用户名: 密码: 验证码:
椰纤维增韧复合材料的设计及其性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以椰纤维的纤维优势为研究的着眼点,以椰纤维在复合材料工业中的合理有效利用为主要的研究内容,以复合材料设计理论为指导,进行了不同类型的椰纤维复合材料设计,实现了椰纤维的优势利用。以试验与理论结合的方式对于椰纤维复合材料的各项性能进行检测,采用了电镜分析(SEM),能谱分析和动态力学性能分析(DMA)等现代化的观察与检测手段,并结合传统的力学性能检测试验对材料的性能进行准确分析,实现了椰纤维增韧复合材料的合理设计。
     研究内容分为五个部分展开,首先,对椰纤维的纤维优势加以研究,椰纤维内部孔隙结构和低密度特性决定了椰纤维的吸声保温的功能特性;确定了椰纤维内部的微纤丝角度大,椰纤维断裂伸长率高的特征为椰纤维的优势特征,可以利用椰纤维对复合材料进行增韧设计。其次,对于椰纤维密度板的制备工艺进行优化,研究了椰纤维板的吸声性能和保温性能,对于椰纤维与木材碎料混杂板的力学性能与声学性能进行了合理的设计与研究。对椰纤维夹层代木材料进行设计,以不同的胶粘剂类型和不同的玻璃纤维增强体形式的加入作为影响因素,实现了椰纤维夹芯代木复合材料的设计,保证了材料的较高冲击韧性和综合力学性能。对不同椰纤维增强体形态增强不饱和聚酯材料的性能进行了评价研究,比较了椰纤维毡,椰纤维网与椰纤维绳三种增强体形态对于材料力学性能指标的影响规律,并获得了对于不饱和聚酯基体的增韧设计。基于复合材料的混合定律,对椰纤维不同增强体形态复合材料的力学模型进行构建与评价。
     主要的创新性成果如下
     (1)对于椰纤维的微纤丝角度进行合理的确定,明确了椰纤维的力学性能指标,明确了由于椰纤维的微纤丝结构而产生的对于椰纤维的断裂特性的影响。从而确定了椰纤维高的断裂韧性的利用为椰纤维复合材料设计的关键。
     (2)对于椰纤维低密度板的工艺进行优化设计并验证了椰纤维材料的吸声和保温优势,提出了变密度梯度椰纤维吸声板结构的设计,为椰纤维在建筑材料领域的合理利用奠定了一定基础。
     (3)在椰纤维代木材料设计部分,通过对于夹芯结构的增强设计,在椰纤维夹芯层中,加入玻璃纤维增强体和使用异氰酸酯胶黏剂,实现了“木材单板面板+椰纤维毡芯层+玻璃纤维网格布+木材单板面板”复合材料的整体性能的优化设计。这种复合材料在力学性能上,尤其是冲击性能上超过了天然生长的大青杨木材,设计出一种新型代木材料。
     (4)进行了椰纤维不饱和聚酯材料设计,利用椰纤维毡,椰纤维网与椰纤维绳三种不同的椰纤维增强体形态。内部结构与纤维定向性的差异,决定了不同增强体形态的椰纤维不饱和聚酯材料性能的差异,对于三种增强体形态的复合材料的力学性能进行了比较研究,证实了椰纤维绳不饱和聚酯复合材料的冲击韧性特征最优。
     (5)通过对于椰纤维不同增强体结构的分析并结合复合材料的力学性能特征,在复合材料混合定律的基础上建立了椰纤维绳增强形式的拉伸模量的分段预测,实现了椰纤维绳不饱和聚酯材料的拉伸性能预测模型的建立,并对椰纤维不同增强体形态增韧不饱和聚酯材料的增韧机理进行了理论模型的构建,完善了天然纤维复合材料的性能预测体系。
     通过本文的研究,椰纤维复合材料的增韧优势利用得以完善,设计出的椰纤维变密度板吸声结构,椰纤维夹芯代木材料和椰纤维不饱和聚酯增韧材料都具有很好的实际应用价值。为椰纤维资源的合理利用提供了多种选择方案。另外,通过椰纤维增强不饱和聚酯的力学性能预测模型的建立,为完善天然纤维复合材料的力学性能评价体系提供了有效的方法。
Making advantages of coir as the key point, making the reasonable effective use of coir in composite industry as the main research contents, also making design theory of composites as the guide, different types of coir composites have been designed and the usage of coir advantages has been realized. Various performance testings of coir composites have been done by the combination of experiment and theory, electron microscope analysis (SEM), energy spectrum analysis and dynamic mechanics performance analysis (DMA) and other modern observation and testing means have been adopted, accurate analysis of material properties have been obtained, and the design of coir toughened composites has been realized.
