棒控制更为优越的特性,正是这种独特的优点,使得滑模变结构在解决不确定系统的鲁棒控制中受到重视。
     本文在掌握滑模变结构控制理论的国内外研究现状的基础上,深入研究了匹配或不匹配不确定系统终端滑模变结构控制,论文的主要工作如下:
     研究不确定多变量线性系统的快速终端滑模控制。终端滑模是一种新型的非线性滑模面,具有比线性滑模更快的收敛速度和更高的稳态精度。线性滑模很容易应用到多变量线性系统的设计中,终端滑模适用于二阶系统,但不能简单地推广到多变量线性系统中。针对一类不确定多变量线性系统,应用全局快速终端滑模、指数型快速终端滑模和对数型快速终端滑模分别设计变结构鲁棒控制律,内容有:非线性终端滑模超曲面的构造、滑模面参数矩阵的选取、变结构控制算法,并证明系统状态在有限时间内收敛到终端滑模面上,随后系统滑模按相应的快速终端滑模规律运动,以较普通终端滑模更快的速度在有限时间内收敛到平衡点。
     研究二阶不确定系统的非奇异终端滑模控制。将非奇异终端滑模控制方法应用到控制通道参数摄动的二阶不确定系统,导出了相应的滑模变结构控制律。进一步提出基于非奇异终端滑模的二阶不确定系统的模型跟踪变结构控制方案,并将其应用于BTT导弹滚转通道的自动驾驶仪设计。该方案除克服普通终端滑模控制的奇异问题外,还能够确保系统跟踪误差在有限时间内收敛至平衡点,有效改善控制精度。且控制算法简单,工程实现方便。仿真结果表明,应用该方案设计的BTT导弹滚动通道自动驾驶仪能够克服气动参数大范围摄动及外界干扰影响,具有良好的指令跟踪性能和较强的鲁棒性。
     研究不确定多变量线性系统的积分非奇异终端滑模控制。提出一种新的状态变换矩阵,通过线性变换将不确定多变量线性系统分解为两个子系统:非匹配的内部稳定子系统和匹配的输入输出子系统,对输入输出子系统应用积分非奇异终端滑模设计变结构控制律,使该子系统的状态在有限时间内到达零点。而内部稳定子系统的状态则随之收敛到平衡点的某一有限临域内,达到全局一致最终有界稳定。积分滑模的使用可以削弱滑动模态的抖动,并减少系统的稳态误差。
     研究不确定多变量线性系统的动态非奇异终端滑模控制。为了消除滑模控制固有的抖振问题,同时避免普通终端滑模的奇异性,针对不确定多变量线性系统,提出一种动态非奇异终端滑模控制方法。同积分非奇异终端滑模控制时采用的方‘法一样,也是通过一种新的状态转换将不确定多变量线性系统分解为两个子系统:非匹配的内部稳定子系统和匹配的输入输出子系统,对输入输出子系统应用动态非奇异终端滑模设计变结构控制律,使该子系统的状态在有限时间内到达零点。而内部稳定子系统的状态则随之收敛到平衡点的某一有限临域内,达到全局一致最终有界稳定。动态滑模的使用消除了滑动模态的抖动,平滑了控制输入。
As one kind of control system design approaches, variable structure control with sliding mode is a powerful method for robust control, which is suitable to linear systems, nonlinear systems, time-varying systems and uncertain systems. The sliding mode controller, which is designed by selecting sliding mode surface, can drive the system states to reach the sliding hypersurface. Under certain matching conditions, the movement of system on the sliding hypersurface, i.e. the sliding mode, is completely insensitive to parametric uncertainty and external disturbance, which exhibits more superior characteristics than ordinary conventional robust control. Owing to this special feature, sliding mode control is attractive in solving the robust control problems for uncertain systems.
     After knowing well the development of variable structure control with sliding mode, variable structure control with terminal sliding mode for matched or unmatched uncertain systems is deeply studied. Main results are as follows.
