用户名: 密码: 验证码:
基于智能计算的系统动态优化方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
严格意义上来说,任何一个化工过程都是动态的过程,状态变量总是会随着时间的演变或者空间的转移而发生改变。系统状态随时间而变化的系统或者按确定性规律随时间演化的系统,称为动态系统,通常可以由微分方程或者差分方程来描述,描述动态系统特征的模型称为动态模型。动态优化就是通过控制动态模型中的控制变量,使得过程中的某个或者某些性能指标达到最优。对于稍许复杂的动态优化问题,通常无法得到解析解,一般是在庞特里亚金极大值原理或者贝尔曼最佳原理的基础上,采用数值求解的方法以分段常数来逼进最优控制曲线,常用的方法包括最速下降法、共轭梯度法和动态规划法等等。随着智能计算的发展,新型的智能计算在动态优化问题中的应用越来越广泛,尤其是在梯度信息不可得的情况下。本文旨在对基于智能计算的动态优化问题的求解展开研究,主要研究内容概括如下:
     1.为了求解最简单的单控制变量、状态变量无约束的动态优化问题,对基本的遗传算法进行了改进,引入单纯形算法进行局部寻优,采用遗传算法进行全局寻优,并采用了自适应交叉和高斯变异操作,将单纯形算法的局部寻优能力和遗传算法的全局寻优能力相结合。通过求解动态优化问题实例,表明改进的混合遗传算法在求解动态优化问题时比基本遗传算法的搜索速度和结果准确度都有了提高。由于常用的分段常数法在求解动态优化问题时存在求解准确度不高的问题,为了提高动态优化问题的求解准确度,将控制变量参数化方法与混合遗传算法相结合来求解动态优化问题。在提出的控制变量参数化方法中,控制策略表示为时间和状态变量组成的多项式,将动态优化问题转化为一个非线性规划问题,然后可以通过混合遗传算法来求解未知参数。为了快速地收敛得到参数的最优值,在混合遗传算法中还采用了迭代的方法逐步缩小搜索空间。通过与CACA、SA以及IACA等方法的比较,结果表明提出的基于迭代混合遗传算法的控制变量参数化方法在求解动态优化问题时,在准确度方面有很大优势,求解结果较稳定,并且需要求解的参数个数也较少,计算代价较小。
     2.为了提高控制变量参数化方法求解动态优化问题的准确度,提出了分段线性函数参数化方法。在分段线性函数参数化方法中,分别采用了等时间区间和时间区间可变两种方法。为了解决遗传算法和粒子群算法在求解动态优化问题时的早熟收敛问题,采用了一种新的混合进化算法HEA,结合了遗传算法和粒子群算法的性能,提高了求解效率。另外,为了改进收敛速度,提高算法在进化后期的求解速率,结合动态优化问题本身的特点,提出了“收缩搜索域”的概念。通过求解几个动态优化实例,HEA与其它一些算法进行了对比,结果显示,HEA算法易执行,求解速度较快,求解精度较高。基于等时间区间分段线性函数参数化方法的HEA-D算法应用于外源蛋白质生产的补料流率优化,取得了满意的效果。基于时间区间可变的分段线性函数参数化方法的HEA-N算法成功应用于两个生化过程反应器的动态优化,实验结果表明,HEA-N在优化结果和计算代价方面都有一定的优势。
     3.针对动态优化问题中的多控制变量以及状态变量有约束的问题,分别提出了多控制变量的求解方法和约束的处理机制。针对前两部分提出的基于混合遗传算法的控制变量参数化方法和基于混合进化算法的分段线性函数参数化方法,分别给出了不同方法用于求解多控制变量动态优化问题时的控制策略编码方式。在状态变量有约束的动态优化问题的求解中,提出了一种新的目标函数评估方法,将可行解和不可行解的信息同时嵌入到目标函数的评估公式中,可以同时求解等式约束和不等式约束,并且能够同时求解路径约束和终端约束,通过将算法应用在测试实例中,表明提出的方法可以有效求解多控制变量和状态变量有约束的动态优化问题。
     4.建立了环氧乙烷水合反应器的机理模型,并采用基于混合进化算法的分段线性函数参数化方法对反应器的温度分布进行了优化。环氧乙烷水合反应器是乙二醇生产中的一个重要装置,但是关于水合反应的机理和工业模型的研究和报道却较为少见。考虑到实验室数据与实际工业生产状况存在差距,首先根据实验室数据提出动力学模型,然后根据工业数据进行动力学参数的校正,建立了环氧乙烷水合反应器的数学模型,并将动态优化算法应用于模型中进行优化求解,得到了各反应物沿管长的最优浓度分布以及环氧乙烷水合反应器内的最优温度分布。
Chemical processes strictly are the dynamic processes, where the state variables vary with the time and the position. Dynamic processes are often described by the dynamic model of a group of differential equations. Dynamic optimization is to make a performance index optimal by controlling operational variables in dynamic model. For complex dynamic optimization problems, it is difficult to obtain analytic solution. The general method, including steepest descent method, conjugate gradient method and dynamic programming, is to search piecewise functions as the approximation with numerical methods on the base of Bellman's principle of optimality or the Hamiltonian function. In recent years, the novel intelligent algorithms based on bionics become more and more popular for solving dynamic optimization problems. The intelligent algorithms are applicable especially for the cases that the gradients are not available. This thesis aims at solving dynamic optimization problems using control vector parameterization (CVP) method based on intelligent evolutionary algorithm. The main contributions can be summarized as follows:
     1. For solving dynamic optimization problems with single control variable and no constraint, a hybrid genetic algorithm (HGA) is proposed. Genetic algorithm (GA) has been proved to be a feasible method when the gradient is difficult to calculate. Its advantage is that the control profiles at all time stages are optimized simultaneously. However, in the later period of evolution, GA has a very slow convergence speed. Simplex method (SM) is used to perform the local search in the neighborhoods of the optimal solution. By using SM, the ideal searching direction of global optimal solution could be found as soon as possible and the convergence speed of the algorithm is improved.In HGA, some improvements like employing adaptive crossover and Gaussian mutation operators are also presented. The efficiency of the proposed