     The research contents are divided into five parts, first of all, the advantage of coir fibre has been studied, the characteristics of internal pore structure and low density decide the function characteristics of sound absorption and heat preservation; the bigger microfibril angle and the higher breaking elongation are the advantage characteristics of coir, so coir fibre toughening design has been focused on in the material design. The production process of coir density board has been optimized, and the sound absorption and insulation performance has been researched. Wood replacement materials with coir sandwich structure have been designed, making different types of adhesive and different glass fiber reinforced forms as reasearch factors, realize the design of the sandwich wood replacement materials, coir sandwich structure material with high impact toughness and comprehensive mechanical properties have been obtained. Performance evaluation and research of coir reinforced unsaturated polyester with different reinforced forms have been done, the influence law on the mechanical performance index of coir mat, coir net and coir rope has been compared, the toughening design of this three reinforced forms of unsaturated polyester matrix have been realized; Based on the mixture law of composites, the mechanical model establishment and evaluation of coir rope reinforced composite have been realized.
     The main innovation results are as follows:
     (1) The microfibril angle of coir has been reasonable determined, the mechanical performance indexes have been clarified, fracture characteristics influence of coir microfibril structure has also been clarified. So as to the advantages of high fiber fracture toughness have been determined as the starting point.
     (2) The process optimization design of coir fibre low density board has been done, and sound absorption and heat insulation advantages have been verified, structure design of variable density gradient coir sound absorption board has been put forward, the rational utilization foundation of coir composites in building materials has been laid.
     (3) In the wood replacement materials design part, through a further reinforced design of sandwich structure, namely to joining glass fiber reinforced body and using isocyanate as adhesive, the overall performance optimization design of "wood veneer panel+the core layer of coir mats+glass fiber mesh cloth+wood veneer panel" composite has been realized. The mechanical properties, especially the impact toughness of this kind of composite can excess natural cathay poplar, reasonable design of a wood replacement material can be realized.
     (4) The material design of coir reinforced unsaturated polyester have been done, three different coir reinforced body forms:coir mat, coir net and coir rope, because internal structure and the difference fiber direction, performance differences of different forms of coir reinforced unsaturated polyester material have been determined, the comparative study of mechanical properties of three reinforced forms composites has been done, the best impact toughness obtained from coir rope reinforced body has been confirmed.
     (5) Through the structure analysis and the mechanical properties of coir rope reinforced composite, the tensile modulus prediction of coir rope reinforced composite based on the composite mixed law has been established, the toughening mechanism theoretical models of different body forms of coir fiber toughened unsaturated polyester has been bulit, the tensile properties model has been established and the natural fiber composite performance prediction system has been perfected.
     Through the research in this paper, the toughening advantages usage of coir has been improved, the variable density board absorption structure, wood replacement materials of coir sandwich and the coir toughened unsaturated polyester materials all have good application value. A variety of options can be offered for the coir resources reasonably usage. In addition, through the establishment of the mechanics performance prediction model of coir fiber reinforced unsaturated polyester, an effective method for the mechanical properties of composite evaluation system has been provided.
引文
[1]Mueller, D. H., Krobjilowski, A., Journal of Industrial Textiles,2003, (33)2:111-130
    [2]Pratik Kishore Ichhaporia. Composites from Natural Fibers. Doctor dissertation, North Carolina State University
    [3]杨莹.天然纤维复合材料的最新研究趋势.玻璃钢,2011,4:34~38
    [4]鲁博,张林文,曾竟成.天然纤维复合材料.北京:化学工业出版社,2005
    [5]KG. Satyanarayana, F. Wypych, JL. Guimaraes, SC. Amico, THD. Sydenstricker, LP. Ramos. Studies on Natural Fibers of Brazil and Green Composites. Metal Mater Proc,2005, 17(3-4):183-94.
