用户名: 密码: 验证码:
微小尺度燃烧中淬熄距离和贫燃极限的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型推力器、微小能源或动力装置中高密度能量可通过在微小尺度空间组织燃烧获得。通过调研国内外相关研究工作,总结了微小尺度燃烧在新型能源环境下的重要意义,提出了微小尺度燃烧领域里存在的问题和挑战,并指出催化燃烧、多孔介质燃烧及二者相结合的技术是减小淬熄距离,提高贫燃熄火极限的最主要和最有效的手段。微小尺度燃烧研究具有重要的工程应用与学术价值。
     建立了基于CHEMKIN和FLUENT平台的二维催化燃烧数值方法,并利用详细化学反应动力学机理,对CH_4/Air在Pt表面催化燃烧进行数值研究与模型验证。首先,在滞止流研究平台上,利用基于一维假设的Spin程序计算滞止点催化燃烧温度场,并获得与Deutschmann的计算一致的结果。引入气相反应后,对二维轴对称和一维模拟的催化燃烧火焰结构进行对比分析,验证了所建立的二维数值模型,同时考察滞止流一维假设的适用性。通过比较不同拉伸率的一维和二维计算结果,指出低拉伸率时必须考虑径向扩散;在高拉伸率时,温度和组分浓度一维特性较好。最后,为研究表面催化燃烧对淬熄距离和空间气相燃烧的影响,对微小尺度二维渐扩通道内表面的催化燃烧进行数值模拟。研究结果表明,表面催化能使气相燃烧稳定在更小尺寸的空间内,显著缩小淬熄距离。另外,表面催化燃烧能降低局部高温,减少热损失同时能有效提高燃料转化率,有利于在微小尺度空间组织更稳定的燃烧和减少污染物排放。
     利用多孔介质燃烧技术设计了用作TPV热源的中空和非中空侧面辐射器、端面辐射器。侧面辐射器的辐射表面积较大,功率约为4kW的燃烧即可获得高达1000℃以上的辐射表面温度。功率为4.3kW时,最高辐照密度可达9kW/m~2;多孔介质内可组织大面积均匀燃烧,且温度均匀性好。功率一定时,低当量比可获得更好的辐射表面温度均匀性。功率4.3kW、当量比0.5时,辐射表面沿流向平均温度梯度为1.7℃/mm;回热能有效提高辐射温度和辐射效率,但易导致回火。与侧面辐射器相比,端面辐射器的辐射表面温度更高、更均匀,且便于PV电池安装和系统集成,但辐射面积小。端面辐射器的研究结果表明,最大相对温差小于3%;可实现最低当量比0.33的稳定可持续燃烧。实验工况下,两种辐射器的NO_x排放都低于25 PPM;当量比高于0.45时,CO排放均低于10 PPM。
     为了研究辐射对小尺度贫燃料燃烧特性的影响,设计了带回热的小尺度燃烧器,实验研究了甲烷和丙烷两种燃料的小尺度燃烧特性、贫燃熄火极限、污染物排放等,并辅以数值手段分析燃烧温度和回热效率。实验结果显示,该燃烧器在热负荷为0.2~3.8kW范围内能长时间稳定燃烧。甲烷吹熄当量比为0.40,而丙烷为0.39;多数研究工况能保证NO_x排放约20PPM ,CO排放低于100PPM。利用双温度、等效热传导等模型建立的数值方法能很好地预测多孔介质和燃烧器壁面温度。数值计算结果表明,燃烧区域温度高达2000K,而回热后的烟气出口温度仅900K左右,长130mm的环形回热通道实现了约40%的回热效率,使得燃烧在极贫燃条件下仍然稳定。
Micro-thruster, miniature energy or power devices require high-density energy source, which can be obtained by mini-scale combustion. Via the review of related work at home and abroad, the importance of the mini-scale combustion for the future requirements of micro structure energy and power equipments was summarized, and its problems and challenges were also pointed out. Meanwhile, the catalytic combustion, combustion in porous media and a combination of both technologies were the most main and the most effective methods to reduce the quenching distance and expand lean extinction limit. Study on mini-scale combustion is very important for both engineering applications and academic research.
     The 2D numerical method for catalytic combustion was developed based on CHEMKIN and FLUENT platform. Using detailed chemical kinetic mechanism, the catalytic combustion of CH_4/Air on Pt was numerical studied and the catalytic combustion models were validated. Firstly, on the platform of stagnation flow, the catalytic temperatures of the stagnation point calculated by 1D program Spin were compared with the Deutschmann’s calculations. Introducing gas phase reactions, the 2D axisymmetric simulation was compared with 1D simulation by analysising the flame structure, and the validation of the 2D numerical model and the applicability of 1D assumption were investigated. By comparion of the 1D and 2D calculations at several stretch rates (SR), it can be found the radial diffusion must be taken into consideration at low SR while the temperature and species distribution agreed well with 1D assumption at high SR. Finally, in order to study the effection of catalytic combustion on the quenching distance, combustion in the mini-scale 2D expanding channel was simulated. The results showed that the surface catalytic combustion stabilized the flame in a smaller space and significantly reduced the extinction distance. In addition, the surface catalytic combustion can reduce the local high temperature, reduce heat loss and improve the fuel conversion rate. It is conducive to organizing a more stable combustion within mini-scale space and reducing pollutant emissions.
     Using porous medium combustion technology, a hollow and non-hollow side-face radiator and top-face radiator were designed as heat sources of TPV system. The side-face radiator has larger radiation surface area. The radiation temperature was above 1000℃at the firing power about 4kW. When the power was 4.3kW, the maximum radiation density reached up to 9kW/m~2. Combustion in porous media can be organized in large area with better temperature uniformity. For a given firing power, the better uniformity of surface radiation temperature can be obtained at low equivalence ratio. When the equivalence ratio was 0.5, the surface radiation temperature gradient was 1.7℃/mm at power of 4.3kW. Heat recuperation can improve the radiation temperature and the radiation efficiency. However, it easily led to flashing back. In contrast with the side-face radiator, the top-face radiator can obtain higher and more uniform radiative surface temperature and it is easily installed with PV cells for systems integration. However, the radiative surface area was smaller. Experimental results of the top-face radiator showed that the maximum relative temperature difference was less than 3% and a self-sustainable combustion was achieved at the lowest equivalence ratio of 0.33. For all experimental cases, the NO_x emissions in both radiators were less than 25 PPM; the CO emissions are lower than 10 PPM at the equivalence ratio higher than 0.45.