algorithm is demonstrated with solving several dynamic optimization problems. An approach that combines HGA and CVP is also proposed to solve the dynamic optimization problems of chemical processes using numerical methods. In the new CVP method, control variables are approximated with polynomials based on state variables and time in the entire time interval. The iterative method, which reduces redundant expense and improves computing efficiency, is used with HGA to reduce the width of the search region. Results demonstrated the feasibility and robustness of the proposed methods.
     2. For solving dynamic optimization more accuratly, the piecewise linear function parameterization method is proposed, including equal time interval distribution and changeable time interval distribution. A novel hybrid evolutionary algorithm (HEA) by combining GA and particle swarm optimization (PSO) is proposed. Based on the characteristics of dynamic optimization problems, the concept of "search region reduction" is integrated into the HEA to improve the convergence rate. The results of the case studies demonstrate the feasibility and efficiency of the proposed methods. In order to fairly evaluate their advantages, a careful and critical comparison with several other direct approaches is provided. The results indicate that the proposed approach presents the best compromise between robustness and efficiency.
     3. For solving dynamic optimization problems with multi control variables and with constraints, the methods for dealing with multi variables and constraints are proposed. Multi control variables dynamic optimization problems and constrained dynamic optimization problems are more difficult than the simple dynamic optimization problems. A new method that embeds the information of infeasible chromosomes into the evaluation function is introduced in this study to solve dynamic optimization problems with or without constraint. The results indicate that the proposed approaches can effectively solve the dynamic optimization problems with multi control variables and with constraints.
     4. Focusing on ethylene oxide (EO) hydration reactor industrial equipment, the reaction mechanism model is established. Based on the principle of material balance, energy balance and kinetics of the reactions of ethylene oxide with water, partial least squares regression (PLSR) is used in the model to establish a corresponding relationship between the reaction rate constant and the reaction temperature. With kinetic parameters correction by using field data, the results are more tallies with the actual operation. According to the established model, influences of water/EO molar ratio and inlet temperature on product quality, outlet temperature and energy consumption are analyzed. The results show that the model can preferably reflect the performance of EO hydration reactor and have certain guidance functions to the further advanced control strategies. At last, the dynamic optimization algorithm is used to slove the temperature distribution problem of the EO hydration reactor. The optimal concentration distribution of the product and the optimal temperature distribution of the reactor are obtained.
引文
[1]Storen S, Hertzberg T. The sequential linear quadratic programming algorithm for solving dynamic optimization problems [J]. Computers and Chemical Engineering,1995,19: 495-500.
    [2]Vicente M, Sayer C, Leiza J R. Dynamic optimization of non-linear emulsion copolymerization systems open-loop control of composition and molecular weight distribution [J]. Chemical Engineering Journal,2002,85:339-349.
    [3]Huang Yuanjie, Reklaitis G V, Venkatasubramanian V. Model decomposition based method for solving general dynamic optimization problems [J]. Computers and Chemical Engineering,2002,26:863-873.
