用户名: 密码: 验证码:
高油玉米主要性状主基因+多基因遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用盖均镒提出的植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,对2个高油玉米组合的P1、F1、P2、B1、B2、F2 6个世代的10个主要性状的主基因+多基因遗传进行了研究,结果表明:
     1.高油玉米株型性状的主基因+多基因遗传分析研究结果
     株高性状在组合Ⅰ的遗传符合2对主基因+多基因模型,在B2的主基因+多基因遗传率最高。株高性状在组合Ⅱ的遗传符合1对主基因+多基因模型,在B2的主基因+多基因遗传率最高。
     茎粗性状在两个组合的遗传都符合1对主基因+多基因模型,组合Ⅰ在F2的主基因+多基因遗传率最高,组合Ⅱ在B2的主基因+多基因遗传率最高。
     2.产量性状的主基因+多基因遗传分析研究结果
     穗长性状在组合Ⅰ的遗传符合多基因模型,在F2多基因遗传率最高。穗长性状在组合Ⅱ的遗传符合1对主基因+多基因遗传模型,在F2主基因+多基因遗传率最高。
     穗粗性状在组合Ⅰ的遗传符合多基因模型,在F2多基因遗传率最高。穗粗性状在组合Ⅱ的遗传符合1对主基因+多基因模型,在F2主基因+多基因遗传率最高。
     单穗粒重性状在两个组合的遗传都符合多基因模型,两个组合都在F2多基因遗传率最高。
     百粒重性状在组合Ⅰ的遗传符合多基因模型,在B1多基因遗传率最高。百粒重性状在组合Ⅱ的遗传符合2对主基因模型,在B2主基因遗传率最高。
     试验没有筛选出秃尖长度性状的最适遗传模型,所以不能对秃尖长度性状的遗传效应进行估计。
     3.高油玉米品质性状的主基因+多基因遗传分析研究结果
     脂肪含量在两个组合的遗传都符合1对主基因+多基因模型,两个组合都在B1主基因+多基因遗传率最高。
     组合Ⅰ和组合Ⅱ淀粉含量遗传都符合多基因模型,组合Ⅰ在B1多基因遗传率最高,组合Ⅱ在B2多基因遗传率最高。
     蛋白含量在组合Ⅰ的遗传符合2对主基因+多基因模型,在B2主基因+多基因遗传率最高。蛋白含量在组合Ⅱ的遗传符合2对主基因模型,在B1多基因遗传率最高。
     综上所述,2个组合的单穗粒重和淀粉含量的遗传符合多基因模型。茎粗性状在2个组合的遗传符合1对主基因+多基因模型。没有找出秃尖长度符合的遗传模型,其他几个性状符合的遗传模型,在2个组合中各不相同。
Applicat the method of Gai Junyi, the joint segregation analysis of a mixed genetic major gene plus poly gene mixed inheritance model of quantitative trait in plants was conducted to study the inheritance of 10 major traits in high oil maize,the six populations, P1,F1,P2,B1,B2 and F2,from each of two crosses were used in this study. Results showed that:
     1. Studies on oil maize the major gene plus polygene inheritance of plant type traits.
     In crossⅠ,the inheritance of stem high trait followded two major genes plus polygenes model, which had the highest major genes plus polygenes heritabilities in B2. In crossⅡthe inheritance of stem high trait followded one major genes plus polygenes model, which had the highest major genes plus polygenes heritabilities in B2.
     In two crosses,the inheritance of stem diameter trait followded one major gene plus polygenes model.In crossⅠhad the highest major genes plus polygenes heritabilities in F2. In crossⅡhad the highest major genes plus polygenes heritabilities in B2.
     2. Studies on oil maize the major gene plus polygene inheritance of yield traits.
     In crossⅠ,the inheritance of Ear length trait followded polygenes model, which had the highest polygenes heritabilities in F2. In crossⅡthe inheritance of Ear length trait followded one major gene plus polygenes model, which had the highest major genes plus polygenes heritabilities in F2.
     In crossⅠ,the inheritance of Ear diameter trait followded polygenes model, which had the highest polygenes heritabilities in F2. In crossⅡ, the inheritance of Ear diameter trait followded one major gene plus polygenes model, which had the highest major genes plus polygenes heritabilities in F2.
     In two crosses,the inheritance of Single spike kernel weight trait followded polygenes model, two corsses had the highest polygenes heritabilities in F2.
     In crossⅠ,the inheritance of 100-kernel weight trait followded polygenes model, which had the highest polygenes heritabilities in B1. In crossⅡ,the inheritance of 100-kernel weight trait followded two major gene model, which had the highest major gene heritabilities in B2.
     The inheritance of Bold-tip length trait wasn't found in this experiment. So the heritabilities of Bold-tip length trait weren't reckoned.
     3. Studies on oil maize the major gene plus polygene inheritance of starch、protein、fat traits.
     In two crosses,the inheritance of fat trait followded one major gene plus polygenes model, two corsses had the highest major gene plus polygenes heritabilities in B1.
