用户名: 密码: 验证码:
染料敏化太阳电池的电子传输—复合模型与等效电路解析及其性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳电池(dye-sensitized solar cells, DSSCs)是高性能低成本太阳电池的重要发展方向之一。由于DSSCs的光电转换受到一系列电子的产生、传输、聚集和复合过程的共同作用,深入研究电子在纳米多孔薄膜中的传输-复合过程,可以揭示影响DSSCs电性能的关键因素,从而为优化电池性能提供依据。电化学阻抗图谱(electrochemical impedance spectroscopy,EIS)与单二极管模型是分析DSSCs电流-电压特性影响因素的两种重要方法。准确获取单二极管模型参数,并借助EIS来建立单二极管模型参数与DSSCs内部微观过程的关联,有助于揭示电池电性能的限制因素并由此提出优化电池性能的具体措施。将二氧化钛介晶用于构筑双层复合膜光阳极,可以借助介晶的有序构造和光散射能力来进一步提升电池性能。
     本文的第一部分内容提出了一种两步法以精确获取DSSCs单二极管等效电路模型参数。即通过作图法对电池的I-V特性曲线进行特定数据区域的线性化处理,从而获取具有一定精度的模型参数,以之设为最小二乘拟合过程的初值,经过多次迭代计算获取具有较高精度的拟合结果。在作图法的应用过程中发现,理论推导的线性函数关系,实际表现为离散性。本文采用对I-V特性曲线进行多项式近似处理的方法,获得了该线性关系和相应的模型参数值。拟合结果显示作图法的拟合误差约4%,经最小二乘法进一步精确后,拟合误差减小至低于1%。为了进一步验证提出的两步法的精确性,选取文献中I-V特性曲线进行拟合分析,并与文献中的拟合结果和精度进行了对比。拟合结果显示,两步法得到的模型参数值与文献中的结果有较大差别。拟合误差分析显示,文献中的拟合方法的误差约为5%,其拟合精度远低于本文提出的两步法。
     本论文的第二部分内容为采用EIS图谱对DSSCs的单二极管等效电路模型参数进行解析。通过分析DSSCs在三个特征工作状态下的EIS图谱,研究了单二极管模型参数的物理和电化学意义。分析显示,DSSCs中与复合过程相关的总复合电阻Rct值与电池旁路电阻Rp值较好的吻合。在最大功率点和开路电压点,电池中的复合过程主要表现为电子从TiO_2导带向电解液的转移过程;Rp主要由二极管电阻Rdiode主导。而因此可以推论,TiO_2/电解液界面的电子转移过程具有二极管单向性的特性。在短路电流点,电池中的复合过程主要表现为电子从未被TiO_2覆盖的TCO向电解液的转移过程;Rp主要由并联电阻Rsh主导。因此,并联电阻Rsh可用于表征TCO/电解液界面的电流损失。通过较高工作电压时lnRct与电极电势的线性关系获得了理想因子n值,说明二极管理想因子n主要由较高工作电压时TiO_2/电解液界面的复合特性决定。验证了串联电阻Rs由TCO衬底欧姆电阻及电荷的传输、转移、扩散电阻共四部分构成。在此基础上,模拟了DSSCs的电性能随单二极管模型参数的变化,结果显示:串联电阻Rs和理想因子n对DSSCs的填充因子FF有显著作用,进而影响电池转换效率;随着DSSCs面积的增大,串联电阻Rs和并联电阻Rsh也将分别影响电池的短路电流Isc和开路电压Voc。根据单二极管模型参数的物理和电化学意义,探讨了DSSCs性能优化的一些可行性方案。
     本文的第三部分内容研究了一种基于纳米多孔锐钛矿TiO_2介晶的双层复合膜光阳极DSSCs,并利用前二章发展的EIS和单二极管模型分析方法揭示了电子在多孔膜中的传输、复合过程对DSSCs性能的影响机制。首先,通过在TiO_2纳米晶水热合成中加入不同浓度的二乙烯三胺(Diethylenetriamine, DETA)来调控合成的TiO_2纳米晶的形貌,考察了TiO_2纳米晶形貌对纳米晶膜电池性能的影响。结果显示,随着DETA添加量的增加,部分纳米晶粒增大,纳米晶粒的不均匀性增高,导致纳米晶中缺陷密度的升高和薄膜中电子复合的加剧,但较快的电子传输速率仍使电池的收集效率得到改善。进一步增加DETA的添加量,染料吸附量的减小对电池性能的影响占主导地位,因此电池的性能反而随之下降。然后,采用溶剂热法合成了由纳米晶粒为基本结构单元有序聚集而成的纳米多孔锐钛矿TiO_2介晶。通过钛酸丁酯和乙酸的配比调控TiO_2介晶的形貌。选取最大比表面积的TiO_2介晶制备了多孔膜,使其覆盖在经过性能优化的纳米晶膜上,制备了双层复合膜光阳极DSSCs。考察了双层复合膜结构对电池性能的影响,并与单层纳米晶膜电池进行了对比。结果显示,由于TiO_2介晶为纳米晶粒的密集堆积,染料吸附量较小,但是介晶的三维有序结构和较少的晶界暴露使双层复合膜光阳极DSSCs具有较高的电子传输速率和电子寿命,从而获得了较大的电子收集效率。当总膜厚L同为15μm时,通过在膜厚为11μm的单层纳米晶膜上增加一层膜厚为4μm的纳米多孔锐钛矿TiO_2介晶层,得到的双层复合膜DSSCs相对单层纳米晶膜DSSCs,电池的转换效率由5.97%提升至6.35%。
Dye-sensitized solar cells (DSSCs) have been developed owing to the prospects of highperformance and low cost. The energy conversion procedure in DSSCs is affected by a seriesof electron processes such as generation, transport, accumulation and recombination.Therefore, electron transport-recombination processes in DSSCs should be investigated indetail to analyze the influencing factors of cell performance. Electrochemical impedancespectroscopy (EIS) and the single-diode model are two important methods to analyze theinfluencing factors of DSSCs’ current-voltage characterizations. Precise determination of themodel parameters as well as building a correlation between model parameters and internal cellprocesses by EIS interpretation will contribute to analyze limiting factors on cell performanceand explore specific strategies for cell optimization. A novel double-layered compound filmprepared by TiO_2mesocrystals with ordered structure and high light scattering property willalso help to further improve the performance of DSSCs.
