用户名: 密码: 验证码:
惰性多孔介质内预混燃烧的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔介质内燃烧技术具有燃烧效率高、污染物排放低的优点,已经成为国内外研究的一个热点。本文采用数值模拟和实验的方法,对多孔介质内预混燃烧过程的机理进行了分析研究。数值模拟是本文的重点,主要包括三部分内容:一维多孔介质内预混燃烧的模拟、考虑湍流的多孔介质内预混燃烧的模拟和二维多孔介质内预混燃烧的模拟。
     采用一维稳态层流反应流模型对多孔介质内的预混燃烧进行数值模拟是本文最主要的内容。模型考虑气固之间的对流换热和气相的弥散效应,采用详细的化学反应机理和双通量辐射传递方程。由于一维稳态层流火焰面的求解是一个特征值问题,文中还对该问题的数值求解方法进行了研究,通过对初值、迭代方法和网格等的优化,数值计算的稳定性和收敛性大大增强。
     本文首先分析不同化学反应机理和弥散效应模型对计算结果的影响。研究表明,在当量比较小时,一步反应机理与详细机理的计算结果基本一致;在当量比较大时,使用一步反应机理会产生较大的误差,需要使用详细的反应机理,其中GRI 3.0精度最高,GRI 2.11和GRI 1.2次之,Peters最差;在当量比较大时,弥散效应对多孔介质内燃烧影响很大,考虑弥散效应可以大大改善计算的结果。
     本文还对单层和双层多孔介质燃烧器内的火焰结构、火焰传播及驻定机理、污染物排放、辐射输出效率等问题进行研究。结果表明,相比于自由流中的预混燃烧,多孔介质内燃烧可以实现超绝热火焰温度、拓宽贫燃极限、提高层流火焰传播速度、减少污染物的排放;单层多孔介质燃烧器不利于火焰驻定在多孔介质内,双层多孔介质燃烧器易于把火焰驻定在交界面附近,可以防止回火和吹脱。
     当气流速度较大时,层流模型的计算值与实验值有较大的差距,需要考虑湍流的影响。本文推导了多孔介质内燃烧的一维湍流模型,并进行了数值计算。结果表明,用湍流模型计算的火焰传播速度、NO和CO的排放量比层流模型更接近实验值,说明考虑湍流效应可以改善数值计算的结果。但是NO的计算值与实验值仍有较大差别,需要考虑更精确的模型。
     为了考虑由壁面粘性和散热引起的火焰面结构的多维效应,并对前面模拟中的一维假设进行检验,使用二维层流反应流模型对多孔介质内的预混燃烧进行模拟。结果表明,多孔介质内的边界层很薄,且厚度一定,流动和燃烧可以近似为一维情形,多孔介质内主流区的火焰结构与使用一维模型的计算结果相似。
     通过实验对多孔介质内的预混燃烧火焰进行观察和测量。实验使用丙烷/空气预混气,多孔介质材料选为氧化铝泡沫陶瓷。实验得到的结论验证了前面的计算结果。
The study of the combustion in porous media has become an international hotspot because combustion in porous media has the virtues of the high combustion efficiency and the low emissions. The premixed combustion in porous media was studied experimentally and numerically in this paper. The numerical simulation, the main task of the paper, includes three parts: one-dimensional laminar premixed combustion modeling, one-dimensional turbulent combustion modeling and two-dimensional combustion modeling.
     The numerical simulation of the combustion in porous media using one-dimension steady laminar reacting model was intensively studied with the interphase convective heat change and dispersion effects, the detailed mechanism and two-flux radiative transfer equation. The numerical method was also carefully studied to solve the steady premixed flame propagation with eigenvalue. The stability and convergence are strengthened by optimizing the initial value, the iterative method and the numerical gird.
     The influence of different chemistry reaction mechanisms and dispersion effects was numerically analyzed firstly. The results show that one-step mechanism has the same result with the detailed mechanism with small equivalence ratio, and the detailed mechanism should be included with large equivalence ratio. Four detailed mechanisms, GRI 3.0, GRI 2.11, GRI 1.2 and Peters, were studied. The results show that GRI 3.0 mechanism is the best, and Peters mechanism is the worst. The influence of the dispersion effects is large with relatively large equivalence ratio, and the computational result can be greatly improved if the dispersion effects are considered.