     A mini-scale porous combustor with heat recuperation was designed. Both methane and propane combustion are experimentally investigated in terms of small scale combustion characteristic, lean extinction limit and low pollutant emissions. Research was assistanted by numerical method to study combustion temperature and heat recovery efficiency. Experimental results showed that a long time stable combustion can be maintained with the firing power in the range of 0.2 ~ 3.8kW. The lean extinction limit was 0.40 for the methane combustion, while 0.39 for the propane combustion. In most cases, the NO_x emission was about 20PPM and the CO emission was lower than 100PPM. Using two temperature model, effective thermal conductivity model, the established numerical method can well predict the porous media temperatures and the wall temperatures. Numerical results showed that the combustion zone temperatures reached up to 2000K, while the exhausts temperatures at the exit were lower than 900K. The 130mm-long annular channel achieved 40% of the thermal recycle efficiency, which made the ultra-lean combustion extremely stable.
引文
[1] A.A.M. Oliveira, M. Kaviany. Nonequilibrium in the transport of heat and reactants in combustion in porous media[J]. Progress in Energy and Combustion Science, 2001, 27(5): 523-545.
    [2] D.H. Lewis, S.W. Janson, R.B. Cohen, et al. Digital micropropulsion[J]. Sensors and Actuators a-Physical, 2000, 80(2): 143-154.
    [3] A.H. Epstein, S.D. Senturia. Microengineering - Macro power from micro machinery[J]. Science, 1997, 276(5316): 1211-1211.
    [4] A.H. Epstein, S.D. Senturia, G. Anathasuresh, et al. Power MEMS and microengines. Transducers 97 - 1997 International Conference on Solid-State Sensors and Actuators, Digest of Technical Papers, Vols 1 and 2[C]. New York: IEEE, 1997.
    [5] C.M. Spadaccini, X. Zhang, C.P. Cadou, et al. Preliminary development of a hydrocarbon-fueled catalytic micro-combustor[J]. Sensors and Actuators a-Physical, 2003, 103(1-2): 219-224.
    [6] I.A. Waitz, G. Gauba, Y.S. Tzeng. Combustors for micro-gas turbine engines[J]. Journal of Fluids Engineering-Transactions of the Asme, 1998, 120(1): 109-117.
    [7] C.W. Park, M. Kaviany. Combustion-thermoelectric tube[J]. Journal of Heat Transfer-Transactions of the ASME, 2000, 122(4): 721-729.
    [8] A.C. Fernandez-Pello, D. Liepmann, A.P. Pisano. MEMS rotary combustion laboratories[DB/OL]. http://www.me.berkeley.edu/mrc1/
    [9] K. Fu. Miniature-scale and micro-scale rotary internal combustion engines for portable power systems[D]. 2001.
    [10] K. Maruta, K. Takeda, J. Ahn, et al. Extinction limits of catalytic combustion in microchannels[J]. Proceedings of the Combustion Institute, 2002, 29(957-963.
    [11] S.A. Lloyd, F.J. Weinberg. Limits to energy release and utilisation from chemical fuels [J]. Nature, 1975, 257: 367-370.
    [12] S.A. Lloyd, F.J. Weinberg. A burner for mixtures of very low heat content[J]. Nature, 1974, 251: 47-49.
    [13] W.M. Yang, S.K. Chou, C. Shu, et al. Research on micro-thermophotovoltaic power generators[J]. Solar Energy Materials and Solar Cells, 2003, 80(1): 95-104.
    [14] W.M. Yang, S.K. Chou, C. Shu, et al. Microscale combustion research for application to micro thermophotovoltaic systems[J]. Energy Conversion and Management, 2003, 44(16):2625-2634.
    [15] K. Yoshida, S. Tanaka, S. Tomonari, et al. High-energy density miniature thermoelectric generator using catalytic combustion[J]. Journal of Microelectromechanical Systems, 2006, 15(1): 195-203.
    [16]王建华.甲烷在微小过量焓燃烧器中燃烧特性的实验研究[D].北京:清华大学, 2007.
    [17]钟北京,洪泽恺.微燃烧器内甲烷催化燃烧的数值模拟[J].热能动力工程, 2003, 18(6): 584-588+650.
    [18]钟北京,洪泽恺.甲烷微尺度催化燃烧的数值模拟[J].工程热物理学报, 2003, 24(1): 173-176.
    [19]钟北京,王建华,李军伟.甲烷在过量焓燃烧器内的燃烧特性[J].燃烧科学与技术, 2008, 14(6): 481-486.
    [20]钟北京,伍亨.甲烷在逆流换热微燃烧器内催化燃烧的数值模拟[J].工程热物理学报, 2005, 26(2): 351-353.
    [21]钟北京,伍亨.甲烷/空气预混气体在微通道中催化转化的数值模拟[J].燃烧科学与技术, 2005, 11(1): 1-5.
    [22]曾文,解茂昭.烷烃催化燃烧的数值模拟[J].燃烧科学与技术, 2005, 11(6): 499-505.
    [23]曾文,解茂昭.催化燃烧中表面反应-气相反应间相互作用及其对均质压燃发动机着火特性的影响[J].化工学报, 2006, 57(12): 2878-2884.
    [24]曾文,解茂昭.微元管催化燃烧过程中燃烧特性分岔分析[J].大连理工大学学报, 2009, 49(06): 842-848.
    [25]张永生.微尺度燃烧及其热电转化基础研究[D].杭州:浙江大学, 2006.
    [26]张永生,周俊虎,杨卫娟,等.微燃烧稳定性分析和微细管道燃烧实验研究[J].浙江大学学报(工学版), 2006, 40(7): 1178-1182.