     Fast terminal sliding control for uncertain multivariable linear systems is studied. As a novel nonlinear sliding mode surface, compared with linear sliding mode, the terminal sliding mode possesses faster convergence speed and higher steady-state precision. Unlike linear sliding mode being easily applied to the design of multivariable linear systems, terminal sliding mode is suitable to second-order system, which can not be easily extended to multivariable linear systems. For a class of uncertain multivariable linear systems, by using global fast terminal sliding mode, exponential fast terminal sliding mode and logarithmic fast terminal sliding mode, the robust control laws are derived respectively. The content contains structure of nonlinear terminal sliding hypersurface, selection of its parameter matrix, and algorithm of variable structure control law. It is proved that the system state variables can be driven to reach the sliding hypersurface in finite time, then retain on the sliding hypersurface and converge to the equilibrium point with higher speed than ordinary fast terminal sliding mode in finite time according to the motion law of the corresponding fast terminal sliding mode law.
     Nonsingular terminal sliding mode control for second-order uncertain system is studied. It is extended to the second-order uncertain system with parameter perturbation in control channel, and the corresponding sliding mode control law is gained. A model tracing variable structure control methodology based on nonsingular terminal mode for second-order uncertain systems is proposed. Using this method, BTT roll channel autopilot is designed. This method overcomes singular problem in ordinary terminal sliding mode control, and guarantees system tracking errors converge to equilibrium point in finite time. Simulation results prove the roll channel autopilot of BTT missile has fine instruction following performance and strong robustness.
     An integral nonsingular terminal sliding mode control for uncertain multivariable linear systems is studied. A new state transformation matrix is presented. By using this transformation, uncertain multivariable linear system is decomposed into two subsystems:an unmatched stable internal subsystem and a matched input-output subsystem. Then, integral nonsingular terminal sliding mode control law is applied to the input-output subsystem so that this subsystem states converge to the equilibrium points in finite time. Meanwhile, the states of the internal stability subsystem converge to the neighborhood of the equilibrium points and guarantee global uniform ultimate bounded stability. Integral sliding mode reduces the chattering phenomenon and steady-state error.
     A dynamic nonsingular terminal sliding mode control for uncertain linear multivariable systems is studied.In order to eliminate the inherent chattering problem in sliding mode control, and avoid the singularity in conventional terminal sliding mode control, a dynamic nonsingular terminal sliding mode control for uncertain linear multivariable systems is proposed. Just as the integral nonsingular terminal sliding mode control mentioned above, uncertain multivariable linear system is decomposed into two subsystems through a special transformation:an unmatched stable internal subsystem and a matched input-output subsystem. A nonsingular terminal sliding mode manifold is used for the input-output subsystem to design the control law. The states of this subsystem converge to the equilibrium points. Meanwhile, the states of the internal subsystem converge to the neighborhood of the equilibrium points. This realizes the global uniform ultimate bounded stability. Dynamic sliding mode can be used to eliminate the sliding mode chattering, and smooth control input.
引文
[1]Utkin V I. Variable structure systems with sliding modes[J]. IEEE Transactions on Automatic Control,1977,22(2):212-222.
    [2]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1998.
    [3]胡剑波,庄开宇.高级变结构控制理论及应用[M].西安:西北工业大学出版社,2008.
    [4]李言俊,张科.自适应控制理论及应用[M].西安:西北工业大学出版社,2008.
    [5]张晓宇,苏宏业.滑模变结构控制理论进展综述[J].化工自动化及仪表,2006,33(2):1-8.
    [6]Yu X H, Man Z H. Fast terminal sliding mode control design for nonlinear dynamical systems[J]. IEEE transaction on Circuits and Systems:Fundamental Theory and Applications, 2002,49(2):262-264.
    [7]Yu S H, Yu X H. Robust global terminal sliding mode control of SISO nonlinear uncertain systems[C]//39th IEEE Conference on Decision and Control, Sydney,2000.
    [8]Feng Y, Yu X H, Man Z H. Nonsingular terminal sliding mode control of rigid manipulators[J]. Automatica,2002,38(12):2159-2167.