     The flame structure, the flame propagation and stability, the emissions and the radiative output efficiency in a one-layer and a two-layer porous porous burner were also studied. The combustion in a porous burner has more special characteristics such as superadiabatic flames, broader lean flammabilities, higher flame propagation speed, et al. compared to the combustion in a free space burner. The flame is easily stabilized between the two layers in a two-layer porous burner to overcome the shortcomings of the flashback and blow up in a one-layer porous burner.
     The turbulent model should be taken into account since the laminar method was not suitable for higher gas velocity in burner. The one-dimensional turbulent model was developed and numerically studied in porous burner. The flame propagation speed and the emissions of NO and CO with the turbulent model are better than that with laminar method. It should be noted that a more accurate model is needed to have better predicted NO emission.
     The two-dimensional combustion simulation in porous burner was performed to take into account the effects of the viscosity and the heat loss from the wall, which was also used to validate the assumptions in the one-dimensional model. The flow and flame is approximately one-dimensional in porous media due to the very thin boundary layer in 2-D simulation.
     The C_3H_8/Air premixed flames in the AL_2O_3 porous ceramic foam were observed and measured. The conclusions by computation are well agreed to that by experiment.
引文
[1] S. Moβbauer, O. Pickenacker, K. Pickenacker, et al. Application of the porous bruner technology in engery- and heat- engineering. In: 5th International Conference on Technologies and Combustion for a Clean Environment(Clean Air V), Lisbon, Protugal, 12-15 July, 1999, Volume 1, Lecture 20.2: 519-523.
    [2] M. M. kamal, and A. A. Mohamad. Combustion in porous media. J. Power and Energy, 220: 487-508, 2006.
    [3] F. J. Weinberg. Combustion temperature: the future? Nature, 233(5317): 239-241, 1971.
    [4] D. Trimis, F. Durst, O. Pickenacker, et al. Porous medium combustor versus combustion systems with free flame. Personal communication.
    [5] S. A. Zhdanok, L. A. Kennedy and G. E. Koester. Superadiabatic combustion of methane air mixtures under filtration in a packed bed. Combustion and Flame, 100(1-2): 221-231, 1995..
    [6] Y. M. Laveskii and V. S. Babkin. Propagation of heat waves in heterogeneous media. In: Filtration Combustion of Gases, Nauka, Novosibirsk, Russia: 108-145, 1982.
    [7] K. Hanamura, R. Echigo and S. A. Zhdanok. Superadiabatic combustion in a porous medium. Int. J. Heat and Mass Transfer, 36(13): 1993.
    [8] L. A. Kennedy, A. A. Fridman and A. V. Saveliev. Superadiabatic combustion in porous media: wave propagation, instabilities, new type of chemical reactor. Fluid Mechanic Research, 22: 1-26, 1995.
    [9] V. S. Babkin, A. A. Korzhavin and V. A. Bunev. Propagation of premixed gaseous explosion flames in porous media. Combustion and Flame, 87: 182-190, 1991.
    [10] A. I. Rozlowskii. Technical principles of explosion-proof upon work with gaseous fuel and vapors. Khimiya, Moscow, pp. 135, 1980.
    [11] A. A. Korzhavin, V. A. Bunev, R. K. Abdullin, et al. Flame zone in gas combustion in an inert porous medium. Combustion, Explosions and Shock Waves. 18(6): 628, 1982.
    [12] V. S. Babkin, V. A. Bunev., A. A. Korzhavin, et al. Gas combustion in a vessel with a highly porous inert medium. Combustion, Explosions and Shock Waves. 21(5): 519, 1985.
    [13] G. A. Lyamin and A. V. Pinaev. Fast subsonic combustion of gases in an inert porous medium with a smooth rise in the pressure in the wave. Combustion, Explosions and Shock Waves. 23(4): 399, 1987.
    [14] A. V. Pinaev and G. A. Lyamin. Fundamental laws governing subsonic and detonating gas combustion in inert porous media. Combustion, Explosions and Shock Waves. 25(4): 448-454, 1989.
    [15] F. J. Weinberg. Combustion temperature: the future? Nature, 233(5317): 239-241, 1971.