    [4]Barton P I, Lee C K. Design of process operations using hybrid dynamic optimization [J]. Computers and Chemical Engineering,2004,28:955-969.
    [5]Oldenburg J, Marquardt W. Flatness and higher order differential model representations in dynamic optimization [J]. Computers and Chemical Engineering,2002,26:385-400.
    [6]陆恩锡,张慧娟.化工过程模拟及相关高新技术(Ⅱ)化工过程动态模拟[J].化工进展,2000,19(1):76-78.
    [7]Srinivasan B, Palanki S, Bonvin D. Dynamic optimization of batch processes I: Characterization of the nominal solution [J]. Computers and Chemical Engineering,2003, 27:1-26.
    [8]Srinivasan B, Bonvin D, Visser E. Dynamic optimization of batch processes II. Role of measurements in handling uncertainty [J]. Computers and Chemical Engineering,2002, 27:27-44.
    [9]Borio D O, Schbib N S. Simulation and optimization of a set of catalytic reactors used for dehydrogenation of butane into butadiene [J]. Computers and Chemical Engineering, 1995,19:345-350.
    [10]Emil H E, Jens G B. Dynamic optimization and production planning of thermal cracking operation [J]. Chemical Engineering Science,2001,56:989-997.
    [11]Xu H K, Kim T H. Convergence of hybrid steepest-descent methods for variational inequalities [J]. Journal of optimization theory and applications,2003,119(1):185-201.
    [12]Rodi W, Mackie R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion [J]. Geophysics,2001,66(1):174-187.
    [13]Lu W G, Chen M L, Olivera G H. Fast free-form deformable registration via calculus of variations [J]. Physics in Medicine andBiology,2004,49(14):3067-3087.
    [14]曾进,任庆生.基于改进遗传算法的时间最优控制问题求解[J].控制与决策,2002, 17(1):41-44.
    [15]Debasis Sarkar, Jayant M. Modak. Optimisation of fed-batch bioreactors using genetic algorithms [J]. Chemical Engineering Science,2003,58:2283-2296.
    [16]贺益君,俞欢军,成飙,陈德钊.多目标粒子群算法用于补料分批生化反应器动态多目标优化[J].化工学报,2000,58(5):1262-1270.
    [17]Rakesh Angira, Alladwar Santosh. Optimization of dynamic systems:A trigonometric differential evolution approach [J]. Computers and Chemical Engineering,2007,31: 1055-1063.
    [18]Mohammad Reza Rahimpour, Davood Iranshahi, Ali Mohammad Bahrnanpour. Dynamic optimization of a multi-stage spherical, radial flow reactor for the naphtha reforming process in the presence of catalyst deactivation using defferential evolution (DE) method [J]. International Journal of Hydrogen Energy,2010,35(14):7498-7511.
    [19]Wang L, Lv W X, Huang D X. Dynamic flowsheeting simulation and application in the operation analyze of propylene tower [J]. Computers and Applied Chemistry,2006,23(1): 83-87.
    [20]刘济,顾幸生,张素贞.PET固相缩聚反应器动态模型[J].化工学报,2008,59(7):1727-1731.
    [21]邵之江,江爱朋,陈曦,方学毅,郑小青,耿大钊,钱积新.乙烯脱丁烷塔智能操作优化方法研究.高校化学工程学报,2006,6(20):983-988.
    [22]Ali A, Victor G, Jose R. Hybrid modelling:architecture for the solution of complex process systems [J]. Computer Aided Chemical Engineering,2002,10:409-414.
    [23]Mohammad S, Ali H, Saeedi S. Modeling and simulation of membrane-absorption hybrid systems for CO2 capture from natural gas [J]. Greenhouse Gas Control Technologies, 2005,7:2519-2523.
    [24]Saeid M, William A, James G. Dynamic simulation of gas processing plants [J]. Handbook of Natural Gas Transmission and Processing,2006:461-483.
    [25]Grigore B, Gheorghe B, Valentin P, Ilie M, Corneliu D. Modelling and simulation of kinetics and operation for the TAME synthesis by catalytic distillation [J]. Computer Aided Chemical Engineering,2003,14:575-580.
    [26]Elkanzi E M. Simulation of the process of biological removal of hydrogen sulfide from gas [A]. Proceedings of the 1st Annual Gas Processing Symposium,2009:266-275.
    [27]王威,苏宏业,胡永有,褚健.填料塔精馏过程的建模与优化[J].化工自动化及仪表,2002,29(3):25-28.
    [28]Wang W, Su HY, Hu YY, Chu J. Modeling and optimization for packed column [J]. Control and Instruments in Chemical Industry,2002,2(93):25-28.