    [9]Chern T L, Wu Y C. Design of integral variable structure controller and application to electrohydraulic velocity servosystems[J]. IEE Proceedings-D,1991,138(5):439-444.
    [10]Chern T L, Wu Y C. Integral variable structure control approach for robot manipulators[J]. IEE Proceedings-D,1992,139(2):161-166.
    [II]Chern T L, Wu Y C. An optimal variable structure control with integral compensation for electrohydraulic position servo control systems[J]. IEEE Trans on Industrial Electronics, 1992,39(5):460-463.
    [12]Chern T L, Wu Y C. Design of brushless DC position servo systems using integral variable structure approach[J]. IEE Proceedings-B,1993,140(1):27-34.
    [13]Chern T L, Wong J S. DSP based integral variable structure control for motor servodrives[J]. IEE Proceedings:Control Theory and Applications,1995,142(5):444-450.
    [14]Davaria, Zhang Z. Application of the three segments variable structure Systems[C]// Proceedings of 1991 American Control Conference, Boston, USA:IEEE Press,1991: 62-63.
    [15]Man Z H, Palan I. Decentralized three segment nonlinear sliding mode control for robotic manipulators[C]//IEEE International Workshop on Emerging Technologies and Factory Automation, Carns, Australia,1992.
    [16]刘金坤.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [17]Lu Y S, Chen J S. Design of a global sliding mode controller for a motor drive with bounded control[J]. International Journal of Control,1995,62(5):1001-1019.
    [18]Choi H S, Park Y H, Cho Y S, Lee M H. Global sliding mode control[J]. IEEE Control Systems Magazine,2001,21(3):27-35.
    [19]肖雁鸿,葛召炎,周靖林.全滑模变结构控制系统[J].电机与控制学报,2002,6(3):233-236.
    [20]Ackermann J, Utkin V I. Sliding mode control design based on Ackermann's formula[J]. IEEE Transactions on Automatic Control,1998,43(2):234-237.
    [21]Betin F, Sivert A, Pinchon D. Time-varying sliding modes for a DC motor drive[C]// Proceedings of IEEE International Symposium on Industrial Electronics,2002.
    [22]Cheng G, Zhu S N. Adaptive time-varying sliding mode control for hydraulic servo systems[C]//Proceeding of 8th International Conference on Control, Automation, Robotics and Vision, Piscataway,2004.
    [23]Bartoszewicz A. Time-varying sliding modes for second-order systems[J]. IEE Proceedings of Control Theory and Applications,1996,43(5):455-462.
    [24]Chen Z M, Zhang J G. Zhao Z C, et al. A new method of fuzzy time-varying sliding mode control[C]//Proceedings of International Conference on Machine Learning and Cybernetics, Xian, China,2002.
    [25]Slotine J J, Li W P. Applied nonlinear Control[M]. Englewood:Prentice-Hall,1991.
    [26]Slotine J J, Sastry S S. Tracking control of nonlinear system using sliding surfaces with application to robot manipulators[J]. International Journal of Control,1983,38(2):465-492.
    [27]Bartolini G, Pydynowskip. Asymptotic linearization of uncertain nonlinear systems by means of continuous control[J]. International Journal of Robust and Nonlinear Control,1993,3(2): 87-103.
    [28]Bartolini G, Pydynowskip. An improved, chattering-free, VSC scheme for uncertain dynamical system[J]. IEEE Transactions on Automatic Control,1996,41(8):1220-1226.
    [29]Bartolini G, Ferrara A, Usai E. Applications of suboptimal discontinuous control algorithm for uncertain second order systems[J]. International Journal of Robust and Nonlinear Control,1997,7(4):299-319.
    [30]Pushkin K, Masayoshi T. Chattering reduction and error convergence in the sliding mode control of a class of nonlinear systems[J]. IEEE Transactions on Automatic Control,1996. 41(7):1063-1068.
    [31]Lee J H, Paul E, Gang T, et al. Integral sliding mode control of a magnetically suspended balance beam:analysis, simulation, and experiment [J]. IEEE Transaction on Mechanical, 2001,6(3):338-346.