     In the first part of this dissertation, a two-step method was proposed to preciselydetermine the parameters of the single-diode model for DSSCs. By using the graphic method,model parameters were extracted with proper precision from the linearized current-voltagecharacterizations and subsequently were set as the initial values for non-linear least squares(NLLS) fitting. Model parameters with high precision were obtained by the two-step fittingmethod. In the graphic fitting step, linearity deduced form the implicit equation of thesingle-diode model turned to express quite scattered plot. In this work, polynomial expressionwas applied to approximate experimental data to derive the linearity and the correspondingparameters. It was testified the error of the graphic fitting was about4%which was futurereduced by NLLS fitting to less than1%. The two-step method was also applied to analyzethe I-V characterizations extracted from references. It was shown parameter values fit by thetwo-step method are different form those reported in reference. The accuracy of the two-stepmethod was validated since the fitting method reported in some references was about5%.
     In the second part of this dissertation, the precisely determined parameters of thesingle-diode model were interpreted of their physical and electrochemical origins byanalyzing the EI spectra measured under three characteristic working conditions, the maximum-power point (MPP), the open-circuit voltage point (OCVP), and the short-circuitcurrent point (SCCP). It was shown, the total recombination resistance, Rct, coincided with theparallel resistance, Rp. When cells are operated at OCVP and MPP, electrons recombinemainly at TiO_2/electrolyte interface and Rpis dominated by the resistance of the diode, Rdiode.Therefore, the process of electron charge-transfer at TiO_2/electrolyte interface is considered toperform as the diode element of the single-diode model. In the case of operated at SCCP,electrons turn to recombine on TCO/electrolyte interface and Rpis dominated by shuntresistance, Rsh. Therefore, the shunt resistance can be used to characterize the current leakagefrom uncovered layer of TCO to electrolyte. The ideality factor n was obtained from thelinearity of lnRctas a function of cell potential and agreed with those fits of the single-diodemodel. This indicates ideality factor is dominated by the characterizations of electroncharge-transfer on TiO_2/electrolyte interface. The series resistance, Rswas verified to beconstituted by four electron process. Subsequently, the model parameters were evaluated interms of their effects on I-V characteristics of DSSCs via a single-diode model simulation.This simulation demonstrated that series resistance Rsand ideality factor n play crucial rolesin limiting fill factor FF of DSSCs; Upon up-scaled DSSCs, Rsand Rshvalues will also affectthe short-circuit current Iscand the open-circuit voltage Voc, respectively. Finally, strategiesare proposed to optimize DSSCs based on the physical and electrochemical interpretations oflimiting factors of cell performance.