    [6]宋超.新型汽车制造材料-天然纤维.汽车维修,2007,11:2-4
    [7]田永,何莉萍,吴振军,王璐琳,屈伟平,丁舟波.天然纤维增强塑料在汽车制造中的应用与发展研究.材料导报网刊,2007,4:33-37
    [8]芦长椿.国内外天然纤维增强复合材料的技术进展.纺织导报,2011,3:80-84
    [9]A. K. Mohanty, M. Misra, G. Hinrichsen. Macromolecular Materials and Engineering, 2000,276/277(1):1-24
    [10]JL. Guimaraes, KG. Satyanarayana, F. Wypych. Availability, Production, Marketing and Potential Applications of Natural Fibers of Brazil. In:Rajesh A, Kozlowski R, editors. The 2005 FAO/ESCORENA international conference on textile for sustainable development (FAO/ESCORENA), South Africa, October 2005:503-516
    [11]O.A. Khondker, U.S. Ishiaku, A. Nakai, H. Hamada. A Novel Processing Technique for Thermoplastic Manufacturing of Unidirectional Composites Reinforced with Jute Yarns, Composites Part A:Applied Science and Manufacturing, Volume 37, Issue 12, December 2006:2274-2284
    [12]K.G Satyanarayana, A.G Kulkarni and P.K. Rohatgi. Potential of Natural Fibres as a Resource for Industrial Material in Kerala, J. Sci. Ind. Res.1981,40(4):222-237
    [13]A.G Kulkarni, K.G Satyanarayana, K. Sukumaran and P.K. Rohatgi. Mechanical Behavior of Coir Fibers under Tensile Load, Asian J. Mater. Sci.,1981,16(4):905-914
    [14]K.G Satyanarayana, P.S. Mukherjee, K. Sukumaran and S.GK. Pillai. Material Science of Lignocellulosic Fibres. Metallography,1986,19(4):389-400
    [15]K.G Satyanarayana, K.K. Ravikumar, K. Sukumaran and S.GK. Pillai. Evaluation of Strength Properties of Coir Fibres Obtained from Different Sources. Ind. Coconut J., 1989,515(9):3-6
    [16]K.G. Satyanarayana, K. Sukumaran, P.S. Mukherjee, C. Pavithran and S.GK. Pillai. Natural Fibre-polymer Composites. Cem. Concr. Compos,1990,12(2):117-136
    [17]V.G. Geethamma, G. Kalaprasad, G. Groeninckx, S. Thomas. Dynamic Mechanical Behavior of Short Coir Fiber Reinforced Natural Rubber Composites. Compos. Part A 36, 2005:1499-1506
    [18]邢立学.椰壳纤维/抗冲共聚聚丙烯复合材料的研究,山东理工大学,2009
    [19]S.N. Monteiro, L.A.H. Terrones, F.P.D. Lopes, J.R.M. D'Almeida. Mechanical Strength of Polyester Matrix Composites Reinforced with Coconut Fiber Wastes. Revista Mater, 2005,10:571-576
    [20]Md. Nazrul Islam, Md. Rezaur Rahman, Md. Mominul Haque. Physico-mechanical Properties of Chemically Treated Coir Reinforced Polypropylene Composites. Composites:Part A,2010,41:192-198
    [21]Vilmar Barbosa Jr., Elaine Cristina Ramires, Ilce Aiko Tanaka Razera, Elisabete Frollini. Biobased Composites from Tannin-phenolic Polymers Reinforced with Coir Fibers. Industrial Crops and Products,2010,32:305-312
    [22]S. V. Prasad, C. Pavithran, P. K.ohatgi. Materials Alkali Treatment of Coir Fibers for Coir-polyester Composites. J.science,1985,18:1443-1454
    [23]V. Calado, D. W. Barreto. The Effect of A Chemical Treatment on the Structure and Morphology of Coir Fibers. Journal of materials science letters,2000,19:2151-2153
    [24]李欣欣,普萨那,张伟,韩哲文,吴平平.天然椰壳纤维及其增强复合材料.上海化工,1999,14:28~30