    [27]曹海亮,徐进良.微尺度环形燃烧室的燃烧特性[J].自然科学进展, 2006, 16(7): 874-880.
    [28]徐进良,胡建军,曹海亮.微燃烧透平发电系统的研制及性能测试[J].中国机械工程, 2008, 252(12): 1399-1405.
    [29]闫云飞.微型燃烧器内甲烷催化燃烧特性数值研究及实验[D].重庆:重庆大学, 2008.
    [30]闫云飞,马盟,张力.环形微细腔内甲烷催化转化效率的数值模拟[J].重庆大学学报, 2008, 31(3): 267-270.
    [31]李德桃,邓军,潘剑锋,等.微动力机电系统和微发动机的研究进展[J].世界科技研究与发展, 2002, 16(1): 24-27.
    [32]李德桃,邓军,潘剑锋,等.微型发动机燃烧室的模拟研究[J].机械工程学报, 2002, 38(10): 59-61.
    [33]李德桃,潘剑锋,薛宏,等.微动力机电系统的发展动态与展望[J].江苏大学学报(自然科学版), 2006, 27(6): 489-492.
    [34] D. Kirikae, Y. Suzuki, N. Kasagi, et al. Selective-emitter-enhanced Micro Thermophotovoltaic Power Generation System[M]// Mems 2010: 23rd Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest. New York: Ieee, 2010: 1195-1198.
    [35] M.-d. corporation. A micro gas turbine[M]. 2004.
    [36] C.M. Spadaccini, X. Zhang, C.P. Cadou, et al. Development of a catalytic silicon micro-combustor for hydrocarbon-fueled power MEMS[C]. Fifteenth Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest. New York: Ieee, 2002: 228-231.
    [37] A.I. Rozlowskii. Technical principles of explosion-proof upon work with gaseous fuel and vapors[C]. Moscow, 1980: 135.
    [38]王锡高,杨俊均,邹江,等.微小型燃烧技术[J].工业加热, 2002, (5): 5-7+13.
    [39] S. Onishi, S.H. Jo, K. Shoda. Active thermo-atmosphere combustion (ATAC)- a new combustion process for internal combustion engines[R]. 1979.
    [40] S.C. Jacobsen, M. Olivier, C. Davis. Direct energy conversion actuators for ambulatory robotic systems[C]. DARPA Smart Structures Technology Interchange Meeting, Baltimore, Maryland, 2000.
    [41]李保国,曹崇文,刘相东.脉动燃烧技术及其应用[J].中国农业大学学报, 1998, 3(2): 36-40.
    [42]陈俊杰,王谦.氢气预混合微尺度催化燃烧的数值模拟[J].能源工程, 2009, 138(01): 6-9.
    [43]徐侃,刘明侯,张先锋,等.表面催化反应对小尺度空间内气相燃烧的影响[J].燃烧科学与技术, 2009, 72(02): 187-191.
    [44] J. Davy. The Collected Works of Sir Humphry Davy[M]. London: Smith, Elder, 1840.
    [45] I. Langmuir. The mechanism of the catalytic action of platinum in the reactions 2Co + O2= 2Co2 and 2H2+ O2= 2H2O[J]. Transactions of the Faraday Society, 1922, 17: 621-675.
    [46] R. Schwiedernoch, S. Tischer, O. Deutschmann, et al. Experimental and numerical investigation of the ignition of methane combustion in a platinum-coated honeycomb monolith[J]. Proceedings of the Combustion Institute, 2002, 29: 1005-1011.
    [47] R.J. Farrauto, M.C. Hobson, T. Kennelly, et al. Catalytic chemistry of supported palladium for combustion of methane [J]. Applied Catalysis a-General, 1992, 81(2): 227-237.
    [48] J.H. Lee, D.L. Trimm. Catalytic combustin of methane [J]. Fuel Processing Technology,1995, 42(2-3): 339-359.
    [49] P. Euzen, J.H. Le Gal, B. Rebours, et al. Deactivation of palladium catalyst in catalytic combustion of methane[J]. Catalysis Today, 1999, 47(1-4): 19-27.
    [50] D. Ciuparu, M.R. Lyubovsky, E. Altman, et al. Catalytic combustion of methane over palladium-based catalysts[J]. Catalysis Reviews-Science and Engineering, 2002, 44(4): 593-649.
    [51] J.N. Armor. Catalytic reduction of nitrogen-oxides with methane in the presense of excess oxygen– a review [J]. Catalysis Today, 1995, 26(2): 147-158.
    [52] J.M. Ahn, C. Eastwood, L. Sitzki, et al. Gas-phase and catalytic combustion in heat-recirculating burners [J]. Proceedings of the Combustion Institute, 2005, 30: 2463-2472.
    [53] A.N.R. Bos, J.P. Lange, G. Kabra. A novel reverse flow reactor with integrated separation[J]. Chemical Engineering Science, 2007, 62(18-20): 5661-5662.
    [54] A.M. Fuxman, J.F. Forbes, R.E. Hayes. Characteristics-based model predictive control of a catalytic flow reversal reactor[J]. Canadian Journal of Chemical Engineering, 2007, 85(4): 424-432.
    [55] B. King, D. Traves, D.K. Blamire. Catalytic flow reversal reactor/gas turbine greenhouse gas emissions reduction technology// Greenhouse Gas Control Technologies[M]. D.J. Williams, et al. East Melbourne: C S I R O, 2001.
    [56] A. Kolodziej, J. Lojewska. Short-channel structured reactor for catalytic combustion: Design and evaluation[J]. Chemical Engineering and Processing, 2007, 46(7): 637-648.
    [57] M. Maestri, A. Beretta, T. Faravelli, et al. Role of gas-phase chemistry in the rich combustion of H-2 and CO over a Rh/Al2O3 catalyst in annular reactor[J]. Chemical Engineering Science, 2007, 62(18-20): 4992-4997.
    [58] J.M. Redenius, L.D. Schmidt, O. Deutschmann. Millisecond catalytic wall reactors: I. Radiant burner[J]. Aiche Journal, 2001, 47(5): 1177-1184.