    [16] D. R. Hardesty and F. J. Weinberg. Burners producing large excess enthalpies. Combustion Science and Technology, 8:201-214, 1974.
    [17] S. A. Lloyd and F. J. Weinberg. A burner for mixture of very low heat content. Nature, 251: 47, 1974.
    [18] S. A. Lloyd and F. J. Weinberg. Limits on energy release and utilization from chemical fuels. Nature, 257: 367, 1975.
    [19] F. J. Weinberg. Advanced combustion methods. Academic Press: London, 1986.
    [20] A. R. Jones, S. A. Lloyd and F. J. Weinberg. Combustion in heat exchangers. In: Proc. Roy. Soc. A360.97-115, 1978.
    [21] T. Takeno and K. Sato. An excess enthalpy flame theory. Combustion Science and Technology, 20: 73-84, 1979.
    [22] T. Takeno, K. Sato and K. Hase. A theoretical study on an excess enthalpy flame. In: Proc. of 18th Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 465-472, 1981.
    [23] J. Buckmaster and T. Takeno. Blow-off and flashback of an excess enthalpy flame. Combustion Science and Technology, 25:153-158, 1981.
    [24] Y. Kotani and T. Takeno. An experimental study on stability and combustion characteristics of an excess enthalpy flame. In: Proc. of 19th Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 1503-1509, 1982.
    [25] K. Sato, K. Hase and T. Takeno. A further experimental study on an excess enthalpy flame. Trans. Japan Soc. Aero. Space Sci., 26(72): 65-79, 1983.
    [26] T. Takeno and K. Hase. Effects of solid length and heat loss on an excess enthalpy flame. Combustion Science and Technology, 31:207-215, 1983.
    [27] T. Takeno and M. Murayama. One-dimensional flame with extended reaction zone. In: Progr. In Astro. Aero. Sci., 105:246-262, 1986.
    [28] R. Echigo. Effective energy conversion method between gas enthalpy and thermal radiation and application to industrial furnaces. In: Proc. of 7th Int. Heat Transfer Conf., Munich, Vol. Ⅵ: 361-366, 1982.
    [29] R. Echigo, Y. Yoshizawa, K. Hanamura, et al. Analytical and experimental study on radiative propagation in porous media with internal heat generation. In: Proc. of 8th Int. Heat Transfer Conf., San Francisco, California, Vol. Ⅱ: 827-832, 1986.
    [30] R. Echigo. Radiation enhanced/controlled phenomena of heat and mass transfer in porous media. In: Proc. of the 3rd ASME/JSME Thermal Engrg. Joint Conf., Reno, Nevada, Vol. 4: ⅹⅹⅰ-ⅹⅹⅹⅱ, 1991.
    [31] Y. Yoshizawa, K. Sasaki and R. Echigo. Analytical study of the structure of radiation controlled flame. Int. J. Heat Mass Transfer, 31 (2): 311-319, 1988.
    [32] S. B. Sathe, M. R. Kulkami, R. E. Peck, et al. An experimental study of combustion and heat transfer in porous radiant burner. 1989 Western States Section/Combustion Institute, Livermore, California, Oct. 23-24, 1989.
    [33] S. B. Sathe, R. E. Peck and T. W. Tong. Flame stabilization and multimode heat transfer in inert porous media, a numerical study. Combustion Science and Technology, 70: 93-109, 1990.
    [34] S. B. Sathe, M. R. Kulkarni, R. E. Peck, et al. An experimental and theoretical study of porous radiant burner performance. In: Proc. of 23rd Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 1011-1018, 1990.
    [35] S. B. Sathe, R. E. Peck and T. W. Tong. A numerical analysis of heat transfer and combustion in porous radiant burners. Inter. J. Heat Mass Transfer, 33(6): 1331-1338, 1990.
    [36] D. K. Min and H. D. Shin. Laminar premixed flame stabilized inside a honeycomb ceramic. Int. J. Heat Mass Transfer, 43(2): 341-356, 1991.
    [37] M. R. Kulkarni, K. P. Chavali and R. E. Peck. Emission Characteristics of radiant surface burners. Presented at the 1992 Fall Meeting of the Western States Section of The Combustion Institute, Berkeley, California, October 12-13, 1992.