    [25]J. Rout, M. Misra, S.S. Tripathy, S.K. Nayak, A.K. Mohanty. The Influence of Fibre Treatment on the Performance of Coir-Polyester Composites. Composites Science and Technology,2001,61:1303-1310
    [26]GS. Moraes, OLD. Alsina, LH. Carvalho. Water Sorption Effects on the Mechanical Properties of Polyester-Vegetable Fiber Composites. In:7th Annual Brazilian Congress of Polymers. Brazil:Organized by the Brazilian polymers Association,2003:1062-1064
    [27]Paul Wambua, Jan Ivens, Ignaas Verpoest. Natural Fibres:Can They Replace Glass in Fibre Reinforced Plastics? Composites Science And Technology,2003,63:1259-1264
    [28]S. Harish, D. Peter Michael, A. Bensely, D. Mohan Lal, A. Rajadurai. Mechanical Property Evaluation of Natural Fiber Coir Composite. M aterials Characterization, 2009:44-49
    [29]S.N. Monteiro, L.A.H. Terrones, J.R.M. D'Almeida. Mechanical Performance of Coir Fiber/Polyester Composites. Polymer Testing,2008,27:591-595
    [30]冼杏娟.竹纤维增强树脂复合材料及其微观形貌.科学出版社,1995
    [31]Holmer Savastano Jr. Plant fibre reinforced cement components for roofing. Construction and Building Materials,1999,13:433-438
    [32]RDT. Filho, K. Ghavami, PRL. Lima. Flexural Toughness of Sisal and Coconut Fiber Reinforced Cement Mortar Composites. In:Mattoso LHC, Leao A, Frollini E, editors. Fourth international symposium on natural polymers and composites (ISNaPol 2002) proceedings. Sao Pedro, Brasil,2002,9:465-72
    [33]G. Ramakrishna, T. Sundararajan. Impact Strength of a Few Natural Fibre Reinforced Cement Mortar Slabs:A Comparative Study. Cement & Concrete Composites,2005, 27:547-553
    [34]C. Asasutjarit. Development of Coconut Coir-Based Lightweight Cement Board. Construc-tion and Building Materials,2007,21:277-288
    [35]R.V. Silva. Fracture Toughness of Natural Fibers/Castor Oil Polyurethane Composites. Composites Science and Technology,2006,66:1328-1335
    [36]Alireza Javadi, Yottha Srithep, Srikanth Pilla, Jungjoo Lee, Shaoqin Gong, Lih-Sheng Turng. Processing and Characterization of Solid and Microcellular PHBV/Coir Fiber Composites. Materials Science and Engineering C,2010,30:749-757
    [37]Joseph Khedari. New Low-cost Insulation Particleboards from Mixture of Durian Peel and Coconut Coir. Building and Environment,2004 39:59-65
    [38]B.F. Yousif, H. Ku. Suitability of Using Coir Fiber/Polymeric Composite for the Design of Liquid Storage Tanks. Materials and Design, Available online 17 March 2011
    [39]E.A. Subaida, S. Chandrakaran, N. Sankar. Experimental Investigations on Tensile and Pullout Behaviour of Woven Coir Geotextiles. Geotextiles and Geomembranes,2008, 26(5):384-392
    [40]P. Vinod, A. B. Bhaskar, S. Sreehari. Behaviour of a Square Model Footing on Loose Sand Reinforced with Braided Coir Rope. Geotextiles and Geomembranes,2009, 27:464-474
    [41]MN. Islam, MR. Rahman, MM. Haque. Physico-mechanical Properties of Chemically Treated Coir Reinforced Polypropylene Composites. Composites Part A,2010,41:192-8.