    [59] A. Scarpa, R. Pirone, G. Russo, et al. Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor[J]. Combustion and Flame, 2009, 156(5): 947-953.
    [60] Y. Suzuki, J. Saito, N. Kasagi. Development of micro catalytic combustor with Pt/Al2O3 thin films[J]. Jsme International Journal Series B-Fluids and Thermal Engineering, 2004, 47(3): 522-527.
    [61] J. Chaouki, C. Guy, C. Sapundzhiev, et al. Combustion of methane in a cyclic catalytic reactor [J]. Industrial & Engineering Chemistry Research, 1994, 33(12): 2957-2963.
    [62] H. Ikeda, J. Sato, F.A. Williams. Surface kinetics for catalytic combustion of hydrogen-air mixture on platinum at atmospheric-pressure in stagnation flows [J]. Surface Science, 1995, 326(1-2): 11-26.
    [63] S. Maruko, T. Naoi, M. Onodera. Multistage catalytic combustion systems and high temperature combustion systems using SiC[J]. Catalysis Today, 1995, 26(3-4): 309-317.
    [64] L.M. Quick, S. Kamitomai. Catalytic combustion reactor design and test results[J]. Catalysis Today, 1995, 26(3-4): 303-308.
    [65] G. Saracco, J.W. Veldsink, G.F. Versteeg, et al. Catalytic combustion of propane in a membrane reactor with separate feed of reactants .2. Operation in presence of trans-membrane pressure-gradients[J]. Chemical Engineering Science, 1995, 50(17): 2833-2841.
    [66] G. Saracco, J.W. Veldsink, G.F. Versteeg, et al. Catalytic combustion of propane in a membrane reactor with separate feed of reactants .2. Operation in absence of trans-membrane pressure-gradients [J]. Chemical Engineering Science, 1995, 50(12): 2005-2015.
    [67] F. Ye, T. Nakajima, Y. Ikeda. A study on premixed catalytic combustion of propane [J]. Jsme International Journal Series B-Fluids and Thermal Engineering, 1995, 38(2): 238-244.
    [68] Y.X. Li, Y.H. Guo, B. Xue. Catalytic combustion of methane over M (Ni, Co, Cu) supported on ceria-magnesia[J]. Fuel Processing Technology, 2009, 90(5): 652-656.
    [69] I. Popescu, A. Redey, I.C. Marcu, et al. Catalytic combustion of methane over unsupported and gamma-Al2O3 supported Sr2FeTaO6 and Sr2Fe0.7Co0.3TaO6 double perovskites [J]. Revue Roumaine De Chimie, 2009, 54(11-12): 1111-+.
    [70] S. Thaicharoensutcharittham, V. Meeyoo, B. Kitiyanan, et al. Catalytic combustion of methane over NiO/Ce0.75Zr0.25O2 catalyst[J]. Catalysis Communications, 2009, 10(5): 673-677.
    [71] J.D. Zheng, X.G. Ren, Y.J. Song, et al. Catalytic combustion of methane over iron- and manganese-substituted lanthanum hexaaluminates[J]. Reaction Kinetics and Catalysis Letters, 2009, 97(1): 109-114.
    [72] C.Q. Chen, W. Li, C.Y. Cao, et al. Enhanced catalytic activity of perovskite oxide nanofibers for combustion of methane in coal mine ventilation air[J]. Journal of Materials Chemistry, 2010, 20(33): 6968-6974.
    [73] Y.D. Chen, C.W. Liao, H.Y. Cao, et al. The Catalytic Combustion of Methane over Fe/CexZr0.9-xLa0.1O1.95-Al2O3 Monolith Catalyst[J]. Chinese Journal of Catalysis, 2010, 31(5): 562-566.
    [74] H.F. Li, G.Z. Lu, Y.Q. Wang, et al. Synthesis of flower-like La or Pr-doped mesoporous ceria microspheres and their catalytic activities for methane combustion[J]. Catalysis Communications, 2010, 11(11): 946-950.
    [75] D.S. Qiao, G.Z. Lu, D.S. Mao, et al. Effect of Ca doping on the catalytic performance of CuO-CeO2 catalysts for methane combustion[J]. Catalysis Communications, 2010, 11(9): 858-861.
    [76] A.V. Vishnyakov, I.A. Korshunova, V.E. Kochurikhin, et al. Catalytic activity of rare earth oxides in flameless methane combustion[J]. Kinetics and Catalysis, 2010, 51(2): 273-278.
    [77] O. Buchneva, I. Rossetti, C. Biffi, et al. La-Ag-Co perovskites for the catalytic flameless combustion of methane[J]. Applied Catalysis a-General, 2009, 370(1-2): 24-33.
    [78] C. Amairia, S. Fessi, A. Ghorbel. Effect of the alkoxides addition order on the properties of Pd/Al2O3-ZrO2 catalysts used for methane combustion[J]. Journal of Sol-Gel Science and Technology, 2009, 52(2): 260-266.
    [79] Z. Ozcelik, G.S.P. Soylu, I. Boz. Catalytic combustion of toluene over Mn, Fe and Co-exchanged clinoptilolite support[J]. Chemical Engineering Journal, 2009, 155(1-2): 94-100.
    [80] C.H. Leu, S.C. King, C.C. Chen, et al. Investigation of the packed bed and the micro-channel bed for methanol catalytic combustion over Pt/Al2O3 catalysts[J]. Applied Catalysis a-General, 2010, 382(1): 43-48.
    [81] Y.S. Wu, Y.X. Zhang, M. Liu, et al. Complete catalytic oxidation of o-xylene over Mn-Ce oxides prepared using a redox-precipitation method[J]. Catalysis Today, 2010, 153(3-4): 170-175.
    [82] M. Wu, X.Y. Wang, Q.G. Dai, et al. Catalytic combustion of chlorobenzene over Mn-Ce/Al2O3 catalyst promoted by Mg[J]. Catalysis Communications, 2010, 11(12): 1022-1025.