     In two crosses,the inheritance of starch trait followded polygenes model. In crossⅠhad the highest polygenes heritabilities in B1.In crossⅡhad the highest polygenes heritabilities in B2.
     In crossⅠ,the inheritance of protein trait followded two major genes plus polygenes model, which had the highest major gene plus polygenes heritabilities in B2. In crossⅡ,the inheritance of protein trait followded two major genes model, which had the highest major gene heritabilities in B1.
     The all results showed that the Single spike kernel weight and starch fitted the model of polygenes. The inheritance of stem diameter fitted the model of one major gene plus polygenes.The inheritance of Bold-tip length wasn't found in this experient. Other traits didn't have identical inheritance models in the two crosses.
引文
[1]戴景瑞.发展玉米育种科学迎接21世纪的挑战[J].作物杂志,1998,6:1-4
    [2]荣廷昭,李晚忱,潘光堂.新世纪初发展我国玉米遗传育种科学技术的思考[J].玉米科学,2003(专刊):42-45
    [3]宋同明.高油玉米[M].北京农业大学出版社:1992
    [4]陈绍江.高油玉米发展回顾与展望[J].玉米科学,2001,9(4):80-83
    [5]宋同明,苏胜宝,陈绍江等.高油玉米前途光明[J].玉米科学,1997,5(3):73-77
    [6]宋同明.高油玉米种质资源的快速创新[J].玉米科学,2001,9(4):3-5
    [7]汪家灼.丰富多彩的特用优质玉米[J].种子科技,2000,3:153-154
    [8]莫惠栋.谷类作物品质性状遗传研究进展[M].南京:江苏科学技术出版社,1990
    [9]莫惠栋.质量-数量性状的遗传分析Ⅰ.遗传组成和主基因型鉴别[J].作物学报,1993a,19(3):1-6
    [10]莫惠栋.质量-数量性状的遗传分析Ⅱ.世代平均数和遗传方差[J].作物学报,1993b.19(3):193-200
    [11]莫惠栋,徐辰武.质量-数量性状的遗传分析Ⅲ.受三倍体遗传控制的胚乳性状[J].作物学报,1994,20(5):513-519
    [12]姜长鉴,莫惠栋.质量-数量性状遗传分析Ⅳ.极大似然法应用[J].作物学报,1995,21(6):641-648
    [13]徐辰武,莫惠栋.胚乳性状的质量-数量遗传分析[J].江苏农学院学报,1995,16(1):9-13
    [14]盖钧镒,章元明,王健康.植物数量性状遗传体系[M].北京:科学出版社,2003
    [15]章元明,盖均镒,戚存扣.数量性状分离分析的精确度及其改良途径[J].作物学报,2001,2(6):787-793
    [16]吴建宇.玉米对矮花叶病毒抗性的鉴定和遗传:[博士学位论文].南京:南京农业大学,1997
    [17]吴建宇,陈彦惠,席章营等.玉米雄穗性状主基因+多基因遗传的初步研究[J].河南农业大学学报,2000,34(2):107-108
    [18]向道权,黄烈建,曹永目等.玉米产量性状主基因+多基因遗传效应的初步研究[J].华北农学报,2001,16(3):1-5
    [19]Dudely J W,Lambert R J, DelaRoehe I A.Genetic analysis of crosses among corn strains divergently selected for percent oil and protein[J]. Crop Sei,1977,17(1-2):111-117
    [20]刘仁东,石德权,徐家舜.玉米籽粒含油量的配合力、方差成分和遗传力及其应用的研究[J]. 中国农业科学,1992,25(6):52-57
    [21]刘仁东.玉米籽粒蛋白质、赖氨酸和油分含量的遗传成分的比较研究[J].作物学报,1994,20(1):93-98
    [22]蔡春梅,蒋基建.高油玉米主要性状遗传规律的研究[J].延边大学学报,2001,1:44-49.