    [42]Wang Wei, Huang Gu. Characterizations and Utilization of Natural Coconut Fibres Composites. Materials and Design,2009,30:2741-2744
    [43]Sasa Sofyan Munawar, Kenji Umemura, Shuichi Kawai. Characterization of the Morphological, Physical, and Mechanical Properties of Seven Nonwood Plant Fiber Bundles. J Wood Sci,2007,53:108-113
    [44]Fa'bio Tomczak, Thais Helena Deme'trio Sydenstricker, Kestur Gundappa Satyanarayana, Studies on Lignocellulosic Fibers of Brazil. Part Ⅱ:Morphology and Properties of Brazilian Coconut Fibers. Composites:Part A,2007,38:1710-1721
    [45]A.K. Bledzki, J. Gassan. Composites Reinforced with Cellulose Based Fibres. Prog. Polym. Sci.,1999,24:221-274
    [46]窦明池,姜亚明.几种新型天然纤维的性能分析与开发应用.中国麻业,2006,28(1):41~44
    [47]RS. Coutts. From Forest to Factory to Fabrication. In:Swamy RN, editor. Proc 4th Int Symp Fibre Reinforced Cement and Concrete.(RILEM Proc.,17.), London:E & FN Spon, 1992:31-47
    [48]AK. Bledzki, S. Reihmane, J. Gassan. Properties and Modification Methods for Vegetable Fibers for Natural Fiber Composites. J Appl Poly Sci,1996,59:1329-36.
    [49]DS. Varma, M. Varma, IK. Varma. Coir Fibers, Part I:Effect of Physical and Chemical Treatment on Properties. J Text Res Inst,1984,54(12):821-32
    [50]KG. Satyanarayana, AG. Kulkarni, PK. Rohatgi. Structures and Properties of Some Vegetable Fibers. J Sci Ind Res,1981,40:222
    [51]M. Mizanur Rahman, A. Mubarak, Khan. Surface Treatment of Coir (Cocos Nucifera) Fibers and Its Influence on the Fibers' Physico-Mechanical Properties. Composites Science and Technology,2007,67:2369-2376
    [52]KG. Satyanarayana, C.K.S. Pillai, K. Sukumaran and S.G.K. Pillai. J.Mater.Sci.,1982, 17:2453-62
    [53]Nele Defoirdt, Subhankar Biswas, Linde De Vriese, Le Quan Ngoc Tran, Joris Van Acker, Qumrul Ahsan, Larissa Gorbatikh, Aart Van Vuure, Ignaas Verpoest. Assessment of the Tensile Properties of Coir, Bamboo And Jute Fibre. Composites:Part A,2010,41:588-595
    [54]J. David, A. Oldham. Christopher, Egan, Richard D. Cookson, Sustainable Acoustic Absorbers from the Biomass. Applied Acoustics,2011,72:350-363
    [55]EML. Ehrnrooth. Change in Pulp Fibre Density with Acid-Chlorite Delignification. J Wood Chem Technol,1984,4(1):91-109
    [56]F. Stern. A Note on the Structure and Mechanical Properties of Coir Fibre. J Text Inst, 1957,48:21-25
    [57]GG. Silva, DA. De Souza, JC. Machado, DJ. Hourston. Mechanical and Thermal Characterization of Native Brazilian Coir Fiber. J Appl Polym Sci,2000,76:1197-206
    [58]J. Keckes, I. Burgert, K. Fruhmann, M. Muller, K. Kolln, M. Hamilton, M. Burghammer. Roth SV, Stanzl-Tschegg S, Fratzl P,2003,2:810
    [59]B. Bakri, S. J. Eichhorn. Elastic Coils:Deformation Micromechanics of Coir and Celery Fibres. Cellulose,2010,17:1-11
    [60]J. Klaus, Martinschitz, Peter Boesecke, J. Christopher, Garvey, Wolfgang Gindl, Jozef Keckes. Changes in Micro fibril Angle in Cyclically Deformed Dry Coir fibers Studied By In-situ Synchrotron X-Ray Diffraction. J Mater Sci,2008,43:350-356
    [61]J. A. Turner. Mechanical Behaviour of High Polymers. New York:Interscience Publishers Inc.,1948
    [62]JWS. Hearle. In:Rosen B, editor. Fracture Processes in Polymeric Solids. New York: Interscience Publishers Inc.,1964:107
