用户名: 密码: 验证码:
基于升力反馈的全航速减摇鳍研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受到海风、海浪和海流等海洋环境干扰的影响,航行在海上的船舶不可避免的将产生各个方向的摇荡,在这六个自由度的运动中,以横摇影响最为显著。剧烈的横摇将严重影响船舶的适航性、设备的安全性、船员的舒适性和武备的使用性能。为了减小横摇,科技工作者发明了数百种船舶减摇设备,现在应用最广泛的减摇设备有主动式的减摇鳍与被动式的减摇水舱等,对于零低和中高航速下都需要减摇的船舶来说,以往的选择常常是同时配置减摇鳍与减摇水舱。在零低航速下依靠水舱来实现船舶减摇,在中高航速下依靠减摇鳍来实现减摇(或水舱和鳍联合控制实现减摇),然而水舱不仅要占用舱内宝贵的排水空间,且其减摇效果不高,同时维护两套系统的经济性也欠佳。
     受升力产生机理的限制,传统减摇鳍上的升力与速度的平方近似成比例,导致在零低航速下提供的稳定力矩有限,因此只适用于中高航速情况下。如果设计一种机构,可以使鳍在零低航速下产生满足船舶稳定需要的足够升力,则可以使减摇鳍应用在零低航速情况下,与中高航速应用的传统减摇鳍互相融合,则可以使减摇鳍应用在零、低、中、高全航速范围内。传统减摇鳍存在的另一个问题是大多采用鳍角作为伺服系统的反馈量,忽略了升力和鳍角之间的不确定性与非线性影响,限制了减摇鳍效果的改善。如果直接采用鳍上产生的升力作为转鳍伺服系统的反馈信号,而不是采用鳍角作为反馈,则可以克服上述问题。
     由于传统的中高航速鳍角反馈减摇鳍技术已经非常成熟,因此零低航速下减摇鳍技术研究、升力反馈技术研究、零低与中高航速切换策略研究是实现高效率全航速减摇鳍的关键问题。通过新的升力产生机理研究,使鳍可以在零低航速下产生足够升力,就可以使减摇鳍工作在零、低、中、高全航速范围内。文中首先对升力在零低航速下的产生机理进行了探讨,通过不同结构形式的分析,采用基于纵向拍动的结构形式作为全航速减摇鳍的应用类型。建立了更具意义的实际应用鳍型的低航速升力模型,并通过水动力试验对该模型中的未知参数进行了确定和模型的验证工作,从而证明了所提出的理论升力模型的正确性。
     限于零低航速下特殊的工作方式,鳍在零低航速下所产生的升力和升力维持时间有限,且两者相互矛盾。因此论文对如何增大纵向拍动结构形式的鳍在零低航速下的升力进行了研究。分别讨论了改变鳍轴位置、改变展弦比和改变鳍型等对升力的影响,综合考虑中高航速应用和零低航速应用,以带副翼的平行四边形鳍作为全航速减摇鳍的应用鳍型。针对常用的拱度变形和面积变形,应用建立的试验装置对理论分析结果进行了验证。试验数据显示了理论分析的正确性。
     升力反馈技术的实现难点恰恰是升力测量方案的实现,要综合考虑力传感器地安装、力的解耦、可维护性和成本等因素。在分析普通鳍角反馈减摇鳍所面临问题的基础上,研究了鳍升力测量的实现方式,由于国际上Sperry、Rolls-Royce和三菱重工的升力测量方案均存在一些重要的缺点,本文采用哈尔滨工程大学船舶减摇与控制技术研究所设计的基于方形微动轴承的升力测量方法,文中给出了具体的实现形式和机械结构。同时分析了完全采用升力反馈在零低、中高航速下分别面临的问题,因此本文采用升力和鳍角的综合控制方案。
     通过对零低和中高航速控制特点的分析,决定分别采用不同的控制方法来实现零低和中高航速下的控制。在零低航速下,以稳定力矩最大限度的消耗海浪干扰力矩为目标,通过小波变换和均生函数周期外推对船舶下半周期的横摇姿态进行预测,根据预测结果应用非线性规划确定控制序列中的最优参数,解决了零低航速下鳍上升力的严重非线性、多映射问题。在中高航速下通过T-S模型,将船舶横摇的非线性方程转化为线性时变系统,并通过在线辨识解决了船舶横摇方程的不确定性问题,通过在控制器中引入约束条件,解决了升力反馈减摇鳍在高海况下的失速问题。无论在零低航速下对船舶横摇姿态进行的实时预报,还是在中高航速下对规则后件的在线辨识,都较好的解决了船舶横摇模型的非线性、时变和不确定性问题。针对某型船的参数和减摇需求,设计了零低、中高航速切换策略,仿真结果显示,该控制策略可以满足全航速减摇的应用。
Subject to marine environment disturbances such as ocean wave, ocean wind and oceancurrent, ship sailing on the sea would inevitably show a variety of forced motions. Among allmotions in the six degree of freedom, roll is almost the most harmful one. Severe rollingwould seriously degrade the vessel’s seaworthiness, equipment’s safeness, crew’s comfort andweapon’s performance. Researchers have invented hundreds of anti-rolling devices forreducing the roll of ships. The most widely used anti-rolling devices are fin stabilizer andanti-rolling tank nowadays. In the past, for stabilizing the ships moving in all speed, the bestchoice was to equip the ship with both fin stabilizer and anti-rolling tank where anti-rollingtank is employed when moving in zero and low speed, and fin stabilizer is employed whenmoving in middle and high speed (or both anti-rolling tank and fin stabilizer). However,anti-rolling tank does not only occupy the valuable cabin space but also dissatisfies thedamping effect. Furthermore, it is economical costive since it requires maintenance of the twosets of system simultaneously.