    [38] M. R. Kulkami and R.E. Peck. Analysis ofa bilayered porous radiant burner. Presented at the 1992 Fall Meeting of the Westem States Section of The Combustion Institute, Berkeley, California, October 12-13, 1992.
    [39] A. C. Mclntosh and A. Prothero. A Model of Large Heat Transfer Surface Combustion with Radiant Heat Emission. Combustion and Flame 83:111-126, 1991.
    [40] M. D. Rumminger, R. W. Dibble, N.H . Heberle, et al. Gas Temperature Measurement above a porous radiant burner: comparison of measurements and model predictions. In: Proc. of 26th Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 1755-1762, 1996.
    [41] M. D. Rumminger. Numerical and experimental investigation of heat transfer and pollution formation in porous direct-fired radiant burners. Univ. of California, Berkeley, PhD Thesis, 1996.
    [42] R. Mital. An experimental and a theoretical investigation of combustion and heat transfer characteristics of reticulated ceramic burners. Purdue University, PhD Thesis, 1996.
    [43] R. Mital, J. P. Gore and R. A. Viskanta. Study of the structure of submerged reaction zone in porous ceramic radiant burners. Combustion and Flame, 111, 175-184, 1997.
    [44] P. H. Bouma and L. P. H. de Goey. Premixed Combustion on Ceramic Foam Burners. Combustion and Flame 119: 133-143, 1999.
    [45] L. B. Younis and R. Viskanta. Experimental determination of volumetric heat transfer coefficient between stream of air and ceramic foam. Int. J. Heat Mass Transfer, 36(6): 1425-1434, 1993.
    [46] R. Viskanta and J. P. Gore. Overview of cellular ceramics based porous radiant burners for supporting combustion. Environ. Combust. Tech., 1 : 167-203, 2000.
    [47] D. J. Diamantis, E. Mastorakos and D. A. Goussis. Simulations of premixed combustion in porous media. Combust. Theory and Modeling, 6:383-411, 2002.
    [48] F. C. Christo, B. B. Dally, P. V. Lanspeary, et al. Development of porous burner technology for ultra-lean combustion systems. Report for South Australian State Energy Research Advisory Committee, 2002.
    [49] Y. Huang, C. Y. H. Chao and P. Cheng. Effects of preheating and operation conditions on combustion in a porous medium. Int. J. Heat Mass Transfer, 45: 4315-4324, 2002.
    [50] Chung-jen Tseng. Effects of hydrogen addition on methane combustion in a porous medium burner. Int. J. Hydrogen Energy, 27: 699-707, 2002.
    [51] M. Sahraoui and M. Kaviany. Direct simulation vs volume-averaged treatment of adiabatic, premixed flame in a porous medium. Int. J. Heat Mass Transfer, 37(18): 2817-2834, 1994.
    [52] C. L. Hackert, J. L. Ellzey and O. A. Ezekoye, et al. Combustion and heat transfer in model two-dimensional porous burner. Combustion and Flame, 116:177-191, 1999.
    [53] C. L. Hackert. Two-dimensional simulation of flames in porous media. Univ. of Texas at Austin, PhD Thesis, 1998.
    [54] XY Fu. Modeling of a submerged flame porous burner/radiant heater. Purdue University, PhD Thesis, 1997.
    [55] XY Fu, R. Viskanta and J. P. Gore. Combustion and heat transfer interaction in a pore-scale refractory tube burner. J. Thermophys. Heat Transfer, 12:164-171, 1998.
    [56] G. Brenner, K. Pickenacker, O. Pickenacker, et al. Numerical and experimental inverstigation of matrix-stabilized methane/air combustion in porous inert media. Combustion and Flame, 123: 201-213, 2000.
    [57] I. Malico, X. Y. Zhou and J. C. F. Pereira. Two-dimensional numerical study of combustion and pollutants formation in porous burners. Combustion Science and Technology, 152: 57-79, 2000
    [58] I. Malico and J. C. F. Pereira. Numerical study on the influence of radiative properties in porous media combustion. ASME Journal of Heat Transfer, 123: 951-957, 2001.
    [59] F. A. Lammers, L. P. H. de Goey. A numerical study of flash back of laminar premixed flames in ceramic-foam surface burners. Combustion and Flame. 133:47-61, 2003.