    [32]Bartolini G, Ferrara A and Usani E. Chattering avoidance by second-order sliding mode control, IEEE Transaction on Automatic Control,1998,43(2):241-246.
    [33]Hamerlain M, Youssef T, Belhocine M. Switching on the derivative of control to reduce chatter[J]. IEE Proceeding on control Theory and Application,2001,148(1):81-96.
    [34]晁红敏,胡跃明.动态滑模控制及其在移动机器人输出跟踪中的应用[J].控制与决策,2001,16(5):565-568.
    [35]Hashimoto H, Yamamoto H. and Yanagisawa S. Brushless servo motor control using variable structure approach[J]. IEEE Transaction on Industry Application,1988,24(1):160-170.
    [36]Bartolini G, Ferrara A, Usani E, et al. On multi-input chattering-free second-order sliding mode control [J]. IEEE Transactions on Automatic Control,2000,45(9):1711-1717.
    [37]Chan S P, Gao W B. Variable Structure Model Reaching control Strategy for Robot Manipulator[C]//Proceedings of 1989 IEEE International Robotics and Automation Scottsdale, USA:IEEE Press,1989:1504-1508.
    [38]Kang B P, Ju J L. Sliding mode controller with filtered signal for robot manipulators using virtual plant/controller [J]. Mechatronics,1997,7(3):277-286.
    [39]Kawamura A, Itoh H, Akamoto K. Chattering reduction of disturbance observer based on sliding mode control[J]. IEEE Transaction on Industry Application,1994,30 (2):456-461.
    [40]Liu H. Smooth sliding mode control of uncertain systems based on a prediction error[J]. International Journal of Robust and Nonlinear control,1997,7(4):353-372.
    [41]Ha Q P, Nguyen Q H, Rye DC, et al. Fuzzy sliding mode controller with application [J]. IEEE Transaction on Industrial Electronics,2001,49(1):38-41.
    [42]Zhang K Y, SuHY, Chu J, et al. Globally stable robust tracking of uncertain systems via fuzzy integral sliding mode control[C]//3th World Congress on Intelligent control and Automation, Hefei, China,2000.
    [43]Ertugrul M, Kaynak O. Neural sliding mode control of robotic manipulators[J]. Mechatronics,2000,10(12):239-263.
    [44]Huang S J, Huang K S, Chiou K C. Development and application of a novel radial basis function sliding mode controller[J]. Mechatronics,2003,13(4):313-329.
    [45]Lin F J, Chou W D. An induction motor servo drive using sliding mode controller with genetic algorithm[J]. Electric Power Systems Research,2003,6(2):93-108.
    [46]Devaud F M, Caron J Y. Asymptotic stability of model reference systems with bang-bang control[J]. IEEE Transactions on Automatic Control,1975,20(4):694-696.
    [47]Zinober A S I. Adaptive relay control of second order system[J]. International Journal of Control,1975,21(1):81-98.
    [48]Hsu L, Costa R R. Variable structure model reference adaptive control using only input and output measurements[J]. International Journal of Control,1989,49(2):399-416.
    [49]Spurgeon S K. Robust variable structure control of model reference systems[J].IEE Proceedings-D:Control Theory & Applications,1990,137(6):34-48.
    [50]Liyal, Lee E B. Model reference sliding control of nonlinear systems [C]//Proceedings of the 31th IEEE Conference on Decision and Control, Tucson, USA:IEEE Press,1992:289-290.
    [51]Orlov Y V. Sliding mode model reference adaptive control of distributed parameter systems[C]//Proceedings of the 32nd IEEE Conference on Decision and Control. San Antonio, TX, USA:IEEE Press,1993:2438-2445.
    [52]Lin Y. Variable structure robust adaptive control with unmodelled dynamics[C] //Proceedings of the 36th IEEE Conference on Decision and Control. San Diego, CA, USA: IEEE Press,1997:3243-3248.