     The general fin stabilizer can only be applied in middle and high speed condition resultedfrom the restriction of lift generating mechanism, where lift force is approximatelyproportional to the square of the speed, and would produce little stable moment at low speed.If fins can produce sufficient lift force that meets the ship stabilization requirement at lowspeed, then fin stabilizer can be applied in conditions with zero and low speed. Combinedwith general fin stabilizer that applied at middle and high speed, the improved fin stabilizercan be applied at all speed conditions, zero, low, middle and high. Another shortcoming ofgeneral fin stabilizer lies in that fact that fin angle is used as the feedback signal of servosystem ignoring the nonlinear and uncertainty between lift force and fin angle, and this factblocked the further improvement of stabilization effect. Using the lift force on the fin insteadof the fin angle as the feedback signal of servo system, the above problem will be overcomed.
     Since that the technology of general high speed fin stabilizer with fin angle feedback hasalready been mature, the remained key research topics on all speed fin stabilizer now includethe zero and low speed fin stabilizer, force feedback technology, and the switching principlebetween the conditions of low speed and middle speed. A new lift generating mechanism wasdiscussed at first. Then the different structure form that can produce lift force at zero speedwas analyzed. Longitudinal flapping structure was employed as fin type of the all speed application. Next, the lift force model at low speed was established, which will be morepractical significance. At last the unknown parameters in the model were determined byhydrodynamic test, and the effectiveness of lift model was verified through experiments.
     Lift and lift maintenance time were limited, and they are a pair of contradiction for thespecial working mode in zero and low speed. Therefore, research on how to increase the liftof longitudinal flapping structure fin in zero and low speed was performed. The effects of finshaft position, aspect ratio and fin type on lift were discussed. Taking into account of the allspeed working requirement, the parallelogram fins with flap was applied in fin stabilizer.Experiments were carried out on camber deformation and area deformation. Experimentresults demonstrate the correctness of the theoretical analysis.