    [23]Miller.R.L et al. High intensity selection for precent oil in corn [J].Crop Sei.,1981,21(3): 433-437
    [24]Mlsevic,D.et al. Population crop diallel among high oil Populations of maize [J].Crop Sci., 1989,29(3):613-617
    [25]祁新,赵颖君,李鹏志等.玉米品质性状的遗传模型分析[J].吉林农业科学,2001,26(3):32-35
    [26]寇立群.玉米品质性状遗传分析:[硕士学位论文].长春:吉林农业大学,2001
    [27]X.F.Song,T.M.Song,J.R.Dai.et al.QTL Mapping Oil Concentration with High-Oil Maize by SSR Markers[J].Maydica,2004,49:41-48
    [28]Goldman I.L.et al.Mo lecularmarker associsted with maize kernel oil concentration in an Illino is high protein×Illino is low protein cross[J].Crop Sci.1994,34(4):908-914
    [29]C.Amang in,C.L.de Souza Jr,A.A.F.Garcia.et al.Mapping QTLs for kernel oil content in tropical maize population[J].Euphytica,2004,137:251-259
    [30]Wassom J,Wong J,Martinez E,King J,Hotchkiss J,Mikkilenini V. et al.QTL ssociated with maize kernel composition and related traits among Illinois High Oil×B73 backcross-derived lines[J].Theor.Appl.Genet.2003
    [31]吴建宇,汤继华,夏宗良等.玉米矮花叶病毒一个新的抗性基因位点的微卫星标记[J].植物学报,2002,(2):177-180
    [32]汤华等.玉米5个农艺性状的QTL定位[J].遗传学报.2005.32(2):203-209
    [33]盖钧镒,章元明,王建康.QTL混合遗传模型扩展至两对主基因+多基因时的多世代联合分析[J].作物学报,2000,26(4):385-391
    [34]盖钧镒,盖钧镒,王建康.植物数量性状QTL体系检测的遗传试验方法[J].世界科技研究与发展,1999,21(1):34-40
    [35]章元明,盖均镒,戚存扣,利用家系群体鉴定多基因的存在[J].生物数学学报,2001,16(1):96-102
    [36]章元明,盖均镒,戚存扣.植物数量性状QTL体系检验中回交或自交家系重复试验数据的 分析方法[J].遗传,2001,(4):329-332
    [37]GAI Jun Yi,WANG Jian Kang.Idntification and estimation of QTL model and effects[J].Theor. Appl.Genet,1998,97:1162-1168
    [38]杨俊品等.玉米数量性状基因定位[J].植物学报,2005,31(2):188-196
    [39]Vasal SK. et al. Improvement of Quality Traits of Maize for Grainand Silage Use[M].The Netherlands:Martinus Nijhoff Publishers,1980
    [40]Khush G S, Kumar Ⅰ. Genetics of amylose content in rice (Oryza sativa) [J]. Genet,1986,65: 1-11
    [41]Simmonds N W. Principle of Crop improvement.Longman Inc,1979
    [42]蔡春海,郑大清,蒋基澄.高油玉米主要性状的遗传规律[J].延边大学农学学报,2002,24(3):169-177
    [43]吴子恺。新型超高油玉米种质的选育[J].作物学报,2004,30(8):751—756
    [44]吴子恺,郝小琴,罗高玲,等.新型超高油玉米几个性状的研究[J].种子,2004,23(9):2’
    [45]覃兰英,吴子恺,罗高玲,等.微胚乳超高油玉米自交系含油率的研究[J].玉米科学,2005:13(1):25-27,32
    [46]奉志高,吴子恺,谭贤杰等.微胚乳超高油玉米籽粒含油率的配合力研究[J].玉米科学,14(4):7-9,13
    [47]奉志高,吴子恺,赵刚等.微胚乳超高油玉米主要性状的通径分析[J].玉米科学,2007,15(1):37-40
    [48]覃兰英.微胚乳超高油玉米主要品质性状遗传规律的研究:[硕士学位论文].南宁:广西农业大学,2005
    [49]奉志高.微胚乳超高油玉米几个性状的遗传研究[硕士学位论文].南宁:广西农业大学,2006
    [50]章元明,盖钧镒.利用DH和IRIL群体鉴定QTL体系并估计其遗传效应[J].遗传学报,2000,27(7):634-640
    [51]章元明,盖钧镒,王永军.利用P1、P2和DH和RIL群体联合分离分析的拓展[J].遗传,2001,23(5):467-470
    [52]Elston RC.The genetic analysis of quantitative trait difference between two homozy gouslines [J]. Genetics,1984,108:733-73
    [53]HoescheleI.Genetice valuation with data presenting evidence of mixed majorgene and polygene inheritance[J].Theor. Appl. Genet.1988,76:81-92
    [54]Goffinet B,P.Loisel, B.Laurent.Statistical tests for identification of the geno type major locus of progeny tested sires[J].Biometrics,1990,46:583-594
    [55]Knott SA,C S.Hally,R.Thanpson. Method of segregation analysis for animal breeding data:a comparison of power[J].Heridity,1991a,68:299-311
    [56]Loisel P,Goffinet B,Monod H et al.Detecting a major in an F2 population[J].Biometrics,1994, 50:512-516
    [57]申时全,曾亚文,李绅崇.应用主基因-多基因混合模型研究昆明小白谷孕穗期耐冷性的遗传[J].植物遗传资源学,2004,5(3):252-255
    [58]吴建宇,陈彦惠,席章营.玉米雄穗性状主基因-多基因遗传的初步研究[J].河南农业大学学报,2000,3(2):107-108
    [59]葛秀秀,张立平,何中虎.冬小麦PPO活性的主基因+多基因混合遗传分析[J].作物学报,2004,30(1):18-20
    [60]王庆钰,朱立宏,盖钧镒.水稻广亲和性遗传的主基因-多基因混合模型分析[J].遗传,2004,26(6):898-902

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700