    [60] Y. K. Chen, R. D. Matthews and J. R. Howell. The effect of radiation on the structure of a premixed flame within a highly porous inert medium. In: Radiation, phase change, heat transfer and thermal systems. ASME publication HTD-Vol. 81, 35-42, 1987.
    [61] Y. K. Chen, P. F. Hsu, I. G. Lim, et al. Experimental and theoretical investigation of combustion within porous inert media. In: Proc. of 22nd Symposium (International) on Combustion, Post Paper, USA: The combustion institute, Pittsburgh, PA, 1988.
    [62] W. D. Evans, J. R. Howell and P. Varghese. An experimental investigation of practical lean limit of methane combustion inside a porous ceramic matrix. In: AIAA/SAE/ASME/ASEE Joint Propulsion Conf., Sacramento, California, June, 1991.
    [63] C. Chaffin, M. Koenig, M. Koeroghlian, et al. Experimental investigation of premixed combustion within highly porous media. In: Proc. of ASME/JSME Thermal Engineering Joint Conf.4: 219-224, 1991.
    [64] C. Chaffin. Reduction of NOx emissions using the technique of two-stage combustion within porous inert media. Univ. of Texas at Austin, Master's Thesis, 1991.
    [65] P. F. Hsu. Analytical and experimental study of combustion in porous inert media. Univ. of Texas at Austin, PhD Thesis, 1991.
    [66] P. F. Hsu and J. R. Howell. The necessity of using detailed chemical kinetics in models for premixed combustion in porous media. Combustion and Flame, 93: 457-466, 1993.
    [67] P. F. Hsu, W. D. Evans and J. R. Howell. Experimental and numerical study of premixed combustion within nonhomogeneous porous ceramics. Combustion Science and Technology, 90: 149-172, 1993.
    [68] P.F. Hsu, J.R. Howell and R. D. Matthews. A numerical investigation of premixed combustion within porous inert media. ASME J. Heat Transfer, 115(3): 744-750, 1993.
    [69] J.R. Howell, M.J. Hall, and J.L. Ellzey. Combustion of hydrocarbon fuels within porous inert media. Progress in Energy and Combustion Science, 22:121-145, 1996.
    [70] I. G. Lira A numerical study of combustion within a porous inert medium burner. Univ. of Texas at Austin, PhD Thesis, 1992.
    [71] I. G. Lim and R. D. Matthews. A model for turbulent premixed combustion within porous inert media. ASME, Emerging Energy Technology, PD-Vol. 50: 85-94, 1993.
    [72] I.G. Lim and R.D. Matthews. Development of a model for turbulent combustion within porous inert media. In: Proc. of the 6th International Symposium on Transport Phenomena in Thermal Engineering, Vol. 1: 631-636, 1993.
    [73] V. Khanna. Experimental analysis of radiation for methane combustion within a porous medium burner. Univ. of Texas at Austin, Master's Thesis, 1992.
    [74] V. Khanna, R. Goel and J.L. Ellzey. Measurement of Emissions and Radiation for Methane Combustion within a Porous Medium Burner. Combustion Science and Technology, 99: 133-142, 1994.
    [75] C. L.Hackert. Two-dimensional simulation of flames in porous media. Univ. of Texas at Austin, PhD Thesis, 1998.
    [76] M. R. Henneke and J.L. Ellzey. Modeling of filtration combustion in a packed bed. Combustion and Flame, 117:832-840, 1999.
    [77] M. R. Henneke. Simulation of transient combustion within porous inert media. Univ. of Texas at Austin, PhD Thesis, 1998.
    [78] W. M. Mathis and J. L. Ellzey. Flame stabilization, operating range, and emissions for a methane/air porous burner. Combustion Science and Technology, 175: 826-839, 2003.
    [79] A. J. Barra, G. Diepvens, J.L. Ellzey, et al. Numerical study of the effects of material properties on flame stabilization in a porous burner. Combustion and Flame, 134: 369-379, 2003.
    [80] A. J. Barra. Computational study of a two-section porous burner. Univ. of Texas at Austin, Master's Thesis, 2003.
    [81] A. J. Barra and J.L. Ellzey. Heat recirculation and heat transfer processes in porous burners. Combustion and Flame, 137:230-241, 2004.
    [82] M. T. Smucker and J. L. Ellzey. Computational and experimental study of a two-section porous burner. Combustion Science and Technology, 176:1171-1189, 2004.