     The sole challenge in lift force feedback technology is lift measuring, because that manyfactors should be taken into account, such as the installation, decoupling, maintenance, costsand other factors of force sensor. Noticing the shortcomings of lift measurement methods ofSperry, Rolls-Royce and Mitsubishi Heavy Industries, by analyzing the drawbacks of ordinaryfin angle feedback fin stabilizer, a lift measurement method based on square ness micro driveproposed by Harbin Engineering University was adopted. The specific implementation formand mechanical structure were discussed and the problems of lift feedback at all speedworking condition were analyzed, so the combined feedback based on fin angle and lift forcewere adopted in this paper.
     According to the control characteristics of zero/low speed and middle/high speed, variouscontrol methods were employed. Taking stabilization moment maximum consumption wavedisturbance moment as the goal, in zero and low speed, and through the wavelet transformand mean-generating function period extrapolation to forecast the roll state of ship, nonlinearprogramming was applied according to the forecasted results to determine the optimalparameters of the control sequence, and the nonlinear and multi mapping problem weresolved. The nonlinear equation of ship roll was transformed into a linear time-varying systemby T-S model, in middle and high speed, and the online identification of ship roll equationwas applied to solve the uncertainty problem. The stall problem was solved in lift-feedbackfin stabilizer at severe sea conditions by employing controller constrained condition. Aswitching strategy between low speed and high speed was designed for a certain type of shipparameters and roll reduction requirements. Simulation results show that the control strategycan meet the requirements of all-speed stabilizer.
引文
[1]金鸿章,姚绪梁.船舶控制原理.哈尔滨:哈尔滨工程大学出版社,2001
    [2]金鸿章,罗延明,张晓飞等.零航速减摇鳍电动伺服系统驱动功率研究.中国造船.2008,49(2):67-74页
    [3]张虹.可控被动式减摇水舱仿真及试验研究.哈尔滨工程大学博士学位论文,2004
    [4] Kluwe F, Schmode D, Jensen G.RANS based analysis of roll damping moments atbilge keels.8th NuTTS.Varna,Bulgaria,2005
    [5] Christian Holden, Tristan Perez, Thor I. Fossen.A Lagrangian approach to nonlinearmodeling of anti-roll tanks.Ocean Engineering.2011,38:341-359P
    [6]于立君.船舶减摇鳍减摇水舱综合减摇试验装置研究.哈尔滨工程大学博士学位论文,2007
    [7]谭越.U型被动减摇鳍水舱研究.大连理工大学硕士学位论文,2003
    [8] Osama A.Marzouk, AliH.Nayfeh.Control of ship roll using passive and active anti-rolltanks.Ocean Engineering.2009,36:661-671P
    [9]周颋.船舶停泊状态下减摇鳍系统的研究.哈尔滨工程大学硕士研究生论文,2008
    [10]赵为平,郭晨,金鸿章.“船舶-双水舱”减摇系统设计及仿真.系统仿真学报.2008,20(7):177-1777页
    [11] J. van Amerongen, P.G.M. van der Klugt, H.R. van Nauta Lemke.Rudder rollstabilization for ships.Automatica.1990,26(4):679-690P