     In the third part of this dissertation, a novel kind of double-layered photoanode film wasprepared by nanoporous anatase TiO_2mesocrystals for the purpose to improve theperformance of DSSCs. EIS and the single-diode model were applied to investigate themechanisms of how electron transport-recombination processes influence on cell performance.In the first step, TiO_2nanocrystals were synthesized by controlling diethylenetriamine(DETA)/Ti molar ratio in hydrothermal system and DSSCs prepared by the synthesized TiO_2nanocrystals were investigated. It was shown, when more DETA was added in thehydrothermal system, parts of nanoparticles grow bigger leading to nonuniformity of TiO_2nanocrystals and aggravated electron recombination. Whereas, electron collection efficiencieswere improved attributing to faster electron transport in nanocrystalline films. However,further increasing DETA addition will result in decrease of dye adsorption and decline of cell performance. In the next step, one kind of TiO_2mesocrystals was synthesized with differentmorphologies by controlling tetrabutyl titanate (TBT)/acetic acid (HAc) volume ratio. TheTiO_2mesocrystals with highest surface area were used to prepare a layer of film covering ontop of a TiO_2nanocrystalline film to construct a novel double-layered photoanode structure.The DSSSs constructed by the double-layered photoanode film were characterized andcompared with cells based on a single-layered nanocrystalline film. It was shown, tightaggregation of nanocrystals in TiO_2mesocrystalline network resulted in low dye adsorption,whereas,3-D ordered structure in TiO_2mesocrystals contributed to high electron transportand electron lifetime. Therefore, when the thickness of nanocrystalline film and ofdouble-layered compound film is same of15μm, introducing a mesocrystalline film of4μmon top of a nanocrystalline film of11μm contributed to improve the efficiency from5.97%to6.36%.
引文
[1] Wu P., Shi P. An estimation of energy consumption and CO2emissions in tourism sectorof China [J]. Journal of Geographical Sciences,2011,21(4):733-745.
    [2] BP. Statistical Review of World Energy [R],2006.
    [3] Sellers R. PV Progress and Promise [R]: IEA PVPS International Conference,2003.
    [4] Richard C.A. A power that's clean and bright [J]. Nature,2002,416(6882):680-681.
    [5]何润平,王金铎.工业硅材料新进展[M].北京:冶金工业出版社,2003:12-14.
    [6]孙毓祥.可绕式CuInSe2薄膜太阳能电池之研制[D].台湾:国立中山大学,2008.
    [7]吴永俊.溅射不同金属薄膜于染料敏化太阳电池工作电极之特性研究[D].台湾:国立清华大学,1998.
    [8]陈轶.太阳电池用CuInS2和CdS薄膜材料的制备与表征[D].长沙:中南大学,2010.
    [9] McEvoy A.J., Gr tzel M. Sensitisation in photochemistry and photovoltaics [J]. SolarEnergy Materials and Solar Cells,1994,32(3):221-227.
    [10] O'Regan B., Gr tzel M. A low-cost high-efficient solar cell based on dye-sensitizedcolloidal TiO2films [J]. Nature,1991,353(6364):737-740.
    [11] Yella A., Lee H.W., Tsao H.N., et al. Porphyrin-Sensitized Solar Cells with Cobalt(II/III)-Based Redox Electrolyte Exceed12Percent Efficiency [J]. Science,2011,334(6056):629-634.
    [12] Tennakone K., Kumara G., Kottegoda I.R.M., et al. An efficient dye-sensitizedphotoelectrochemical solar cell made from oxides of tin and zinc [J]. ChemicalCommunications,1999,52(1):15-16.
    [13] Sayama K., Sugihara H., Arakawa H. Photoelectrochemical properties of a porousNb2O5electrode sensitized by a ruthenium dye [J]. Chemistry of Materials,1998,10(12):3825-3832.
    [14] Ferrere S., Zaban A., Gregg B.A. Dye sensitization of nanocrystalline tin oxide byperylene derivatives [J]. Journal of Physical Chemistry B,1997,101(23):4490-4493.