    [83] B. Vogel and J.L. Ellzey. Subadiabatic and superadiabatic performance of a two-section porous burner. Combustion Science and Technology, 177:1323-1338, 2005.
    [84] 吕兆华,孙思诚,裴锦华,等.多孔泡沫陶瓷中预混火焰燃烧速率的试验研究.燃烧科学与技术,1(2):129-134,1995.
    [85] 吕兆华,孙思诚.多孔介质中预混火焰燃烧速率的预示.燃烧科学与技术,4(3):242-246,1998.
    [86] 吕兆华,R.D Matthews.分段多孔介质燃烧器的二次进气燃烧排放研究.燃烧科学与技术,6(2):124-128,2000.
    [87] 杜礼明,解茂昭,邓洋波.惰性多孔介质中预混合燃烧的研究进展.热能动力工程,17(3):221-226,2002.
    [88] 解茂昭,杜礼明,孙文策.多孔介质中往复流动下超绝热燃烧技术的进展与前景.燃烧科学与技术,8(6):520-524,2002.
    [89] 杜礼明,解茂昭.预混气体在多孔介质中往复流动下超绝热燃烧的理论探讨.能源工程,2003(5):6-11,2003.
    [90] 邓洋波,解茂昭,刘宏升,等.多孔介质内往复流动下超绝热燃烧的实验研究.燃烧科学与技术,10(1):82-87,2004.
    [91] 邓洋波,解茂昭.多孔介质内预混合超绝热燃烧的排放特性.大连理工大学学报,44(3):392-397,2004.
    [92] 马世虎,解茂昭,邓洋波.多孔介质往复流动燃烧的一维数值模拟.热能动力工程,19(4):384-390,2004.
    [93] 杜礼明,解茂昭.多孔介质的热物性对往复流动下超绝热火焰的影响.热能动力工程,20(2):148-153,2005.
    [94] 王恩宇,程乐鸣,骆仲泱,等.渐变型多孔介质中预混燃烧温度分布试验.热科学与技术,2(1):64-69,2003.
    [95] 王恩宇,程乐鸣,骆仲泱,等.天然气在渐变型多孔介质中的预混燃烧.燃烧科学与技术,10(1):1-6,2004.
    [96] 李昊,程乐鸣,王恩宇,等.往复式多孔介质燃烧器流动特性的试验研究.能源工程,2004(4):1-5,2004.
    [97] 王恩宇,程乐鸣,骆仲泱,等.多孔介质中预混火焰淬熄及自稳定性研究.热科学与技术,2(1):58-62,2005.
    [98] 褚金华,程乐鸣,王恩宇,等.预混天然气在多孔介质燃烧器中的燃烧与传热.燃料化学学报,33(2):166-170,2005.
    [99] 张根烜,刘明侯,朱曼明等.堆积床内过滤燃烧的瞬态研究,燃烧科学与技术.12(2):180-185.2006.
    [100] 张根煊.基于多孔介质内燃烧的微小型化学推进系统的数值研究.中国科学技术大学博士学位论文,合肥,2006.
    [101] G. Zhang, X. Cai, M. Liu, et al., Characteristic analysis of low-velocity gas filtration combustion in an inert packed bed, Combustion Theory and Modelling, 2006.
    [102] V.S. Babkin, V.I. Drobyshevich, Laevskil, et al. Mechanisms of the propagation of combustion waves in porous medium in gas filtration. Doklady Akademii Nauk SSSR, 265(5):1157-1161, 1982.
    [103] V.S. Babkin, V.I. Drobyshevich, Laevskil, et al. Filtration combustion of gases. Fizka goreniya Vzryva, 19(2): 17-26, 1983.
    [104] S.I. Potytnyakov, V.S. Babkin, Laevskil, et al. Thermal structure of an in situ gas combustion wave. Combustion, Explosions and Shock Waves, 21(2): 146-151, 1985.
    [105] G. E. Koester, L.A. Kennedy and V.V. Subrarnaniam. Low temperature wave enhanced combustion in porous systems. In: Proc. of the 4th ASME/JSME Thermal Engineering Joint Conference, Lahaina, Maui, Hawaii, March 19-24, 1995.