    [12] John F, O’Brien.Multi-path nonlinear dynamic compensation for rudder rollstabilization.Control Engineering Practice.1996,4(3):377-384P
    [13]冯宜伟.网络控制系统的量化反馈控制研究.大连海事大学博士学位论文.2011
    [14] A ERICH BAITIS, LOUIS V SCHMIDT.Ship Roll Stabilization in the U.S.Navy.Naval Engineers Journal.1989,101(3):43-53P
    [15]陈放.鳍水动力应用及鳍和水舱综合减摇系统研究.哈尔滨工程大学博士学位论文,2005
    [16] M. T. Sharif, G. N. Roberts, R. Sutton.Sea-trial experimental results of fin/rudder rollstabilisation.Control Engineering Practice.1995,3(5):703-708P
    [17]刘彦文,刘胜,王毅.船舶舵减摇的H∞控制设计.电机与控制学报.2009,13(1):133-137
    [18]张晓飞.船舶零航速减摇鳍建模与控制策略研究.哈尔滨工程大学博士学位论文,2008
    [19]王龙金.零/低航速减摇鳍升力模型及系统控制策略研究.哈尔滨工程大学博士学位论文,2009
    [20] Ooms J. The use of roll stabilizer fins at zero speed.Amsterdam: Quantum ControlsBV,2002
    [21] Dallinga R P. Roll stabilization at anchor: Hydrodynamic aspects of the comparison ofanti-roll tanks and fins.Amsterdam: Maritime Research Institute Netherlands ManagerSeakeeping Department,2002
    [22] van Wieringen H M. Design considerations on at anchor stabilizing system.Amsterdam: Maritime Research Institute Netherlands Manager SeakeepingDepartment,2002
    [23]罗延明.船舶零航速减摇鳍及其电动伺服系统研究.哈尔滨工程大学博士学位论文,2007
    [24]綦志刚.船舶零航速减摇鳍升力机理及系统模型研究.哈尔滨工程大学博士学位论文,2008
    [25]金鸿章,张晓飞,罗延明等.零航速减摇鳍升力模型研究.海洋工程.2007,25(3):83-87页
    [26] Johari H,Henoch C,Custodio D,Levshin A.Effects of leading-edge protuberances onairfoil performance.American Institute of Aeronautics and Astronautics(AIAA),2007(45):2634-2642P
    [27] Miklosovic D S,Murray M M,Howle L E,Fish F E.Leading edge tubercles delay stallon humpback whale flippers.Physics of Fluids.2004,16(5):39-42P
    [28]金鸿章,潘艳,杨波.小攻角下驼背鲸减摇鳍的理论计算.船舶力学.2010,14(11):1219-1226页
    [29]金鸿章,巩晋,李冬松.仿驼背鲸减摇鳍升力数值计算.中国造船.2009,50(4):22-27页
    [30] Michiko Usui, Andrew Simpson, Suzanne Smith, etal. Development and flight testing of aUAV with inflatable rigidizable wings.AIAA2004:1370-1373P
    [31]王思研.变形鳍在低航速下升力建模与控制策略研究.哈尔滨工程大学硕士学位论文,2010
    [32]杭观荣,王振龙.形状记忆合金在固定翼飞机上的应用探索.微电机.2007,11:54-58页
    [33]黄丹.零航速下襟翼鳍升力建模与控制研究.哈尔滨工程大学硕士学位论文,2010
    [34] A.Simpson, M.Usui, S.Simth, J.Jacob.Aeromechanics of inflatable wings. AIAA34thFluidDynamic Conference,Portland,OR,June,2004
    [35] J.D.Kearns,M.Usui,S.W.Simth. Development of UV-curable inflatable wings forlow-density flight application. AIAA SDM Gossamer Spacecraft forum,Palm Spring. CA,April2004
    [36]梁燕华.升力/鳍角综合控制减摇鳍及其控制策略研究.哈尔滨工程大学博士学位论文,2008
    [37] P. Crossland.The effect of roll-stabilisation controllers on warship operationalperformance.Control Engineering Practice.2003,11:423-431P
    [38]修智宏,任光.船舶减摇鳍模糊控制器的系统化设计与仿真.系统仿真学报.2004,16(4):621-624页
    [39] Li Hui, Jin Hongzhang, Guo Chen.PID control based on wavelet neural networkidentification and tuning and its application to fin stabilizer.Proceedings of the IEEEInternational Conference on Mechatronics&Automation,Niagara Falls, Canada,2005:1907-1911P