    [29]王亮,吕文祥,黄德先.动态流程模拟及其在精馏塔的操作分析中的应用[J].计算 机与应用化学,2006,23(1):83-87.
    [30]Liu C J, Yuan X G, Yu K T. A fluid dynamic model for flow pattern on a distillation tray [J]. Chemical Engineering Science,2000,55(12):2287-2294.
    [31]路浩宇,吴惠雄.气体分馏装置的动态模拟[J].石油与天然气化工,2008,37(5):377-379,382.
    [32]Jose E, Eurico C, Pablo J, Josep A F. Two examples of steady state simulation with HYSYS at GALPenergia sines refinery [J]. Computer Aided Chemical Engineering,2004 (18):211-216.
    [33]翟晓东.通过HYSYS模拟系统优化裂解装置脱丙烷塔操作[J].炼油与化工,2005,16(3):26-30.
    [34]罗娜,蒋勇,叶贞成,杜文莉,钱锋.基于集成建模方法的乙二醇全流程模拟[J].化工学报,2009,60(1):151-156.
    [35]Soos M, Graczova E, Markos J, Molnar A, Steltenpohl P. Design and simulation of a distillation column for separation of dichloropropane from a multicomponent mixture [J]. Chemical Engineering and Processing,2003,4(22):273-284.
    [36]Georges A M, Arturo G, Marc E L, Harold G F Simon C, Surendra K S, Peter I C. Kinetics of the reactions of ethylene oxide with water and ethylene glycols [J]. Process Safety Progress,2001,20(4):231-246.
    [37]万斌,田文德,姚飞.精馏过程实时动态模型[J].高校化学工程学报,2000,14(3):298-301.
    [38]张兵,陈德钊.迭代遗传算法及其用于生物反应器补料优化[J].化工学报,2005,56(1):100-104.
    [39]洪伟荣,王彦,谭鹏程.基于原对偶内点法的化工过程优化方法[J].化工学报,2010,61(8):1978-1982.
    [40]Bing Zhang, Dezhao Chen, Weixiang Zhao. Iterative ant-colony algorithm and its application to dynamic optimization of chemical process [J]. Computers and Chemical Engineering,2005,29:2078-2086.
    [41]Jose A. Egea, Eva Balsa-Canto, Maria-Sonia G. Garcia, and Julio R. Banga. Dynamic optimization of nonlinear processes with an enhanced scatter search method [J]. Industrial and Engineering Chemistry Research,2009,48:4388-4401.
    [42]Pham Q T. Dynamic optimization of chemical engineering processes by an evolutionary method [J]. Computers and Chemical Engineering,1998,22(7):1089-1097.
    [43]J. Rajesh, Kapil Guptal, Hari Shankar Kusumakar, V.K. Jayaraman, B.D. Kulkarni. Dynamic optimization of chemical processes using ant colony framework [J]. Computers and Chemistry,2001,25:583-595.
    [44]Pontryagin L S, Boltyanskil V G, Gamkrelidge R V, Mishchenko E F. The Mathematical Theory of Optimal Processes [M]. Interscience,1962.
    [45]Bryson A E, Ho Y C. Applied Optimal Control [M]. Hemisphere Pub. Corp.,1975.
    [46]Ray W H, Szekely J. Process Optimization [M]. John Wiley,1973.
    [47]Bryson, A E. Dynamic Optimization [M].Addison Wesley,1999.
    [48]Bellman R. Dynamic Programming [M]. Princeton University Press,1959.
    [49]Wongrat W, Younes A, Elkamel A, Douglas P L, Lohi A. Control vector optimization and genetic algorithms for mixed-integer dynamic optimization in the synthesis of rice drying processes [J]. Journal of the Franklin Institute (special issue on Modeling, Simulation, and Applied Optimization),2011,348 (7):1318-1338.
    [50]Asgari S A, Mahmoud R P. Dynamic optimization in chemical processes using region reduction strategy and control vector parameterization with an ant colony optimization algorithm [J]. Chemical Engineering and Technology,2008,31(4):507-512.
    [51]Pollard G P, Sargent R W. Off Line Computation of Optimum Controls for a Plate Distillation Column [J]. Automatica,1970,16:59-76.
    [52]Morison K R. Optimal Control of Process Described by Systems of Diferential-Algebraic Equations, PH.D. Thesis, University of London,1984.
    [53]C J Goh, K L Toe. Control parameterization:A unified approach to optimal control problems with general constraints [J]. Automation,1988,24:3-18.
    [54]Vassiliadis V, Sargent R W, Pantelides C C. Solution of a class of multi stage dynamic optimization problem.1. Problems with path constraints [J]. Industrial and Engineering Chemistry Research,1994,133(9):2111-2122.