    [53]Chou C H, Cheng C C. Decentralized model following variable structure control for perturbed large-scale systems with time-delay interconnections[C]//Proceedings of 2000 American Control Conference. Chicago, USA:IEE Press,2000:641-645.
    [54]Liu H. Model-reference sliding mode control of uncertain multivariable systems[C] //Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA: IEE Press,2001:756-761.
    [55]Kim K S. Robust sliding hyperplane design for parameteric uncertain systems by Riccati approach[C]//Proceedings of 1998 American Control Conference. Philadelphia, PE, USA: IEEE Press,1998:261-274.
    [56]Doyle J C, etal. State-space solutions to standard H2 and H∞ control problems[J]. IEEE Transactions on Automatic Control,1989,34(8):831-847.
    [57]Xie L, Souza C D. Robust H∞ control for linear systems with norm-bounded time-varying uncertainty[J]. IEEE Transactions on Automatic Control,1992,37(8):1188-1191.
    [58]申铁龙.H∞控制理论及应用[M].北京:清华大学出版社,1996.
    [59]俞立.鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [60]Kwan C M. Sliding mode control of linear systems with mismatched uncertainties[J]. Automatica,1995,31(2):303-307.
    [61]Kim K S, Park Y, Peres P L D. Designing robust sliding hyper planes for parametric uncertain systems:A Riccati approach[J]. Automatica,2000,36(8):1041-1048.
    [62]Choi H H. A new method for variable structure control system design:A linear matrix inequality approach[J]. Automatica,1997,33(11):2089-2092.
    [63]Choi H H. An explicit formula of linear sliding surfaces for a class of uncertain dynamics systems with mismatched uncertainties[J]. Automatica,1998,34(8):1015-1020.
    [64]Shim T, Chang S Y, Lee S. Investigation of sliding surface design on the performance of sliding mode controller in antilock braking systems[J]. IEEE Transactions on Vehicular Technology,2008,57(2):747-759.
    [65]Chen T T, Peng C C, Chen C L. Sliding mode methodology and LMIs based controller design for performance enhancement and chattering reduction[C]//IEEE International Conference on Control and Automation, ICCA,2009:1074-1079.
    [66]Choi H H. On the existence of linear sliding surfaces for a class of uncertain dynamics systems with mismatched uncertainties[J]. Automatica,1999,35(10):1707-1715.
    [67]Chan M L, Tao C W, Lee TT. Sliding mode controller for linear systems with mismatched time-variable uncertainties [J]. Journal of Franklin institute,2000,33(7):105-115.
    [68]胡剑波,褚健.一类非匹配不确定性系统的变结构控制[J].控制理论与应用,2002, 1(6):105-108.
    [69]Choi H H. An LMI-based switching surface design method for a class for mismatched uncertain systems[J]. IEEE Transactions on Automatic and Control,2003,48(9): 1634-1638.
    [70]Choi H H. Variable structure output feedback control design for a class of uncertain dynamic systems[J]. Automatica,2002,38(2):335-341.
    [71]Yahaya M S, Johari H S Osman. A class of proportional-integral sliding mode control with application to active suspension system[J]. Systems & Control Letters,2004,51(3): 217-223.
    [72]Tao C W, Taur J S. Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties [J]. IEEE Transactions on System Man and cybernetics-Part B:cybernetics,2004,34(1):255-262.
    [73]郑雪梅,冯勇,陈晓丽.多变量模型不确定系统的二阶滑模分解控制方法[J].控制与决策,2003,18(4):407-412.
    [74]郑雪梅,冯勇,鲍晟.非匹配不确定系统的终端滑模分解控制[J].控制理论与应用,2004,21(8):617-622.
    [75]郑剑飞,冯勇,杨旭强.非匹配不确定多变量系统高阶终端滑模控制[J].电机与控制学报,2009,13(1):117-122.
    [76]康宇,奚宏生,季海波.有限时间快速收敛滑模变结构控制[J].控制理论与应用,2004,21(4):623-626.
    [77]刘云峰,陈斌文,缪栋.具有强鲁棒性的滑模变结构控制[J].信息与控制,2008,37(2):140-145.