    [106] G.E. Koester. Propagation of wave-like unstabilized combustion fronts in inert porous media: he Ohio State University, PhD Thesis, 1997.
    [107] S.I. Futko, S.I. Shabunya and S.A. Zhdanok. Superadiabatic combustion wave in a diluted methane-air mixture under filtration in a packed bed. In: Proc. of 26th Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 3377-3382, 1996.
    [108] S.I. Futko. Effect of kinetic properties of a mixture on wave macrocharcteristics of filtration combustion of gases. Combustion, Explosion, and Shock Waves, 39(1): 11-22, 2003.
    [109] S.I. Futko. Mechanism of upper temperature limits in a wave of filtration combustion of gases. Combustion, Explosion, and Shock Waves, 39(2): 130-139, 2003.
    [110] L.A. Kennedy, A.V. Saveliev and A.A. Fridman. Transient filtration combustion. In: Proc. of Mediterranean Combustion Symposium, 1:105-139, 1999.
    [111] L.A. Kennedy, J.P. Bingue, A.V. Saveliev, et al. Chemical Structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions. In: Proc. of 28th Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 1431-1438, 2000.
    [112] J.P. Bingue. Filtration combustion of methane and hydrogen sulfide in inert porous media: theory and experiments. Univ. of Illinois at Chicago, PhD Thesis, 2003.
    [113] J.P. Bingue, A.V. Saveliev and L.A. Kennedy. Optimization of hydrogen production by filtration combustion of methane by oxygen enrichment and depletion. Int. J. Hydrogen Energy, 29:1365-1370, 2004.
    [114] J.P. Bingue, A.V. Saveliev, A.A. Fridman, et al. Hydrogen production in ultra-rich filtration combustion of methane and hydrogen sulfide. Int. J. Hydrogen Energy, 27: 643-649, 2002.
    [115] P.F. Hsu and J.R. Howell. Measurements of Thermal Conductivity and Optical Properties of Partially Stabilized Zirconia. Experimental Heat Transfer 5: 219, 1992.
    [116] R. Mital, J.P. Gore, R. Viskanta, and A.C. Mclntosh. Measurements of Radiative Properties of Cellular Ceramics at High Temperature. J. Thermophy. Heat Transfer 10: 33, 1996.
    [117] X. Fu, R. Viskanta, and J.P. Gore. Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics. Exp. Thermal Fluid Science 17: 285, 1998.
    [118] 越后亮三(日),张唯敏译.多孔介质内的超绝热燃烧.(自动车技术,1996,50(4))国外内燃机,6:55-57,1997.
    [119] J.G. Hoffmann, R. Echigo, H. Yoshida, and S. Tada. Experimental study on combustion in porous media with a reciprocating flow system. Combustion and Flame,111: 32-46, 1997.
    [120] Commercial report. A new method of destroying organic pollutants in exhaust air. ADTEC Co., Ltd., 1990.
    [121] K. Hanamura, T. Kumano, and Y. Iida. Electric power generation by super-adiabatic combustion in thermoelectric porous element. Energy, 30: 347-357, 2005.
    [122] 解茂昭.一种新概念内燃机——基于多孔介质燃烧技术的超绝热发动机.热科学与技术,2(3):189-194,2003.
    [123] K. Hanamura, K. Bohda, and Y. Myairi. Study of super-adiabatic combustion engine, Energy Conversion and Management. 38(10-13): 1259-1266, 1997.
    [124] F. Durst, M. Weclas. A new type of internal combustion on engine based on the porous-medium combustion technique. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile engineering. 215(1): 63-81, 2001.
    [125] M. K. Drayton, A. V. Saveliev, L. A. Kennedy, A.A. Fridman, and Y. Li. Syngas production using superadiabatic combustion of ultra-rich methane-air mixtures. Proc. Comb. Inst. 27: 1361-1367. 1998.
    [126] J. P. Bingue, A. V. Saveliev, A. A. Fridman, et al. Proceedings of the 2000 Technical Meeting, The Central State Section of the Combustion Institute, Indianapolis, USA. 379-384.
    [127] M. Kaviany. Principles of convective heat transfer. New York: Springer-Verlag, 2001.
    [128] N. Wakao and S. Kaguei. Heat and mass transfer in packed beds. Gordon and Breach Science Publishers, New York, 1982.