    [55]Vassiliadis V, Sargent R W, Pantelides C C. Solution of a class of multi stage dynamic optimization problem.2. Problems with path constraints [J]. Industrial and Engineeirng Chemistry Research,1994,133(9):2123-2133.
    [56]J S Logsdon, L T Biegler. Accurate solution of diferential-algebraic optimization problems [J]. Chemical Engineering Science,1989,28:1628-1639.
    [57]Rein Luus. Application of iterative dynamic programming to state constrained optimal control problem [J]. Industrial and Engineeirng Chemistry Research,1991,19:245-254.
    [58]Rein Luus, Oscar Rosen. Application of dynamic programming to final state constrained optimal control problem [J]. Industrial and Engineeirng Chemistry Research,1991,30: 15-25.
    [59]Rein Luus. The application of iterative dynamic programming to singular optimal control problems [J]. IEEE Trans. Autom. Control.1992,37:1802-1806.
    [60]Rein Luus. Optimal control of batch reactors by iterative dynamic programming [J]. Jounral of Process Control,1994,4:218-226.
    [61]王健,陈丙珍,何小荣.并行计算在化工系统模拟与优化中的应用[J].化工学报, 2002,53(5):441-446.
    [62]Cervantes A, Biegler L T. Optimization strategies for dynamic systems. In C. Floudas, P. Pardalos (Eds.), Encyclopedia of Optimization, Dordrecht:Kluwer Academic Publishers, 1999.
    [63]Cervantes A M, Wachter A, Tutuncu R, Biegler L T. A reduced space interior point strategy for optimization of diferential algebraic systems [J]. Computers and Chemical Engineering,2000,24:39-51.
    [64]L T Biegler, A M Cervantes, A Wachter. Advances in simultaneous strategies for dynamic process optimization [J]. Chemical Engineering Science,2002,57:575-593.
    [65]L T Biegler. An overview of simultaneous strategies for dynamic optimization [J]. Chemical Engineering and Processing,2007,46(11):1043-1053.
    [66]L T Biegler, V M Zavala. Large-scale nonlinear programming using IPOPT:An integrating framework for enterprise-wide dynamic optimization [J]. Computers and Chemical Engineering,2009,33:575-582.
    [67]Dorigo M, Maniezzo V, Colorni A. The ant system:optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B. 1996,26(1):1-13.
    [68]Dorigo M, Gambardella L M. Ant colonies for the traveling salesman problem [J]. Bio Systems,1997,43:73-81.
    [69]Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stigmergy [J]. Future Generation Computer Systems,2000,16:851-871.
    [70]Walter J, Gutjahr A. ACO algorithms with guaranteed convergence to the optimal solution [J]. Information Processing Letters,2002,82:145-153.
    [71]Jayaraman V K, Kulkarni B D, Karale S. Ant colony framework for optimal design and scheduling of batch plants [J]. Computers and Chemical Engineering,2000,24: 1901-1912.
    [72]郝晋,石立宝,周家启.求解复杂TSP问题的随机扰动蚁群算法[J].系统工程理论与实践,2002,9:88-91.
    [73]吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法[J].计算机学报,2001,24(12):1328-1333.
    [74]张兵,俞欢军,陈德钊.序贯优化化工动态问题的蚁群算法[J].高校化学工程学报,2006,20(1):120-125.
    [75]Holland J H. Adaptation in natural and artificial systems [M]. University of Michigan Press:Ann Arbor,1975.
    [76]Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proceedings of IEEE International Conference on Neural Networks,1995,1942-1948.
    [77]Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [C]. Proceedings of the Sixth International Symposium on Micromachine and Human Science,1995, 39-43.
    [78]Shi Y, Eberhart R C.A modified particle swarm optimizer [C]. Proceedings of the Conference on Evolutionary Computation, IEEE Press, Piscataway,1998,69-73.
    [79]莫愿斌,陈德钊,胡上序.混沌粒子群算法及其在生化过程动态优化中的应用[J].化工学报,2006,57(9):2123-2127.
    [80]Storn R, Price K. Minimizing the Real Functions of the ICEC'96 Contest by Differential Evolution//Proceedings of the IEEE Conference on Evolutionary Computation [C]. Nagoya:Japan,1996,842-844.
    [81]Fan H Y, Lampinen J. A trigonometric mutation operation to differential evolution [J]. Journal of Global Optimization,2003,27:105-129.
    [82]Angira R, Babu B V. Optimization of process synthesis and design problems:A modified differential evolution approach [J]. Chemical Engineering Science,2006,61:4707-4721.