    [83] K. Yasuda, M. Nobu, T. Masui, et al. Complete oxidation of acetaldehyde on Pt/CeO2-ZrO2-Bi2O3 catalysts[J]. Materials Research Bulletin, 2010, 45(9): 1278-1282.
    [84] H. Najjar, H. Batis. La-Mn perovskite-type oxide prepared by combustion method: Catalytic activity in ethanol oxidation[J]. Applied Catalysis a-General, 2010, 383(1-2): 192-201.
    [85] H. Najar, M.S. Zina, A. Ghorbel. Catalytic activity of palladium supported on mesoporous modified Y-zeolite in methane combustion[J]. Kinetics and Catalysis, 2010, 51(4): 602-608.
    [86] Z.Q. Zhang, Z.F. He, J.Y. Wang, et al. Effect of ZrO2 Addition on the Properties of CuMn2/Al-Ti Monolithic Catalysts for Benzene Catalytic Combustion[J]. Chinese Journalof Catalysis, 2010, 31(7): 793-796.
    [87] Z.K. Zhang, L.Y. Xu, Z.L. Wang, et al. Pd/H beta-zeolite catalysts for catalytic combustion of toluene: Effect of SiO2/Al2O3 ratio[J]. Journal of Natural Gas Chemistry, 2010, 19(4): 417-421.
    [88] G.S.P. Soylu, Z. Ozcelik, I. Boz. Total oxidation of toluene over metal oxides supported on a natural clinoptilolite-type zeolite[J]. Chemical Engineering Journal, 2010, 162(1): 380-387.
    [89] S. Specchia, P. Palmisano, E. Finocchio, et al. Catalytic activity and long-term stability of palladium oxide catalysts for natural gas combustion: Pd supported on LaMnO3-ZrO2[J]. Applied Catalysis B-Environmental, 2009, 92(3-4): 285-293.
    [90] G. Corro, C. Cano, J.L.G. Fierro. A study of Pt-Pd/gamma-Al2O3 catalysts for methane oxidation resistant to deactivation by sulfur poisoning[J]. Journal of Molecular Catalysis a-Chemical, 2010, 315(1): 35-42.
    [91] M.J. Lee, N. Il Kim. Experiment on the effect of Pt-catalyst on the characteristics of a small heat-regenerative CH4-air premixed combustor[J]. Applied Energy, 2010, 87(11): 3409-3416.
    [92] F. Rachedi, R. Guilet, P. Cognet, et al. Microreactor for Acetone Deep Oxidation over Platinum[J]. Chemical Engineering & Technology, 2009, 32(11): 1766-1773.
    [93] Y. Wang, Z.J. Zhou, W.J. Yang, et al. Combustion of hydrogen-air in micro combustors with catalytic Pt layer[J]. Energy Conversion and Management, 2010, 51(6): 1127-1133.
    [94] M. O'Connell, G. Kolb, R. Zapf, et al. Bimetallic catalysts for the catalytic combustion of methane using microreactor technology[J]. Catalysis Today, 2009, 144(3-4): 306-311.
    [95] G.A. Boyarko, C.J. Sung, S.J. Schneider. Catalyzed combustion of hydrogen-oxygen in platinum tubes for micro-propulsion applications[J]. Proceedings of the Combustion Institute, 2005, 30: 2481-2488.
    [96] J.D. Holladay, E.O. Jones, M. Phelps, et al. Microfuel processor for use in a miniature power supply[J]. Journal of Power Sources, 2002, 108(1-2): 21-27.
    [97] Y. Ma, C. Ricciuti, T. Miller, et al. Enhanced Catalytic Combustion Using Sub-micrometer and Nano-size Platinum Particles[J]. Energy & Fuels, 2008, 22(6): 3695-3700.
    [98] I.E. Beck, V.I. Bukhtiyarov, I.Y. Pakharukov, et al. Platinum nanoparticles on Al2O3: Correlation between the particle size and activity in total methane oxidation[J]. Journal of Catalysis, 2009, 268(1): 60-67.
    [99] S.A. Hosseini, M.T. Sadeghi, A. Alemi, et al. Synthesis, Characterization, and Performance of LaZnxFe1-xO3 Perovskite Nanocatalysts for Toluene Combustion[J]. Chinese Journal ofCatalysis, 2010, 31(7): 747-750.
    [100] S. Colussi, A. Gayen, M.F. Camellone, et al. Nanofaceted Pd-O Sites in Pd-Ce Surface Superstructures: Enhanced Activity in Catalytic Combustion of Methane[J]. Angewandte Chemie-International Edition, 2009, 48(45): 8481-8484.
    [101] M.E. Coltrin, R.J. Kee, J.A. Miller. A Mathematical Model of the Coupled Fluid Mechanics and Chemical Kinetics in a Chemical Vapor Deposition Reactor[J]. Journal of The Electrochemical Society, 1984, 131(2): 425-434.
    [102] O. Deutschmann, R. Schmidt, F. Behrendt, et al. Numerical modeling of catalytic ignition// Twenty-Sixth Symposium[M]. A.R. Burgess and F.L. Dryer. Pittsburgh: Combustion Institute, 1996.
    [103] D.G. Vlachos, P.A. Bui. Catalytic ignition and extinction of hydrogen: Comparison of simulations and experiments[J]. Surface Science, 1996, 364(3): L625-L630.
    [104] S. Wood, A.T. Harris. Porous burners for lean-burn applications[J]. Progress in Energy and Combustion Science, 2008, 34(5): 667-684.
    [105] O. Deutschmann, S. Tischer, S. Kleditzsch, et al. DETCHEM Software package[CP/OL]. www.detchem.com
    [106] L.L. Raja, R.J. Kee, O. Deutschmann, et al. A critical evaluation of Navier-Stokes, boundary-layer, and plug-flow models of the flow and chemistry in a catalytic-combustion monolith[J]. Catalysis Today, 2000, 59(1-2): 47-60.
    [107] G.B. Chen, C.P. Chen, C.Y. Wu, et al. Effects of catalytic walls on hydrogen/air combustion inside a micro-tube[J]. Applied Catalysis a-General, 2007, 332(1): 89-97.