    [129] Y. Yoshizawa, K. Sasaki, and R. Echigo. Analytical study of the structure of radiation controlled flame. Int. J. Heat Mass Transfer, 31:311-319, 1998.
    [130] F. Mauss and N. Peters. Reduced kinetic mechanisms for premixed methane-air flames. Reduced Kinetic Mechanisms for Application in Combustion Systems. Ed. N Peters and B Rogg, 1993(Berlin: Springer).
    [131] R. J. Kee, A. A. Miller, and T. H. Jefferson. CHEMKIN: a general-purpose problem independent transportable, Fortran chemical kinetics code package. Sandia National Laboratories Report, SAND80-8003, 1980.
    [132] R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller. A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties. Sandia National Laboratories Report SAND86-8246, 1986.
    [133] R. M. Fand, B. Y. K. Kim, A. C. C. Lain, and R. T. Phan. Resistance to the Flow of Fluids Through Simple and Complex Porous Media Whose Matrices Are Composed of Randomly Packed Spheres. ASME J. Fluids Engineering 109: 268-274, 1987.
    [134] R. M. Fand and R. Thinakaran. The Influence of the Wall on Flow Through Pipes Packed With Spheres. ASME J. Fluids Engineering 112: 84-88, 1990.
    [135] D. Seguin, A. Montillet, J. Comiti and F. Huet. Experimental characterization of flow regimes in various porous media—Ⅱ: Transition to turbulent regime. Chemical Engineering Science, 53(22): 3897-3909, 1998.
    [136] S. J. Lee and H. B. Kim. Laboratory measurements of velocity and turbulence field behind porous fences. Journal of Wind Engineering and Industrial Aerodynamics, 80: 311-326, 1999.
    [137] T. Masuoka and Y. Takatsu. Turbulence model for flow through porous media. International Journal of Heat and Mass Transfer, 39: 2803-2809, 1995.
    [138] A. Nakayama and F. Kuwahara. A Macroscopic Turbulence Model for Flow in a Porous Medium. ASME Journal of Fluids Engineering, 121: 427-433, 1999.
    [139] A. Nakayama, F. Kuwahara, M. Sugiyama, and G. Xu. A two-energy equation model for conduction and convection in porous media. International Journal of Heat and Mass Transfer, 44: 4375-4379, 2001.
    [140] F. D. Rocamora and M. J. S. de Lemos. Analysis of convective heat transfer for turbulent flow in saturated porous media. Int. Comm. Heat Mass Transfer, 27(6): 825-834, 2000.
    [141] M. H. J. Pedras and M. J. S. de Lemos. On the definition of turbulent kinetic energy for flow in porous media. Int. Comm. Heat Mass Transfer, 27(2): 211-220, 2000.
    [142] M. H. J. Pedras and M. J. S. de Lemos. Macroscopic turbulence modeling for incompressible flow through undeformable porous media. International Journal of Heat and Mass Transfer, 44: 1081-1093, 2001.
    [143] M.J.S. de Lemos and M.S. Mesquita. Turbulent mass transport in saturated grid porous media. Int. Comm. Heat Mass Transfer, 30(1): 105-113, 2003.
    [144] M.H.J. Pedras and M.J.S. de Lemos. On the Mathematical Description and Simulation of Turbulent Flow in a Porous Medium Formed by an Array of Elliptic Rod. ASME Journal of Fluids Engineering, 123: 941-947, 2001.
    [145] G Alvarez, P. E. Bournet, and D. Flick. Two-dimensional simulation of turbulent flow and transfer through stacked spheres. International Journal of Heat and Mass Transfer, 46: 2459-2469, 2003.
    [146] D. Flick, A. Leslousb, and G. Alvarez. Semi-empirical modeling of turbulent fluid flow and heat transfer in porous media. International Journal of Refrigeration 26: 349-359, 2003.
    [147] F. Kuwahara, M. Shirota, and A. Nakayama. A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media. International Journal of Heat and Mass Transfer, 44:1153-1159, 2001.
    [148] F. Kuwahara and A. Nakayama. Numerical Determination of Thermal Dispersion Coefficients Using a Periodic Porous Structure. A SME Journal of Heat Transfer, 121: 160-163, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700