    [40]刘胜,姚波.船舶减摇鳍系统最小方差控制.信息与控制.1994,23(3):178-184页
    [41]陈虹丽,赵希人,叶葵等.船舶减纵摇控制的LQG方法研究.哈尔滨工程大学学报.2004,25(4):407-411页
    [42]张晓宇,沈冬祥.基于LMI的船舶主鳍/襟翼鳍鲁棒控制研究.系统仿真学报.2008,20(12):3250-3252页
    [43] Ghaemi, Reza, Sun, Jing,Kolmanovsky, Ilya V.Robust control of ship fin stabilizerssubject to disturbances and constraints.Proceedings of the American ControlConference, Louis, MO, United states,2009:537-542P
    [44]杨盐生.船舶减摇鳍系统的变结构自适应鲁棒控制.大连海事大学学报.2000,26(4):9-13页
    [45] Tristan Perez.Ship motion control: course keeping and roll stabilisation using rudderand fins.Springer,2005
    [46] Ming-Chung Fang, Jhih-Hong Luo.On the track keeping and roll reduction of the shipin random waves using different sliding mode controllers.Ocean Engineering.2007,34:479-488P
    [47]王科俊,金鸿章,苏闽.减摇鳍系统的神经网络监督控制.中国智能自动化学术会议论文集,中国重庆,2005:179-184页
    [48]吴飞.基于ANFIS的船舶横摇运动预报及智能控制研究.大连海事大学硕士学位论文,2009
    [49]梁燕华,金鸿章,蔡成涛等.升力控制减摇鳍模糊控制策略的仿真研究.计算机测量与控制.2009,17(10):1946-1950页
    [50]赵伟.基于混合遗传算法的船舶减横摇模糊神经网络控制研究.哈尔滨工程大学硕士学位论文,2007
    [51]金鸿章,张晓飞,罗延明等.基于改进遗传算法的零航速减摇鳍自适应控制系统设计.哈尔滨工程大学学报.2008,29(4):368-373页
    [52]金鸿章,张晓飞,李冬松等.零航速减摇鳍永磁同步电机伺服系统广义预测控制.中国电机工程学报.2008,28(36):87-92页
    [53]吉明,金鸿章,梁利华等.升力反馈减摇鳍系统.中国造船.2004,45(1):39-44页
    [54]张海鹏,姚绪良,金鸿章.升力反馈减摇鳍及其鲁棒控制器的研究.控制理论与应用.2003,22(9):15-18页
    [55] J.H. CHADWICK, JR., ETAL.Roll stabilization system marine vessels.US:2960959,1960
    [56] Sperrymarine.The World Leading Ship Roll Stabilizer.http://www. sperrymarine.northropgrumman.com/Products/Ship_Stabilisers/gyrofin/howitworks,2011
    [57] Ivan F.Confield, Derek G.MacKay, robeert G.A.Melville, et.Lift Measurement.US:0196508,2008
    [58] Shuji Dobashi, Kasuhide Matsunaga, Tatsunori Ogahara.Fin stabilizer for vessel andcontrol method and control program therefor.US:263942,2007
    [59]张晓宇,金鸿章,李国斌等.船舶力控减摇鳍系统建模与仿真.中国造船.2002,43(3):64-69页
    [60]迟晓珠,于桂臻,孙光岩.轴承负荷法用于鳍轴升力的测量.计测技术.2003,4:14-16页
    [61]张海鹏.升力反馈减摇鳍系统的研究及随动系统的改造.哈尔滨工程大学硕士学位论文,2002
    [62]金鸿章,陈放,许叙遥等.升力鳍实验装置的升力函数发生器.船舶工程.2004,26(3):24-28页
    [63]吉明,金鸿章,贺彦峰.广义扰动下升力反馈减摇鳍变结构控制器的设计.哈尔滨工程大学学报.2003,24(4):410-414页
    [64] Lightill,MJ.On the Weis-Fogh Mechanism of Lift Generation.J Fluid Mech.1973,60:1-17P
    [65] Spedding GR, Maxwort hy T.The Generation of Circulation and Lift in a RigidTwo-dimensional Fling.J Fluid Mech.1986,165:247-272P
    [66] Zhang Shesheng, Wu Xiuheng, Wang Xianfu.Hydrodynamic model of the weis-foghhydrofoil.Journal of Hydrodynamics.1996,4:35-39P
    [67]章社生,吴秀恒,王献孚.叶栅型Weis-Fogh振动推进装置.武汉交通科技大学学报,1996,20(6):726-732页
    [68] Tsutahara M, Kimura T, Ro k. Ship’s propulsion mechanism of Two-Stage Weis-Foghtype. ASME Jour of Fluid Engi.1994(2):278-286P