    [15]寇东星.染料敏化太阳电池中电子输运特性研究[D]:温州大学,2010.
    [16] Wu K.-L., Ho S.-T., Chou C.-C., et al. Engineering of Osmium(II)-Based LightAbsorbers for Dye-Sensitized Solar Cells [J]. Angewandte Chemie-International Edition,2012,51(23):5642-5646.
    [17] Kinoshita T., Fujisawa J.-i., Nakazaki J., et al. Enhancement of Near-IR PhotoelectricConversion in Dye-Sensitized Solar Cells Using an Osmium Sensitizer with StrongSpin-Forbidden Transition [J]. Journal of Physical Chemistry Letters,2012,3(3):394-398.
    [18] Zhang T.-T., Jia J., Wu H.-S. Theoretical studies of COOH group effect on theperformance of rhenium (I) tricarbonyl complexes with bispyridine sulfur-rich coreligand as dyes in DSSC [J]. Theoretical Chemistry Accounts,2012,131(9):1266.
    [19] Lu X., Chau K.-S., Wei S., et al. Theoretical insight into the spectral characteristics ofFe(II)-based complexes for dye-sensitized solar cells: Functionalized bipyridylchromophores [J]. Journal of Organometallic Chemistry,2013,741168-175.
    [20] Kian Sing L., Cole J.M., Xiaolan Z., et al. Rationalizing the molecular origins of Ru-and Fe-based dyes for dye-sensitized solar cells [J]. Acta Crystallographica, Section B(Structural Science),2012, B68(2):137-149.
    [21] Geary E.A.M., McCall K.L., Turner A., et al. Spectroscopic, electrochemical andcomputational study of Pt-diimine-dithiolene complexes: rationalising the properties ofsolar cell dyes [J]. Dalton Transactions,2008,(28):3701-3708.
    [22] Bozic-Weber B., Chaurin V., Constable E.C., et al. Exploring copper(I)-baseddye-sensitized solar cells: a complementary experimental and TD-DFT investigation [J].Dalton Transactions,2012,41(46):14157-14169.
    [23] Bozic-Weber B., Brauchli S.Y., Constable E.C., et al. Hole-transport functionalizedcopper(I) dye sensitized solar cells [J]. Physical Chemistry Chemical Physics,2013,15(13):4500-4504.
    [24] Fungo F., Otero L.A., Sereno L., et al. Synthesis of porphyrin dyads with potential usein solar energy conversion [J]. Journal of Materials Chemistry,2000,10(3):645-650.
    [25] Fungo F., Otero L., Durantini E.N., et al. Photosensitization of thin SnO2nanocrystalline semiconductor film electrodes with metallodiporphyrin [J]. Journal ofPhysical Chemistry B,2000,104(32):7644-7651.
    [26] Wang C.-L., Lan C.-M., Hong S.-H., et al. Enveloping porphyrins for efficientdye-sensitized solar cells [J]. Energy&Environmental Science,2012,5(5):6933-6940.
    [27] Lan C.-M., Wu H.-P., Pan T.-Y., et al. Enhanced photovoltaic performance withco-sensitization of porphyrin and an organic dye in dye-sensitized solar cells [J]. Energy&Environmental Science,2012,5(4):6460-6464.
    [28] Rawling T., Austin C., Buchholz F., et al. Ruthenium Phthalocyanine-Bipyridyl Dyadsas Sensitizers for Dye-Sensitized Solar Cells: Dye Coverage versus MolecularEfficiency [J]. Inorganic Chemistry,2009,48(7):3215-3227.
    [29] Zarate X., Schott E., Gomez T., et al. Theoretical Study of Sensitizer Candidates forDye-Sensitized Solar Cells: Peripheral Substituted DizincPyrazinoporphyrazine-Phthalocyanine Complexes [J]. Journal of Physical Chemistry A,2013,117(2):430-438.
    [30] Zhang J., Li H.-B., Geng Y., et al. Modification on C219by coumarin donor towardefficient sensitizer for dye sensitized solar cells: A theoretical study [J]. Dyes andPigments,2013,99(1):127-135.
    [31] Dentani T., Kubota Y., Funabiki K., et al. Novel thiophene-conjugated indoline dyes forzinc oxide solar cells [J]. New Journal of Chemistry,2009,33(1):93-101.