    [78]张秀华,徐炳林,赵宇.有限时间收敛的Terminal滑模控制设计[J].控制工程,2008,15(6):637-639.
    [79]Man Z H, Yu X H. Terminal sliding mode control of MIMO systems[J]. IEEE Transactions on Circuits and systems,1997,44(11):1065-1070.
    [80]Man Z H, Paplinski A P, and H R Wu. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators[J]. IEEE Transactions on Automatic Control,1994,39(12): 2464-2469.
    [81]康宇,奚宏生,季海波,王俊.不确定多变量线性系统的快速收敛滑模变结构控制[J].控 制理论与应用,2003,33(6):718-725.
    [82]Park K B, Tsuiji T. Terminal sliding mode control of second order nonlinear uncertain systems[J]. International Journal of Robust and Nonlinear Control,1999,9(11):769-780.
    [83]张袅娜,冯勇,孙黎霞.双臂柔性机械手的逆动态终端滑块控制[J].控制与决策,2004,19(10):1142-1146.
    [84]邓以高,张友安,齐红德.一类非线性系统的滑模控制稳态精度研究[J].系统工程与电子技术,2007,29(4):609-612.
    [85]刘云峰,陈斌文等.具有强鲁棒性的滑模变结构控制[J].信息与控制,2008,37(2):140-145.
    [86]王丰尧.滑模变结构控制[M].北京:机械工业出版社,2011.
    [87]瞿少成.不确定系统的滑模控制理论及应用研究[M].武汉:华中师范大学出版社,2008.
    [88]薛定宇.控制系统计算机辅助设计[M].北京:清华大学出版社,1996.
    [89]胡跃明.变结构控制理论与应用[M].北京:机械工业出版社,1995.
    [90]姚琼荟,黄继起,吴汉松.变结构控制系统[M].重庆:重庆大学出版社,1997.
    [91]Dorling C M, Zinober A S I. Two approaches to hyperplane design in multivariable variable structure control systems[J]. International Journal of Robust and Nonlinear Control,1986,44(1):65-82.
    [92]叶振信,傅维贤,王万军,李亚辉,王永骥.战术导弹BTT控制技术发展综述[J].航天控制,2009,27(5),106-111.
    [93]董斌,李玉华.BTT导弹俯仰/偏航通道变结构控制系统设计[J].科学技术与工程,2011,11(14):3197-3213.
    [94]Wang Z, Li S H and Fei S M. Finite-time tracking control of bank-to-turn missiles using terminal sliding mode[J]. ICIC Express Letters,2009,3(4):1373-1380.
    [95]朱志刚,周凤岐.BTT导弹滚动通道变结构最终滑态控制系统设计[J].西北工业大学学报,1995,13(2):292-297.
    [96]廖立蔼,孟秀云,林波.BTT导弹自动驾驶仪自适应变结构设计[J].弹箭与制导学报,2005,25(2):24-26.
    [97]董朝阳,吴振辉,陈宇,王枫.直接力导弹的模型参考自适应滑模控制器设计[J].系统仿真学报,2008,20(13):3500-3503.
    [98]朱凯,齐乃明,秦昌茂,陈军波.BTT导弹滚转通道无抖振滑模控制研究[J].系统仿 真学报,2010,22(1):191-194.
    [99]Utkin V I, Shi J X. Integral sliding mode in systems operating under uncertainty conditions[C]//35th IEEE Conference on Decision and Control, Kobe, Japan,1996.
    [100]Feng Y, Yu X H and Zheng J F. Nonsingular terminal sliding mode control of uncertain multivariable systems[C]//Proceeding of the 2006 International Workshop on Variable Structure Systems, Alghero, Italy,2006,196-201.
    [101]Lukyanov A G, Utkin V I. Time-varying linear system decomposed control[C]//Proceeding of the American Control Conference, Philadelphia, Pennsylvania,1998,2884-2888.
    [102]Levant A. Higher-order sliding modes, differentiation and output feedback control[J]. International Journal of Control,2003,76(6):924-941.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700