    [69] Jin HongZhang, Yu Wang, Qi ZhiGang, etal.Study on lift generation of Weis-Foghflapped fin stabilizer at zero speed.2006SICE-ICASE International Joint Conference,Busan, Korea,2006:1521-1524P
    [70]王献孚.船用翼理论.北京:国防工业出版社,1998
    [71]吴介之,马晖扬,周明德.涡动力学引论.北京:高等教育出版社,1993
    [72]普朗特.流体力学概论.北京:科学出版社,1966
    [73] M. C. Potter, D. C. Wiggert. Mechanics of fluids.北京:机械工业出版社,2003
    [74]王献孚,熊鳌魁.高等流体力学.武汉:华中科技大学出版社,2003
    [75] J.W.戴莱,D.R.F.哈里曼.流体动力学.北京:人民教育出版社,1981
    [76]张玉华,邱之振.单叶片推进器及其运动特性.机械工程学报,2006(3):193-196页
    [77] L. Guglielmini, P. Blondeaux. Numerical experiments on the transient motions of aflapping foil. European Journal of Mechanics B/Fluids,2009,28(1):136-145P
    [78] ZHANG Yonghua, JIA Laibing, ZHANG Shiwu. Computational research on modularundulating fin for biorobotic underwater propulsor.Journal of Bionic Engineering,2007,4(1):25-32P
    [79]金鸿章,张晓飞,綦志刚等.零航速减摇鳍升力特性分析.武汉理工大学学报.2008,30(2):136-139页
    [80]金鸿章,王帆.零航速仿生减摇鳍水动力模型改进.机械工程学报.2010,46(23):89-92页
    [81] Genetic algorithm.http://en.wikipedia.org/wiki/Genetic_algorithm,2011
    [82]周硕,刘悦.MATLAB在遗传模糊控制系统仿真中的应用.机械工程与自动化.2009,1:42-44页
    [83] Deb K, Pratap A, Agarwal S, etal.A fast and elitist multiobjective genetic algorithm:NSGA-II.IEEE Transactions on Evolutionary Computation.2002,6(2):182-197P
    [84] Dallinga, R P.Roll Stabilisation of Motor Yachts: Use of Fin Stabilizers in anchoredConditions. Amsterdam:Maritime Research Institute Netherlands Manager SeakeepingDepartment,1999
    [85]金鸿章,王帆,马玲.零航速减摇鳍鳍型参数估算方法.中国造船.2011,52(2):1-7页
    [86] F. E. Fish. Structure and mechanics of nonpiscine control surfaces. IEEE Journal ofOceanic Engineering,2004,29(3):605-618P
    [87] C. P. van Dan. Efficiency characteristics of crescent-shaped wings and caudal fins.Nature,1987(325):435-437P
    [88] T. L. Daniel. Unsteady aspects of aquatic locomotion. American Zoologist,1984,24(1):121-134P
    [89] R. W. Blake. Influence of pectoral fin shape on thrust and drag in labriformlocomotion. Journal of Zoology, London,1981(194):53-66P
    [90]丁宝苍,席裕庚,李少远.具有输入非线性的离散时间系统预测控制稳定性分析.自动化学报.2003,29(6):827-834页
    [91] D. S. Bernstein, W. M. Haddad. Nonlinear controllers for positive real systems witharbitrary input nonlinearities. IEEE Transactions on Automatic Control.1994,39(7):1513-1517P
    [92]王凡.零航速减摇鳍仿生机理及控制关键技术.哈尔滨工程大学博士学位论文,2010
    [93]金鸿章.减摇鳍PID调节器参数优化及其仿真.船工科技.1984(3):24-27页
    [94]于萍,刘胜.船舶减摇非线性系统神经网络控制研究.信息与控制.2003,32(3):264-267页
    [95]任占魁,王玮.基于遗传算法寻优的PID控制技术及应用.计算技术与自动化.2005,24(2):36-38页
    [96]王新屏,张显库.基于Backstepping与闭环增益成形的减摇鳍控制.大连海事大学,2008:34(3):89-92页
    [97] Yuantao Zhang, Weiren Shi, Lingling Yin, Mingbai Qiu, etal.Adaptive backsteppingand sliding mode control of fin stabilizer based on RBF neural network.InternationalConference on Intelligent Computing and Intelligent Systems.Shanghai,2009:302-307P