    [83]Babu B V, Angira R. Modified differential evolution (MDE) for optimization of nonlinear chemical processes [J]. Computers and Chemical Engineering,2006,30:989-1002.
    [84]Mathys C P, Andries P. Engelbrecht. Using Competitive Population Evaluation in a differential evolution algorithm for dynamic environments [J]. European Journal of Operational Research,2011,1:1-14.
    [85]Lu Youlin, Zhou Jianzhong, Qin Hui, Li Yinghai, Zhang Yongchuan. An adaptive hybrid differential evolution algorithm for dynamic economic dispatch with valve-point effects [J]. Expert Systems with Applications,2010,37:4842-4849.
    [86]Peng B. Knowledge and population swarms in cultural algorithms for dynamic environments [D]. USA:Wayne State University,2005.
    [87]黄海燕,顾幸生,刘漫丹.求解约束优化问题的文化算法研究[J].自动化学报,2007,33(10):1115-1120.
    [88]张涤,杨燕.文化算法研究进展[J].计算机工程与科学,2007,29(10):29-31.
    [89]刘宗其,杜文莉,祁荣宾,钱锋.基于知识改进的文化算法及其在化工动态优化中的应用[J].化工学报,2010,61(11):2889-2895.
    [90]Wongrat W, Younes A, Elkamel A, Douglas P L, Lohi A. Control vector optimization and genetic algorithms for mixed-integer dynamic optimization in the synthesis of rice drying processes [J]. Journal of the Franklin Institute (special issue on Modeling, Simulation, and Applied Optimization),2011,348 (7):1318-1338.
    [91]G P Kasprzyk, M Jasku. Application of the hybrid genetic-simplex algorithm for deconvolution of electrochemical responses in SDLSV method [J]. J. Electra. Chem., 2004,567:39-66.
    [92]Shu-Kai S Fan, Erwie Zahara. A hybrid simplex search and particle swarm optimization for unconstrained optimization [J]. European Journal of Operational Research,2007,181: 527-548.
    [93]Ren Ziwu, San Ye, Chen Junfeng. Hybrid simplex-improved genetic algorithm for global numerical optimization [J]. Acta Automatica Sinica,2007,33:91-95.
    [94]Erwie Zahara, Yi-Tung Kao. Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems [J]. Exp. Sys. Appl.,2009,36: 3880-3886.
    [95]Amel Kamoun, Mohamed Jaziri, Moncef Chaabouni. The use of the simplex method and its derivatives to the on-line optimization of the parameters of an injection molding process [J]. Chem. Intell. Lab. Sys.,2009,96:117-122.
    [96]宫锡芳.最优控制问题的计算方法[M].北京:科学出版社,1979.
    [97]Park S, Ramirez W F. Optimal production of secreted protein in fed-batch reactors [J]. AIChE Journal,1988,34(8):1550-1558.
    [98]Tholudur A, Ramirez W F. Obtaining smoother singular arc policies using a modified iterative dynamic programming algorithm [J]. Inter. J. Control.,1997,8(5):1115-1128.
    [99]Eva Balsa-Canto, Julio R. Banga. Efficient optimal control of bioprocesses using second-order information [J]. Industrial and Engineeirng Chemistry Research,2000, 39(11):4287-4295.
    [100]Eva Balsa-Canto, Julio R. Banga, Antonio A. Alonso, Vassilios S. Vassiliadis. Dynamic optimization of chemical and biochemical processes using restricted second-order information [J]. Computers and Chemical Engineering,2001,25:539-546.
    [101]Sarkar D, Modak J M. ANNS A:a hybrid artificial neural network/simulated annealing algorithm for optimal control problems [J]. Chemical Engineering Science,2003,58: 3131-3142.
    [102]Faber R, Tobias J, George T. Dynamic optimization with simulated annealing [J]. Computers and Chemical Engineering,2005,29:273-290.
    [103]Boeringer D W, Werner D H. Particle swarm optimization versus genetic algorithms for phased array synthesis [J]. IEEE Trans. Antenn. Propag.,2004,52:771-779.
    [104]Matekovits L, Mussetta M, Pirinoli P, Selleri S, Zich R E. Particle swarm optimization of microwave microstrip filters [C]. APS-Symposium, Monterey, CA,2004,20-26.
    [105]Gandelli A, Grimaccia F, Mussetta M, Pirinoli P, Zich R E. Development and validation of different hybridization strategies between GA and PSO [C]. IEEE Congress Evol. Comput.2007,2782-2787.