    [108] J. Cortes, E. Valencia, P. Araya. Monte Carlo simulation studies of the catalytic combustion of methane[J]. Catalysis Letters, 2006, 112(1-2): 121-128.
    [109] S. Arcidiacono, J. Mantzaras, I.V. Karlin. Lattice Boltzmann simulation of catalytic reactions[J]. Physical Review E, 2008, 78(4): 8.
    [110] R. Litto, R.E. Hayes, H. Sapoundjiev, et al. Optimization of a flow reversal reactor for the catalytic combustion of lean methane mixtures[J]. Catalysis Today, 2006, 117(4): 536-542.
    [111] J. Mantzaras. Understanding and modeling of thermofluidic processes in catalytic combustion[J]. Catalysis Today, 2006, 117(4): 394-406.
    [112] J.H. Zhou, Y. Wang, W.J. Yang, et al. Combustion of hydrogen-air in catalytic micro-combustors made of different material[J]. International Journal of Hydrogen Energy, 2009, 34(8): 3535-3545.
    [113] J. Koop, O. Deutschmann. Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases[J]. Applied Catalysis B-Environmental, 2009, 91(1-2): 47-58.
    [114] S.Y. Joshi, M.P. Harold, V. Balakotaiah. Low-Dimensional Models for Real Time Simulations of Catalytic Monoliths[J]. Aiche Journal, 2009, 55(7): 1771-1783.
    [115] J.A. Federici, E.D. Wetzel, B.R. Geil, et al. Single channel and heat recirculation catalytic microburners: An experimental and computational fluid dynamics study[J]. Proceedings of the Combustion Institute, 2009, 32: 3011-3018.
    [116] G.J. Sharpe, S. Falle, J. Billingham. Numerical solutions of a model for the propagation of a surface-catalysed flame in a tube[J]. Ima Journal of Applied Mathematics, 2008, 73(1): 107-122.
    [117] N.S. Kaisare, S.R. Deshmukh, D.G. Vlachos. Stability and performance of catalytic microreactors: Simulations of propane catalytic combustion on Pt[J]. Chemical Engineering Science, 2008, 63(4): 1098-1116.
    [118] V.P. Zhdanov, P.A. Carlsson, B. Kasemo. Simulation of methane oxidation on Pt[J]. Journal of Chemical Physics, 2007, 126(23): 6.
    [119] T.W. Tong, M.M. Abou-Ellail, Y. Li, et al. Numerical simulation of hydrogen-air boundary layer flows augmented by catalytic surface reactions// Proceedings of the Asme/Jsme Thermal Engineering Summer Heat Transfer Conference 2007, Vol 1[M]. New York: Amer Soc Mechanical Engineers, 2007.
    [120] R.E. Hayes, P.K. Mok, J. Mmbaga, et al. A fast approximation method for computing effectiveness factors with non-linear kinetics[J]. Chemical Engineering Science, 2007, 62(8): 2209-2215.
    [121] B. Xu, Y. Ju. Theoretical and numerical studies of non-equilibrium slip effects on a catalytic surface[J]. Combustion Theory and Modelling, 2006, 10(6): 961-979.
    [122] L.B. Younis. Modelling of hydrogen oxidation within catalytic packed bed reactor[J]. Journal of the Energy Institute, 2006, 79(4): 222-227.
    [123] R.C. Ramaswamy, P.A. Ramachandran, M.P. Dudukovic. Modeling catalytic partial oxidation of methane to syngas in short-contact-time packed-bed reactors[J]. Industrial & Engineering Chemistry Research, 2007, 46(25): 8638-8651.
    [124] S.A. Shahamiri, I. Wierzba. Modeling catalytic oxidation of lean mixtures of methane-air in a packed-bed reactor[J]. Chemical Engineering Journal, 2009, 149(1-3): 102-109.
    [125] S.A. Shahamiri, I. Wierzba. Simulation of catalytic oxidation of lean hydrogen-methane mixtures[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5785-5794.
    [126] J.M. Zheng, J.M. Sousa, D. Mendes, et al. Theoretical analysis of conversion enhancement in isothermal polymeric catalytic membrane reactors[J]. Catalysis Today, 2006, 118(1-2): 228-236.
    [127] K. Yamamoto, M. Nakamura, H. Yane, et al. Simulation on catalytic reaction in diesel particulate filter[J]. Catalysis Today, 2010, 153(3-4): 118-124.
    [128] K.S. Patel, A.K. Sunol. Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2344-2358.
    [129] K.A. Williams, R. Horn, L.D. Schmidt. Performance of mechanisms and reactor models for methane oxidation on Rh[J]. Aiche Journal, 2007, 53(8): 2097-2113.
    [130] O. Deutschmann, L.I. Maier, U. Riedel, et al. Hydrogen assisted catalytic combustion of methane on platinum[J]. Catalysis Today, 2000, 59(1-2): 141-150.
    [131] T. Yuan, Y.H. Lai, C.K. Chang. Numerical studies of heterogeneous reaction in stagnation flows using one-dimensional and two-dimensional Cartesian models[J]. Combustion and Flame, 2008, 154(3): 557-568.
    [132] J.J. Li, H.G. Im. Extinction characteristics of catalyst-assisted combustion in a stagnation-point flow reactor[J]. Combustion and Flame, 2006, 145(1-2): 390-400.
    [133] Y.C. Chao, G.B. Chen, C.J. Hsu, et al. Operational characteristics of catalytic combustion in a platinum microtube[C]. 19th International Colloquium on the Dynamics of Explosions and Reactive Systems, Hakone, JAPAN, 2003: 1755-1777.
    [134] Y.C. Chao, G.B. Chen, H.W. Hsu. Catalytic ignition of multi-fuels on platinum: effect of strain rate[J]. Catalysis Today, 2003, 83(1-4): 97-113.
    [135] M. Lyubovsky, L.L. Smith, M. Castaldi, et al. Catalytic combustion over platinum group catalysts: fuel-lean versus fuel-rich operation[J]. Catalysis Today, 2003, 83(1-4): 71-84.