    [63]EC. Mclaughlin, RA. Tait. Fracture Mechanism of Plant Fibers. J Mater Sci,1980, 15:89-95
    [64]PS. Mukherjee, KG. Satyanarayana. Structure and Properties of Some Vegetable Fibres-Part 1 Sisal Fibre. J Mater Sci,1984,19:3925-34
    [65]KG. Satyanaryana, F. Wypych. Characterization of Natural Fibers. In:Fakirov S, Bhattacharyya D, editors. Engineering biopolymers:homopolymers, blends and composites. Hanser Publishers,2007
    [66]J. Anderson, E. Sparnins, R. Joffe, L. Wallstro"m. Strength Distribution of Elementary Flax Fibres. Compos Sci Technol,2005,65:693-702
    [67]KG. Satyanarayana, PS. Mukherjee, KK. Ravikumar, K. Sukumaran, SGK. Pillai, AG. Kulkarni. Structure and Properties of Some Vegetable Fibres-Talipot and Plamyrah Fibres. J Mater Sci,1986,21:57-63
    [68]J. Gassan, A. Chate, AK. Bledzki. Calculation of Elastic Properties of Natural Fibres. Wood Fibre Sci, submitted
    [69]张长安,张林文,张一甫,曾竟成.短切麻纤维无纺针刺毡的制备研究,玻璃钢/复合材料,2004,5:41-43
    [70]陈魁.试验设计与分析.北京:清华大学出版社,2005
    [71]王铮,项端祈,陈金京,薛长健.建筑声学材料与结构-设计和应用.北京:机械工业出版社,2006
    [72]J.威廉,卡瓦诺夫,A.约瑟夫,威尔克斯.建筑声学-原理和实践.北京:机械工业出版社,2005
    [73]盛美萍,王敏庆,孙进才.噪声与振动控制技术基础.北京:科学出版社,2007
    [74]ME. Delany, EN. Bazley. Acoustical Properties of Fibrous Materials. Appl Acoust,1970, 3:105-16
    [75]MA. Biot. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅰ. Low frequency range. J Acoust Soc Am,1956,28(2):168-78
    [76]MA. Biot. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. Higher frequency range. J Acoust Soc Am,1956,28(2):179-91
    [77]JF. Allard. Propagation of sound in porous media. Elsevier Applied Science,1993
    [78]Mohammad Hosseini Fouladi, Md. Ayub. Mohd Jailani Mohd Nor, Analysis of coir fiber acoustical characteristics. Applied Acoustics,2011,2:35-42
    [79]田滨守.建筑节能技术检测.北京:中国建筑工业出版社,2009
    [80]李秀荣.气凝胶型木材的制备及环境学特性分析.哈尔滨:东北林业大学,2011
    [81]李坚.生物质材料科学.北京:科学出版社,2008
    [82]刘一星,王逢瑚.木质建材手册.北京:化学工业出版社,2007
    [83]沈观林,胡更开.复合材料力学.北京:清华大学出版社,2006
    [84]D. Hull, T. W. Clyne. An Introduction to Composite Materials,2nd Ed., Cambridge University Press, UK.1996
    [85]M. Hughes, L. Mott, J. Hague, et al. The Toughness of Vegetable Fibre-reinforced Unsaturated Polyester Composites. Fifth international conference on woodfiber-astic composites,1999:175-184
    [86]S. Jani, R. Kumar. Mechanical Behaviour of Bamboo Fibres Reinforced Plastic(BFRP) Composite and Effect of Environment on Properties. Processing and fabrication of advanced materials V,1996:443-456
    [87]JL. O'Dell. Natural Fibers in Resin Transfer Molded Composites. Fourth international conference on woodfiber-plastic composites,1997:280-285
    [88]E. Rodn'guez, R. Petrucci, D. Puglia, JM. Kenny, A. Va' zquez. Characterization of Composites Based on Natural and Glass Fibers Obtained by Vacuum Infusion. J Comp Mater,2005,39(3):265-282
    [89]SN. Monteiro, LAH. Terrones, JRM. D'Almeida. Mechanical Performance of Coir Fiber/Polyester Composites. Polym Test,2008,27:591-595
    [90]KG. Satyanarayana, K. Sukumaran, AG. Kulkarni, SGK. Pillai, PK. Rohatgi. Fabrication and Properties of Natural Fibrereinforced Polyester Composites. Composites,1986, 17:329
    [91]S. Jayabal, U. Natarajan. Influence of Fiber Parameters on Tensile, Flexural, and Impact Properties of Nonwoven Coir-Polyester Composites. The International Journal of Advanced Manufacturing Technology,2011,54(5-8):639-648