    [32] Hao Y., Yang X., Cong J., et al. Engineering of highly efficient tetrahydroquinolinesensitizers for dye-sensitized solar cells [J]. Tetrahedron,2012,68(2):552-558.
    [33] Kakiage K., Tokutome T., Iwamoto S., et al. Fabrication of a dye-sensitized solar cellcontaining a Mg-doped TiO2electrode and a Br-3/Br-redox mediator with a highopen-circuit photovoltage of1.21V [J]. Chemical Communications,2013,49(2):179-180.
    [34] Daeneke T., Kwon T.-H., Holmes A.B., et al. High-efficiency dye-sensitized solar cellswith ferrocene-based electrolytes [J]. Nature Chemistry,2011,3(3):211-215.
    [35] Hattori S., Wada Y., Yanagida S., et al. Blue copper model complexes with distortedtetragonal geometry acting as effective electron-transfer mediators in dye-sensitizedsolar cells [J]. Journal of the American Chemical Society,2005,127(26):9648-9654.
    [36] Yang L., Cappel U.B., Unger E.L., et al. Comparing spiro-OMeTAD and P3HT holeconductors in efficient solid state dye-sensitized solar cells [J]. Physical ChemistryChemical Physics,2012,14(2):779-789.
    [37] Abate A., Leijtens T., Pathak S., et al. Lithium salts as "redox active" p-type dopants fororganic semiconductors and their impact in solid-state dye-sensitized solar cells [J].Physical Chemistry Chemical Physics,2013,15(7):2572-2579.
    [38] Mende L.S., Kroeze J.E., Durrant J.R., et al. Effect of hydrocarbon chain length ofamphiphilic ruthenium dyes on solid-state dye-sensitized photovoltaics [J]. NanoLetters,2005,5(7):1315-1320.
    [39] Burschka J., Dualeh A., Kessler F., et al. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) asp-Type Dopant for Organic Semiconductors and Its Application in Highly EfficientSolid-State Dye-Sensitized Solar Cells [J]. Journal of the American Chemical Society,2011,133(45):18042-18045.
    [40] Anta J.A., Guillen E., Tena-Zaera R. ZnO-Based Dye-Sensitized Solar Cells [J]. Journalof Physical Chemistry C,2012,116(21):11413-11425.
    [41] Kim C.W., Suh S.P., Choi M.J., et al. Fabrication of SrTiO3-TiO2heterojunctionphotoanode with enlarged pore diameter for dye-sensitized solar cells [J]. Journal ofMaterials Chemistry A,2013,1(38):11820-11827.
    [42] Kim H.-N., Moon J.H. Enhanced Photovoltaic Properties of Nb2O5-Coated TiO23DOrdered Porous Electrodes in Dye-Sensitized Solar Cells [J]. ACS Applied Materials&Interfaces,2012,4(11):5821-5825.
    [43] Kuang D., Klein C., Ito S., et al. High-efficiency and stable mesoscopic dye-sensitizedsolar cells based on a high molar extinction coefficient ruthenium sensitizer andnonvolatile electrolyte [J]. Advanced Materials,2007,19(8):1133-1137.
    [44] Knodler R., Sopka J., Harbach F., et al. Photoelectrochemical cells based on dyesensitized colloidal TiO2layers [J]. Solar Energy Materials and Solar Cells,1993,30(3):277-281.
    [45] Matthews D., Infelta P., Graetzel M. Calculation of the photocurrent-potentialcharacteristic for regenerative, sensitized semiconductor electrodes [J]. Solar EnergyMaterials and Solar Cells,1996,44(2):119-155.
    [46]朱俊,戴松元,张耀红.染料敏化太阳电池中的电子传输及复合[J].化学进展,2010,(05):822-828.
    [47] Bisquert J., Vikhrenko V.S. Interpretation of the time constants measured by kinetictechniques in nanostructured semiconductor electrodes and dye-sensitized solar cells [J].Journal of Physical Chemistry B,2004,108(7):2313-2322.
    [48] Koops S.E., O'Regan B.C., Barnes P.R.F., et al. Parameters Influencing the Efficiency ofElectron Injection in Dye-Sensitized Solar Cells [J]. Journal of the American ChemicalSociety,2009,131(13):4808-4818.