    [136] M.M. Kamal, A.A. Mohamad. Combustion in porous media[J]. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 2006, 220(A5): 487-508.
    [137] S. Su, A. Beath, H. Guo, et al. An assessment of mine methane mitigation and utilisation technologies[J]. Progress in Energy and Combustion Science, 2005, 31(2): 123-170.
    [138] T. Takeno, K. Sato. An excess enthalpy flame theory[J]. Combustion Science and Technology, 1979, 20: 73-84.
    [139] V.S. Babkin, V.I. Drobyshevich, Laevskil. Filtration combustion of gases[J]. Fizka goreniya Vzryva, 1983, 19(2): 17-26.
    [140] S. Zhdanok, L.A. Kennedy, G. Koester. Superadiabatic combustion of methane air under filtration in a packed-bed [J]. Combustion and Flame, 1995, 100(1-2): 221-231.
    [141] K. Hanamura, K. Akagi, K. Koyanagi. Autothermic reforming by reciprocating flow super-adiabatic combustion in porous media[M]. 1999: 15-19.
    [142] D.A. Zumbrunen, R. Viskanta, F.P. Incropcra. Heat transfer though porous solids with complex integral geometrics[J]. Int. J. Heat Mass Transfer, 1986, 29(2): 275-284.
    [143] P.F. Hsu, J.R. Howell. measurement of thermal conductivity and optical properties of porous partially stabilized zirconia[J]. Experiment Heat Transfer, 1993, 5: 293-313.
    [144] L.B. Younis, R. Viskanta. Experimental-determination of the volumetric heat-transfer coefficient between stream of air and ceramic foam[J]. International Journal of Heat and Mass Transfer, 1993, 36(6): 1425-1434.
    [145] R.M. Fand, B.Y.K. Kim, A.C.C. Lam, et al. Resistance time to the flow of Fluids through simple and complex porous media whose matrices are composed of randomly packed spheres[J]. J. of Fluids Eng., 1987, 109(268-274.
    [146] D.F.V.D. Merwe, W.H. Gauvin. Velocity and turbulence measurements of air flow through a packed bed[J]. AIChE Journal, 1971, 17(3): 519-528.
    [147] D.P. Haack. mathematical analysis of radiatively enhanced liquid droplet vaporization and liquid fuel combustion within a porous inert medium[D]. University of Texas, 1993.
    [148] M. Kaplan, M.J. Hall. The combustion of liquid fuels within a porous-media radiant burner [J]. Experimental Thermal and Fluid Science, 1995, 11(1): 13-20.
    [149] P.H. Bouma, L.P.H. De Goey. Premixed combustion on ceramic foam burners[J]. Combustion and Flame, 1999, 119(1-2): 133-143.
    [150] J. Buckmaster, T. Takeno. Blow off and flashback of an excess enthany flame: short communication[J]. Combustion Science and Technology, 1981, 25(153-158.
    [151] R. Viskanta, J.P. Gore. Overview of cellular ceramics based porous radiant burners for supporting combustion[J]. Environ. Combust. Tech., 2000, 1: 167-203.
    [152] D.J. Diamantis, E. Mastorakos, D.A. Goussis. Simulations of premixed combustion in porous media[J]. Combustion Theory and Modelling, 2002, 6(3): 383-411.
    [153] F.C. Christo, B.B. Dally, P.V. Lanspeary. Development of porous burner technology for ultra-lean combustion systems[R]. 2002.
    [154] Y. Huang, C.Y.H. Chao, P. Cheng. Effects of preheating and operation conditions on combustion in a porous medium[J]. International Journal of Heat and Mass Transfer, 2002, 45(21): 4315-4324.
    [155] C.J. Tseng. Effects of hydrogen addition on methane combustion in a porous medium burner[J]. International Journal of Hydrogen Energy, 2002, 27(6): 699-707.
    [156] M. Sahraoui, M. Kaviany. Direct simulation vs volume-averaged treatment of adiabatic, premixed flame in a porous-medium [J]. International Journal of Heat and Mass Transfer, 1994, 37(18): 2817-2834.
    [157] C.L. Hackert, J.L. Ellzey, O.A. Ezekoye. Combustion and heat transfer in model two-dimensional porous burners[J]. Combustion and Flame, 1999, 116(1-2): 177-191.
    [158] C.L. Hackert. Two-dimensional simulation of flames in porous media[D]. Univ. of Texas at Austin, 1998.
    [159] X. Fu. Modeling of a submerged flame porous burner/radiant heater[D]. Purdue University, 1997.
    [160] X. Fu, R. Viskanta, J.P. Gore. Combustion and heat transfer interaction in a pore-scale refractory tube burner[J]. Journal of Thermophysics and Heat Transfer, 1998, 12(2): 164-171.
    [161] M.A. Mujeebu, M.Z. Abdullah, M.Z. Abu Bakar, et al. Combustion in porous media and its applications - A comprehensive survey[J]. Journal of Environmental Management, 2009, 90(8): 2287-2312.
    [162] D. Trimis, F. Durst. Combustion in a porous medium-advances and applications[C]. 3rd Clean Air Conference, Lisbon, Portugal, 1995: 153-&.
    [163] W.M. Mathis, J.L. Ellzey. Flame stabilization, operating range, and emissions for a methane/air porous burner[J]. Combustion Science and Technology, 2003, 175(5): 825-839.
    [164] S. Afsharvahid, P.J. Ashman, B.B. Dally. Investigation of NO, conversion characteristics in a porous medium[J]. Combustion and Flame, 2008, 152(4): 604-615.
    [165] S.K. Alavandi, A.K. Agrawal. Experimental study of combustion of hydrogen-syngas/methane fuel mixtures in a porous burner[J]. International Journal of Hydrogen Energy, 2008, 33(4): 1407-1415.
    [166] S.G. Kim, T. Yokomori, N.I. Kim, et al. Flame behavior in heated porous sand bed[J]. Proceedings of the Combustion Institute, 2007, 31: 2117-2124.