    [106]Cuthrell J E, Biegler L T. Simultaneous optimization and solution methods for batch reactor control profiles [J]. Computers and Chemical Engineering,1989,13:49-62.
    [107]Mekarapiruk W, Luus R. Optimal control of inequality state constrained systems [J]. Industrial and Engineering Chemistry Research,1997,36:1686-1694.
    [108]Luus R. Piecewise linear continuous optimal control by iterative dynamic programming [J]. Industrial and Engineering Chemistry Research,1993,32:859-865.
    [109]Luus R, Hennessy D. Optimization of fed-batch reactors by the Luus-Jaakola optimization procedure [J]. Industrial and Engineeirng Chemistry Research,1999,38: 1948-1955.
    [110]Julio R B, Eva B C, Carmen, G M, Antonio A A. Dynamic optimization of bioprocesses: Efficient and robust numerical strategies [J]. Journal of Biotechnology,2005,117: 407-419.
    [111]Lee J, Ramirez W F. Optimal fed-batch control of induced foreign protein production by recombinant bacteria [J]. AIChE Journal,1994,40:899-907.
    [112]Jensen T. Dynamic Control of Large Dimension Nonlinear Chemical Processes. Ph.D. Thesis. Princeton University,1964.
    [113]Roubos J A, Straten G, Boxtel A J. An evolutionary strategy for fed-batch bioreactor optimization:Concepts and performance [J]. Journal of Biotechnology,1999,67: 173-187.
    [114]Jayaraman V K, Kulkarni B D, Kapil G, Rajesh J, Kusumaker H S. Dynamic Optimization of Fed-Batch Bioreactors Using the Ant Algorithm [J]. Biotechnol. Prog. 2001,17:81-88.
    [115]林可鸿,贺益君,陈德钊.混合优化人工免疫网络用于过程动态优化[J].浙江大学学报(工学版),2008,42(12):2181-2186.
    [116]Bojkov B, Hansel R, Luus R. Application of direct search optimization to optimal control problems [J]. Hungarian Journal of Industrial Chemistry,1993,21:177-185.
    [117]P S Shelokar, V K Jayaraman, B D Kulkarni. Multicanonical jump walk annealing assisted by tabu for dynamic optimization of chemical engineering processes [J]. European Journal of Operational Research,2008,185:1213-1229.
    [118]Luus R. Optimal control by dynamic programming using systematic reduction in grid size [J]. International Journal of Control,1990,51:995-1013
    [119]Mohammad Hossein Ramezani, Nasser Sadati. Hierarchical optimal control of large-scale nonlinear chemical processes [J]. ISA Transactions,2009,48(1):38-47.
    [120]Dadebo S A, Mcauley K B. Dynamic optimization of constrained chemical engineering problems using dynamic programming [J]. Computers and Chemical Engineering,1995, 19:513-525.
    [121]林可鸿,贺益君,陈德钊.有约束过程动态优化问题的改进克隆选择算法[J].高校化学工程学报,2009,23:858-863.
    [122]张兵,杜文莉,钱锋.求解边值固定动态优化问题的一种混合算法[J].计算机与应用化学,2006,23(5):421-424.
    [123]张兵,陈德钊,吴晓华.分级优化用于边值固定的化工动态优化问题[J].化工学报,2005,56(7):1276-1280.
    [124]刘兴高,陈珑.约束优先边值固定最优控制嵌套优化方法[J].浙江大学学报(工学版),2010,44:1247-1250.
    [125]Dye R F. Ethylene Glycols Technology [J]. Korean Journal of Chemical Engineering, 2001,18(5):571-579.
    [126]Zahedi G, Amraei S, Biglari M. Simulation and Optimization of Ethanol Amine Production Plant [J]. Korean Journal of Chemical Engineering,2009,26(6):1504-1511.
    [127]Yang Z J, Ren N, Zhang Y H. Studies on Mechanism for Homogeneous Catalytic Hydration of Ethyl ene Oxide:Effects of pH Window and Esterification [J]. Catalysis Communications,2010,11(5):447-450.
    [128]Li Y C, Yan S R, Yue B. Selective Catalytic Hydration of Ethylene Oxide over Niobium Oxide Supported on Alpha-alumina [J]. Applied Catalysis A-General,2004,272(1): 305-310.
    [129]Li Y C, Yan S R, Yang W M. Effect of Calcination Temperature on Structure and Catalytic Performance of Sn-Nb2O5/a-Al2O3 Catalyst for Ethylene Oxide Hydration [J]. Chinese Journal of Catalysis,2006,27(5):433-439.