    [49] Sodergren S., Hagfeldt A., Olsson J., et al. Theoretical Models for the Action Spectrumand the Current-Voltage Characteristics of Microporous Semiconductor Films inPhotoelectrochemical Cells [J]. The Journal of Physical Chemistry,1994,98(21):5552-5556.
    [50] Dloczik L., Ileperuma O., Lauermann I., et al. Dynamic response of dye-sensitizednanocrystalline solar cells: Characterization by intensity-modulated photocurrentspectroscopy [J]. Journal of Physical Chemistry B,1997,101(49):10281-10289.
    [51] Schlichthorl G., Huang S.Y., Sprague J., et al. Band edge movement and recombinationkinetics in dye-sensitized nanocrystalline TiO2solar cells: A study by intensitymodulated photovoltage spectroscopy [J]. Journal of Physical Chemistry B,1997,101(41):8141-8155.
    [52] Albery W.J., Bartlett P.N. The photoelectrochemical kinetics of p-type GaP [J]. Journalof the Electrochemical Society,1982,129(10):2254-2261.
    [53] Albery W.J., Bartlett P.N., Wilde C.P. Modulated light studies of the electrochemistry ofsemiconductors. Theory and experiment [J]. Journal of the Electrochemical Society,1987,134(10):2486-2491.
    [54] de Jongh P.E., Vanmaekelbergh D. Investigation of the electronic transport properties ofnanocrystalline particulate TiO2electrodes by intensity-modulated photocurrentspectroscopy [J]. Journal of Physical Chemistry B,1997,101(14):2716-2722.
    [55]梁林云,戴松元,胡林华,等. TiO2颗粒尺寸对染料敏化太阳电池内电子输运特性影响研究[J].物理学报,2009,(02):1338-1343.
    [56] Wang Q., Moser J.E., Gratzel M. Electrochemical impedance spectroscopic analysis ofdye-sensitized solar cells [J]. Journal of Physical Chemistry B,2005,109(31):14945-14953.
    [57] Imoto K., Takahashi K., Yamaguchi T., et al. High-performance carbon counterelectrode for dye-sensitized solar cells [J]. Solar Energy Materials and Solar Cells,2003,79(4):459-469.
    [58] Huo Z., Dai S., Wang K., et al. Nanocomposite gel electrolyte with large enhancedcharge transport properties of an I-3/I-redox couple for quasi-solid-state dye-sensitizedsolar cells [J]. Solar Energy Materials and Solar Cells,2007,91(20):1959-1965.
    [59] Hoshikawa T., Yamada M., Kikuchi R., et al. Impedance analysis for dye-sensitizedsolar cells with a three-electrode system [J]. Journal of Electroanalytical Chemistry,2005,577(2):339-348.
    [60] Duffy N.W., Peter L.M., Rajapakse R.M.G., et al. A novel charge extraction method forthe study of electron transport and interfacial transfer in dye sensitised nanocrystallinesolar cells [J]. Electrochemistry Communications,2000,2(9):658-662.
    [61] Jennings J.R., Ghicov A., Peter L.M., et al. Dye-sensitized solar cells based on orientedTiO2nanotube arrays: Transport, trapping, and transfer of electrons [J]. Journal of theAmerican Chemical Society,2008,130(40):13364-13372.
    [62] Zaban A., Greenshtein M., Bisquert J. Determination of the electron lifetime innanocrystalline dye solar cells by open-circuit voltage decay measurements [J].ChemPhysChem,2003,4(8):859-864.
    [63] Solbrand A., Lindstrom H., Rensmo H., et al. Electron transport in the nanostructuredTiO2-electrolyte system studied with time-resolved photocurrents [J]. Journal ofPhysical Chemistry B,1997,101(14):2514-2518.
    [64] Kopidakis N., Schiff E.A., Park N.G., et al. Ambipolar diffusion of photocarriers inelectrolyte-filled, nanoporous TiO2[J]. Journal of Physical Chemistry B,2000,104(16):3930-3936.
    [65] Barnes P.R.F., Anderson A.Y., Koops S.E., et al. Electron Injection Efficiency andDiffusion Length in Dye-Sensitized Solar Cells Derived from Incident PhotonConversion Efficiency Measurements [J]. Journal of Physical Chemistry C,2009,113(3):1126-1136.