    [167] F. Contarin, A.V. Saveliev, A.A. Fridman, et al. A reciprocal flow filtration combustor with embedded heat exchangers: numerical study[J]. International Journal of Heat and Mass Transfer, 2003, 46(6): 949-961.
    [168] S. Cimino, R. Pirone, G. Russo. Thermal stability of perovskite-based monolithic reactors in the catalytic combustion of methane[J]. Industrial & Engineering Chemistry Research, 2001, 40(1): 80-85.
    [169]徐侃,刘明侯,姜海,等.应用于热光伏系统中的多孔介质燃烧器[J].工程热物理学报, 2009, 30(05): 887-889.
    [170] R.M. Heck, S. Gulati, R.J. Farrauto. The application of monoliths for gas phase catalytic reactions[J]. Chemical Engineering Journal, 2001, 82(1-3): 149-156.
    [171] P. Marin, M.A.G. Hevia, S. Ordonez, et al. Combustion of methane lean mixtures in reverseflow reactors: Comparison between packed and structured catalyst beds[J]. Catalysis Today, 2005, 105(3-4): 701-708.
    [172] A.J. Barra, J.L. Ellzey. Heat recirculation and heat transfer in porous burners[J]. Combustion and Flame, 2004, 137(1-2): 230-241.
    [173] P.F. Hsu, W.D. Evans, J.R. Howell. Experimental and numerical study of premixed combustion within nonhomogeneous porous ceramics [J]. Combustion Science and Technology, 1993, 90(1-4): 149-172.
    [174] S. Afsharvahid, B.B. Dally, F.C. Christo. On the stabilisation of ultra-lean methane and propane flames in porous media[C]. 4th Asia-Pacific Conference on Combustion, Nanjing, PEOPLES R CHINA, 2003: 56-59.
    [175] K.W. Lindler, M.J. Harper. Combustor/emitter design tool for a thermophotovoltaic energy converter[J]. Energy Conversion and Management, 1998, 39(5-6): 391-398.
    [176] T.J. Coutts. An overview of thermophotovoltaic generation of electricity[J]. Solar Energy Materials and Solar Cells, 2001, 66(1-4): 443-452.
    [177] S.B. Sathe, M.R. Kulkami, R.E. Peck, et al. An experimental and Theoretical study of porous radiant burner performance[M]. 1990: 1011-1018.
    [178] P.H. Bouma, R. Eggels, L.P.H. DeGoey, et al. A numerical and experimental study of the NO-emission of ceramic foam surface burners[J]. Combustion Science and Technology, 1995, 108(1-3): 193-203.
    [179] R. Echigo, K. Hanamura, Y. Yoshizawa, et al. Radiative heat transfer enhancement to a water tube by combustion geses in porous media[J]. Heat Transfer Sci. Tech., 1987, 6: 703-710.
    [180] P.L. Adair, Z. Chen, M.F. Rose. TPV power generation prototype using composite selective emitters[M]// Thermophotovoltaic Generation of Electricity. T.J. Coutts, C.S. Allman, and J.P. Benner. Woodbury: Aip Press, 1997: 277-291.
    [181] K. Qiu, A.C.S. Hayden. Thermophotovoltaic generation of electricity in a gas fired heater: Influence of radiant burner configurations and combustion processes[J]. Energy Conversion and Management, 2003, 44(17): 2779-2789.
    [182] G. Colangelo, A. de Risi, D. Laforgia. Experimental study of a burner with high temperature heat recovery system for TPV applications[J]. Energy Conversion and Management, 2006, 47(9-10): 1192-1206.
    [183] M.D. Rumminger, R.D. Hamlin, R.W. Dibble. Numerical analysis of a catalytic radiant burner: effect of catalyst on radiant efficiency and operability[J]. Catalysis Today, 1999, 47(1-4): 253-262.
    [184] K. Qiu, A.C.S. Hayden. Development of a silicon concentrator solar cell based TPV power system[J]. Energy Conversion and Management, 2006, 47(4): 365-376.
    [185] K. Qiu, A.C.S. Hayden. Premixed gas combustion stabilized in fiber felt and its application to a novel radiant burner[J]. Fuel, 2006, 85(7-8): 1094-1100.
    [186] K. Qiu, A.C.S. Hayden. Thermophotovoltaic power generation systems using natural gas-fired radiant burners[J]. Solar Energy Materials and Solar Cells, 2007, 91(7): 588-596.
    [187] K. Qiu, A.C.S. Hayden. Increasing the efficiency of radiant burners by using polymer membranes[J]. Applied Energy, 2009, 86(3): 349-354.
    [188] G. Evans, R. Greif. A numerical model of the flow and heat transfer in a rotating disk chemical vapor deposition reactor[J]. Transactions of the ASME. Journal of Heat Transfer|Transactions of the ASME. Journal of Heat Transfer, 1987, 109(4): 928-35.
    [189] M.E. Coltrin, R.J. Kee, G.H. Evans, et al. SPIN (Version 3.83): A Fortran Program for Modeling One-Dimensional Rotating-Disk/Stagnation- Flow Chemical Vapor Deposition enactors[R]. S.N. Laboratories, 1991.
    [190] Fluent 6.0 User Guide, Fluent Inc., Lebanon, 2001.
    [191] GRI-Mech 3.0[DB/OL]. http://www.me.berkeley.edu/gri-mech/releases.html.
    [192] F. Mauss, N. Peters. Reduced kinetic mechanisms for premixed methane-air flames// Reduced Kinetic Mechanisms for Application in Combustion Systems[M]. Berlin: Ed. N Peters and B Rogg, 1993.
    [193] J.F. Grcar. The Twopnt Program for Boundary Value Problems[R]. 1992.
    [194] C. Chaffin, M. Koenig, M. Koeroghlian, et al. Experimental investigation of premixed combustion within highly porous media[C]. Reno, NV, USA, 1991: 219-224.
    [195] M. Kaviany. Principles of heat transfer in porous media[M]. 2nd ed. New York: Sringer-Verlag, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700