    [130]Dong H C, Mantha V, Matyjaszewski K. Thermally Responsive PM(EO) (2) MA Magnetic Microgels via Activators Generated by Electron Transfer Atom Transfer Radical Polymerization in Mini emulsion [J]. Chemistry of Materials,2009,21(17): 3965-3972.
    [131]V F Shvets, R A Kozlovskiy, I A Kozlovskiy, M G Makarov, J P Suchkov, A V Koustov. The Cause and Quantitative Description of Catalyst Deactivation in the Ethylene Oxide Hydration Process [J]. Chemical Engineering Journal,2005,107(1):199-204.
    [132]Georges A Melhem, Arturo Gianetto, Marc E levin, Harold G Fisher, Simon Chippett, Surendra K Singh, Peter I Chipman. Kinetics of the Reactions of Ethylene Oxide with Water and Ethylene Glycols [J]. Process Safety Progress,2001,20(4):231-246.
    [133]Altiokka M R, Akyalcin S. Kinetics of the Hydration of Ethylene Oxide in the Presence of Heterogeneous Catalyst [J]. Industrial and Engineering Chemistry Research,2009, 48(24):10840-10844.
    [134]Liu Zunxiong, Liu Jianhui. Chaotic Time Series Multi-step Direct Prediction with Partial Least Squares Regression [J]. Journal of Systems Engineering and Electronics,2007, 18(3):611-615.
    [135]Wang Ju, Meng He, Dong Deming, Li Wei, Fang Chunsheng. Partial Least Squares Regression for Predicting Economic Loss of Vegetables Caused by Acid Rain [J]. Journal of Chongqing University (English Edition),2009,8(1):10-16.
    [136]Luo Bijun, Zhao Yuan, Chen Ka, Zhao Xinhua. Partial Least Squares Regression Model to Predict Water Quality in Urban Water Distribution Systems [J]. Transactions of Tianjin University,2009,15(2):140-144.
    [137]Hu Chunping, Yan Xuefeng. Macrokinetic Model for Hydropurification of Terephthalic Acid Based on Multivariate Regression Model [J]. Chemical Reaction Engineering and Technology,2008,24(5):468-471.
    [138]Zhang Liqing, Wu Xiaohua. Simultaneous Spectrophotometric Determination of Three Components Including Deoxyschizandrin by Partial Least Squares Regression [J]. Journal of Wuhan University of Technology (Materials Science Edition),2005,20(3): 119-121.
    [139]Li Xia, Wang Baoliang, Huang Zhiyao, Li Haiqing. Application of PLSR to the Voidage Measurement of Gas-oil Two-phase Flow [C]. Electronic Measurement and Instruments, ICEMI'07.8th International Conference,2007:506-510.
    [140]Philip E Gill, Laurent O Jay, Michael W Leonard, Linda R Petzold, Vivek Sharma. An SQP Method for the Optimal Control of Large-scale Dynamical Systems [J]. Journal of Computational and Applied Mathematics,2000,120(1):197-213.
    [141]Paul T Boggs, Jon W Tolle. Sequential Quadratic Programming for Large-scale Nonlinear Optimization [J]. Journal of Computational and Applied Mathematics,2000,124(2): 123-137.
    [142]Ravindran S S. Optimal Control of Solid-fuel Ignition Model using SQP Method [C]. Decision and Control, Proceedings of the 41st IEEE Conference,2002:3288-3293.
    [143]Carpio R C, Santos Coelho L. Optimization and Modeling in the Co-Processing of Wastes in Cement Industry Comprising Cost, Quality and Environmental Impact using SQP, Genetic Algorithm, and Differential Evolution [C]. Evolutionary Computation, CEC 2006. IEEE Congress,2006:1463-1468.
    [144]Jiang Aipeng, Shao Zhijiang, Qian Jixin. Optimization of Reaction Parameters based on rSQP and Hybrid Automatic Differentiation Algorithm [J]. Journal of Zhejiang University (Engineering Science),2004,38(12):1606-1614.
    [145]Arbabi N, Najmabadi M, Devabhaktuni V, Yagoub M. A New SQP Based Space-Mapping Algorithm for On-Chip Spiral Inductor Optimization [C]. Electrical and Computer Engineering, CCECE 2007. Canadian Conference,2007:99-102.
    [146]Roger Flercher, Sven Letffer. Solving Mathematical Programs with Complementarity Constraints as Nonlinear Programs [J]. Optimization Methods and Software,2004,19(1): 15-40.
    [147]Chen X H, Sun K. Production method and application of ethylene oxide [J]. Chemical Technology Market,2008,31(10):33-36.
    [148]陈向华,孙凯.环氧乙烷的生产方法及应用[J].化工科技市场,2008,31(10):33-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700