    [66] Jennings J.R., Li F., Wang Q. Reliable Determination of Electron Diffusion Length andCharge Separation Efficiency in Dye-Sensitized Solar Cells [J]. Journal of PhysicalChemistry C,2010,114(34):14665-14674.
    [67]刘伟庆,胡林华,霍志鹏,等.强度调制光电流谱/光电压谱及其应用[J].化学进展,2009,(06):1085-1093.
    [68] Mozer A.J., Wagner P., Officer D.L., et al. The origin of open circuit voltage ofporphyrin-sensitised TiO2solar cells [J]. Chemical Communications,2008,(39):4741-4743.
    [69] Miyashita M., Sunahara K., Nishikawa T., et al. Interfacial Electron-Transfer Kinetics inMetal-Free Organic Dye-Sensitized Solar Cells: Combined Effects of MolecularStructure of Dyes and Electrolytes [J]. Journal of the American Chemical Society,2008,130(52):17874-17881.
    [70] Feldt S.M., Gibson E.A., Gabrielsson E., et al. Design of Organic Dyes and CobaltPolypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells [J].Journal of the American Chemical Society,2010,132(46):16714-16724.
    [71] Sapp S.A., Elliott C.M., Contado C., et al. Substituted polypyridine complexes ofcobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells [J].Journal of the American Chemical Society,2002,124(37):11215-11222.
    [72] Hauch A., Georg A. Diffusion in the electrolyte and charge-transfer reaction at theplatinum electrode in dye-sensitized solar cells [J]. Electrochimica Acta,2001,46(22):3457-3466.
    [73] Sauvage F., Chhor S., Marchioro A., et al. Butyronitrile-Based Electrolyte forDye-Sensitized Solar Cells [J]. Journal of the American Chemical Society,2011,133(33):13103-13109.
    [74] Wang Q., Zhang Z.P., Zakeeruddin S.M., et al. Enhancement of the performance ofdye-sensitized solar cell by formation of shallow transport levels under visible lightillumination (vol112C, pg7089,2008)[J]. Journal of Physical Chemistry C,2008,112(28):10585-10585.
    [75] Jennings J.R., Wang Q. Influence of Lithium Ion Concentration on Electron Injection,Transport, and Recombination in Dye-Sensitized Solar Cells [J]. Journal of PhysicalChemistry C,2010,114(3):1715-1724.
    [76] Guillen E., Peter L.M., Anta J.A. Electron Transport and Recombination in ZnO-BasedDye-Sensitized Solar Cells [J]. Journal of Physical Chemistry C,2011,115(45):22622-22632.
    [77] Lee C., Lee G.W., Kang W., et al. Suppression of Charge Recombination Rate inNanocrystalline SnO2by Thin Coatings of Divalent Oxides in Dye-Sensitized SolarCells [J]. Bulletin of the Korean Chemical Society,2010,31(11):3093-3098.
    [78] Hsiao P.T., Tung Y.L., Teng H.S. Electron Transport Patterns in TiO2NanocrystallineFilms of Dye-Sensitized Solar Cells [J]. Journal of Physical Chemistry C,2010,114(14):6762-6769.
    [79] Park K., Zhang Q.F., Myers D., et al. Charge Transport Properties in TiO2Network withDifferent Particle Sizes for Dye Sensitized Solar Cells [J]. ACS Applied Materials&Interfaces,2013,5(3):1044-1052.
    [80] Dai G., Zhao L., Li J., et al. A novel photoanode architecture of dye-sensitized solarcells based on TiO2hollow sphere/nanorod array double-layer film [J]. Journal ofColloid and Interface Science,2012,365(1):46-52.
    [81] Xu H., Tao X., Wang D.-T., et al. Enhanced efficiency in dye-sensitized solar cells basedon TiO2nanocrystal/nanotube double-layered films [J]. Electrochimica Acta,2010,55(7):2280-2285.
    [82] Spath M., Sommeling P.M., van Roosmalen J.A.M., et al. Reproducible manufacturingof dye-sensitized solar cells on a semi-automated baseline [J]. Progress in Photovoltaics,2003,11(3):207-220.
    [83] Hopkins J.A., Phani G., Skryabin I.L., Methods to implement interconnects in multi-cellregenerative photovoltaic photoelectrochemical devices [P]. US:6,555,741, April292003.