    [98] Sidar M M, Doolin B F.On the Feasibility of Real-Time Prediction of Aircraft CarrierMotion at Sea.IEEE Transactions on Automatic Control.1983,AC-28(3):350-356P
    [99] Triantafyllou M S, Bodson M.Real Time Prediction of Marine Vessel Motion UsingKalman Filtering Techiques.Proceeding of14th Annual Offshore TechnologyCofference.Houstom,Texas,1982
    [100] Triantafyllou M,Athans M.Real Time Estimation of Motions of a Destroyer UsingKalman Filtering Techniques.Laboratory for Information and Decision SystemsRep,MIT Cambridge.1983
    [101] Triantafyllou M, Athans M.Real Time Estimation of the Heaving and PitchingMotions of a Ship, Using a Kalman Filter. Proceeding of OCEANS81.Boston,Ma,USA,981:1090-1095P
    [102] Triantafyllou M,Bodson M, Athans M.Real time estimation of ship motions usingKalman filtering techniques.IEEE Journal of Oceanic Engineering.1983,8(1):9-20P
    [103]邱宏安.随机海浪模型的建立及仿真分析.系统仿真学报.2000,12(3):226-228P
    [104] Lin N K.Real Time Estimation of Ship Motion Using ARMA Filtering Techniques.Proceeding of6th International Offshore Mechanics and Arctic EngineeringSymposium.Houston,TX,1987
    [105] A Khan, C Bil, K E Marion.Theory and Application of Artificial Neural Networks forthe Real Time Prediction of Ship Motion.Proceedings of Knowledge-Based IntelligentInformation and Engineering Systems2005.Melbourne,Australia,2005:1064-1069P
    [106] MALLAT S G.A theory of multi-resolution signal decomposition:the waveletsrepresentation.IEEE Transactions on Pattern Analysis and Machine Intelligence.1989,11(7):674-693P
    [107] DAUBECHIES I.The wavelet transform,time-frequency localization and signalanalysis.IEEE Transactions on Information Theory.1990,36(5):961-1005P
    [108]李晖,郭晨,金鸿章.基于小波变换和均生函数周期外推组合模式的非平稳时间序列分析与长期预测.控制理论与应用.2008,25(2):283-288页
    [109]李晖,郭晨,金鸿章.基于WT和MGFPE混合模式的船舶横摇运动长期预测.哈尔滨工程大学学报.2007,28(6):611-615页
    [110] Stephen G Nash, Ariela Sofer.Linear and monlinear programming.NewYork:McGraw-Hill Companies,1996
    [111]沈琦.非线性规划问题和多目标规划的一种改进的降维算法.重庆大学硕士学位论文,2006
    [112] M S Bazaraa, Hanif D Sherali, C M Shetty.Nonlinear programming: theory andalgorithms(Third Edition).New Jersey Hoboken:John Wiley&Sons,Inc.2006
    [113] ZOUTENDIJK G.Methods of feasible directions: a study in linear and non-linearprogramming.ELSEVIER PUBLIHING COMPAN,1960
    [114] José Herskovits.A two-stage feasible directions algorithm for nonlinear constrainedoptimization.Mathematical Programming.1986,36(1):19-38P
    [115]骆晨钟,张志强,邵惠鹤.混沌搜索方法及其在化工过程优化中的应用.化工学报.2000,51(6):757-760页
    [116] John T Betts.Practical methods for optimal control using nonlinear programming.Philadelphia:Society for Industrial and Applied Mathematics,2001
    [117]梁宏志.特征分析在入侵检测中的应用.电子科技大学硕士学位论文,2007
    [118]张立宁,公茂果,焦李成等.抗独特型克隆选择算法.软件学报.2009,20(5):1269-1281页
    [119] Leandro Nunes de Castro, Jonathan Timmis.Artificial Immune Systems: A NewComputational Intelligence Approach.Springer,2002