    [92]Y. Li, Y.W. Mai, L. Ye. Sisal Fibre and Its Composites:A Review of Recent Developments. Compos Sci Technol,2000,60:2037-55
    [93]BN. Dash, AK. Rana, HK. Mishra, SK. Nayak, SC. SS. Mishra, Tripathy. Novel Low-cost Jute Polyester Composites:III Weathering and Thermal Behavior. J Appl Polym Sci, 2000,78(9):1671-9
    [94]LY. Mwaikambo, MP. Ansell. Chemical Modification of Hemp, Sisal, Jute, and Kapok Fibers by Alkalization. J Appl Polym Sci,2002,84(12):2222-34
    [95]A. O'Donnell, MA. Dweib, RP. Wool. Natural Fiber Composites with Plant Oil-based Resin. Compos Sci Technol,2004,64:1135-45
    [96]D. Klemm, B. Philipp, T. Heinze, U. Heinze, W. Wagenknecht. Comprehensive Cellulose Chemistry. Wiley-VCH,1998
    [97]PS. Chua. Dynamic Analysis Studies of Interphase. Poly Comp,1987,8:308
    [98]MOW. Richardson. Polymer Engineering Composite. Applied Science Publishers,1977
    [99]LE. Nielsen. Mechanical Properties of Polymers and Composites. New York:Marcel Dekker; 1974
    [100]S. Dong, R. Gauvin. Application of Dynamic Mechanical Analysis for the Study of the Interfacial Region in Carbon Fiber/Epoxy Composite Materials. Poly Comp,1993, 14:414
    [101]赵新兵,凌国平,钱国栋.材料的性能.北京:高等教育出版社,2006
    [102]H. L. Cox. The Elasticity and Strength of Paper and Other Fibrous Materials. British Journal of Applied Physics,1952,3(3):72-79
    [103]JL. Thomason, MA. Vlug. Influence of Fibre Length and Concentration on the Properties of Glass Fibre-Reinforced Polypropylene:1. Tensile and Flexural Modulus. Comp A, 1996,27:477-484
    [104]T. Peijs, S. Garkhail, R. Heijenrath, M. Vanden Oever, H. Bos. Thermoplastic Composites Based on Flax Fibre and Polypropylene:Influence of Fibre Length and Fibre Volume Fraction on Mechanical Properties. Macromol Symp,1998,127:193-203
    [105]AR. Bunsell, J. Renard. Fundamentals of Fibre Reinforced Composite Materials. United Kingdom:IOP Publishing Ltd.,2005
    [106]H. Krenchel. Fibre Reinforcement. Copenhagen Denmark:Akademisk forlag,1964:16-22
    [107]RM. Christensen, FM. Waals. Effective Stiffness of Randomly Oriented Fibre Composites. J Comp Mater,1972,6:518-532
    [108]RM. Christensen. Asymptotic Modulus Results for Composites Containing Randomly Oriented Fibres. Int J Solids Struct,1976,12:537-544
    [109]KE. Evans, AG. Gibson. Prediction of the Maximum Packing Fraction Achievable in Randomly Oriented Short-fibre Composites. Compos Sci Technol,1986,25(2):149-162
    [110]董卫卫,玻璃纤维/不饱和聚酯树脂层合板的抗冲击性能研究,天津工业大学,2007,12
    [111]汤佩钊.复合材料及其应用技术[M].重庆:重庆科学出版社,1998,3
    [112]H.E. Deve, S. Schmauder. Role of interface properties on the toughness of brittle matrix composites reinforced with ductile fibers, J. Materials Reasearch,1992; 7(11):3132-3138.
    [113]L.K. Jain, R.C.Wetherhold, Effect of Fiber Prientation on the Fracture Toughness of Brittle Matrix Composites, Acta Metallurgica et Materialia 1992; 40(6);1135-1143.
    [114]R.C.Wetherhold, L.K. Jain, The Effect of Crack Orientation on the Fracture Properties of Composites Materials, J Materials Science and Engineering,1993;A 165:91-97.
    [115]R.C.Wetherhold, L.K. Jain, The Toughness of Brittle Matrix Composites Reinforced with Discontinuous Fibers, J Materials Science and Engineering,1992;A151:169-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700