    [120]徐立芳.阴性选择分类器原理与应用研究.哈尔滨工程大学硕士学位论文,2005
    [121] Dasgupta D.Advances in artificial immune systems.Computational IntelligenceMagazine.2006,1(4):40-49P
    [122]张娜.免疫网络模型优化算法研究.武汉科技大学硕士学位论文,2010
    [123] Dasgupta D, Ji Z, Gonzalez F.Artificial immune system (AIS) research in the last fiveyears.The2003Congress on Evolutionary Computation. Canberra,Australia,2003:123-130P
    [124]赵云丰,付冬梅,尹怡欣等.一种改进的人工免疫网络优化算法及其性能分析.自然科学进展.2009,19(4):434-445页
    [125] Jon Timmis, Camilla Edmonds.A Comment on Opt-AiNET: An Immune NetworkAlgorithm for Optimisation.Lecture Notes in Computer Science.2004,3102:308-317P
    [126]林可鸿,贺益君,陈德钊.混合优化人工免疫网络用于过程动态优化.浙江大学学报.2008,42(12):2181-2185页
    [127] Castro L N D, Zuben F J.The clonal selection algorithm with engineeringapplications.Proceedings of GECCO,Workshop on Atificial Immune Systems andTheir Applications.Las Veg as: Morgan kaufmann.2000:36-37P
    [128] Rodrigo R Sumar, Antonio Augusto Rodrigues Coelho, Leandro dos SantosCoelho.Use of an artificial immune network optimization approach to tune theparameters of a discrete variable structure controller.Expert Systems with Applications.2009,36:5009-5015P
    [129] Anthony V Fiacco, garth P McCormick.Nonlinear programming: sequentialunconstrained minimization techniques.Society for Industrial Mathematic,1987
    [130] J W Bandler, C Charalambous.Nonlinear programming using minimax techniques.Journal of Optimization Theory and Applications.1974,13(6):607-619P
    [131] D W Clarke, C Mohtadi, P S Tuffs.Generalized predictive control—Part I. The basicalgorithm.Automatic.1987,23(2):137-148P
    [132]席裕庚,李德伟.预测控制定性综合理论的基本思路和研究现状.自动化学报,2008,34(10):1225-1234页
    [133] Rossiter J A, Kouvaritakis B, Dunnett R M.Application of generalised predictivecontrol to a boiler-turbine unit for electricity generation.Control Theory andApplications.1991,138(1):59-67P
    [134]刘忠信,王增会,孙青林等.基于T-S模型的非线性多变量系统快速GPC控制.吉林大学学报(工学版).2004,7:144-147页
    [135] Hadjili M L, Wertz V, Scorletti G.Fuzzy model-based predictive control.Proceedingsof the37th IEEE Conference on Decision and Control.Tampa, FL, USA,1998:2927-2929P
    [136] Bail Sua, Zengqiang Chena, Zhuzhi Yuana.Constrained predictive control based onT-S fuzzy model for nonlinear systems.Journal of Systems Engineering andElectronics.2007,18(1):95-100P
    [137]邢宗义,胡维礼,贾利民.基于T-S模型的模糊预测控制研究.控制与决策,2005,20(5):495-504页
    [138]苏佰丽,陈增强,袁著祉.多变量非线性系统的有约束模糊预测解耦控制.系统工程学报,2007,22(5):546-550页
    [139]孙乐文.基于T-S模型的模糊预测控制在线优化算法研究.中国石油大学硕士学位论文,2009
    [140] Roubos J A, Babuska R, Bruijn P M.Predictive control by local linearization of aTakagi-Sugeno fuzzy model.IEEE World Congress on Computational Intelligence.1998,Anchorage,AK,USA:37-42P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700