    [84] Sastrawan R., Beier J., Belledin U., et al. A glass frit-sealed dye solar cell module withintegrated series connections [J]. Solar Energy Materials and Solar Cells,2006,90(11):1680-1691.
    [85] Seo H., Son M., Hong J., et al. The fabrication of efficiency-improved W-seriesinterconnect type of module by balancing the performance of single cells [J]. SolarEnergy,2009,83(12):2217-2222.
    [86] Tulloch G.E. Light and energy-dye solar cells for the21st century [J]. Journal ofPhotochemistry and Photobiology a-Chemistry,2004,164(1-3):209-219.
    [87] Han L., Fukui A., Chiba Y., et al. Integrated dye-sensitized solar cell module withconversion efficiency of8.2%[J]. Applied Physics Letters,2009,94(1):013305.
    [88] Kay A., Graetzel M. Low cost photovoltaic modules based on dye sensitizednanocrystalline titanium dioxide and carbon powder [J]. Solar Energy Materials andSolar Cells,1996,44(1):99-117.
    [89] Takeda Y., Kato N., Higuchi K., et al. Monolithically series-interconnected transparentmodules of dye-sensitized solar cells [J]. Solar Energy Materials and Solar Cells,2009,93(6-7):808-811.
    [90] Kato N., Takeda Y., Higuchi K., et al. Degradation analysis of dye-sensitized solar cellmodule after long-term stability test under outdoor working condition [J]. Solar EnergyMaterials and Solar Cells,2009,93(6-7):893-897.
    [91] Kroon J.M., Bakker N.J., Smit H.J.P., et al. Nanocrystalline dye-sensitized solar cellshaving maximum performance [J]. Progress in Photovoltaics,2007,15(1):1-18.
    [92] Hinsch A., Kroon J.M., Kern R., et al. Long-term stability of dye-sensitised solar cells[J]. Progress in Photovoltaics,2001,9(6):425-438.
    [93] Okada K., Matsui H., Kawashima T., et al.100mm×100mm large-sized dyesensitized solar cells [J]. Journal of Photochemistry and Photobiology A: Chemistry,2004,164(1-3):193-198.
    [94] Dai S.Y., Wang K.J., Weng J., et al. Design of DSC panel with efficiency more than6%[J]. Solar Energy Materials and Solar Cells,2005,85(3):447-455.
    [95] Dai S.Y., Wang K.J. Optimum nanoporous TiO2film and its application todye-sensitized solar cells [J]. Chinese Physics Letters,2003,20(6):953-955.
    [96] Dai S., Weng J., Sui Y.F., et al. Dye-sensitized solar cells, from cell to module [J]. SolarEnergy Materials and Solar Cells,2004,84(1-4):125-133.
    [97] Huang Y., Dai S., Chen S., et al. Theoretical modeling of the series resistance effect ondye-sensitized solar cell performance [J]. Applied Physics Letters,2009,95(24):243503
    [98] Sommeling P.M., Spath M., Smit H.J.P., et al. Long-term stability testing ofdye-sensitized solar cells [J]. Journal of Photochemistry and Photobiology a-Chemistry,2004,164(1-3):137-144.
    [99] Lee W.J., Ramasamy E., Lee D.Y. Effect of electrode geometry on the photovoltaicperformance of dye-sensitized solar cells [J]. Solar Energy Materials and Solar Cells,2009,93(8):1448-1451.
    [100] Wang L., Fang X., Zhang Z. Design methods for large scale dye-sensitized solarmodules and the progress of stability research [J]. Renewable&Sustainable EnergyReviews,2010,14(9):3178-3184.
    [101] IEC61646, Thin-film terrestrial photovoltaic(PV) modules—design qualification andtype approval [S]. International Electrotechnical Commission,2008.
    [102] IEC61215, Crystalline silicon terrestrial photovoltaic (PV) modules—designqualification and type approval [S]. International Electrotechnical Commission,2005.
    [103] Villanueva-Cab J., Wang H., Oskam G., et al. Electron Diffusion and Back Reaction inDye-Sensitized Solar Cells: The Effect of Nonlinear Recombination Kinetics [J].Journal of Physical Chemistry Letters,2010,1(4):748-751.
    [104] Wang H., Peter L.A. A Comparison of Different Methods To Determine the ElectronDiffusion Length in Dye-Sensitized Solar Cells [J]. Journal of Physical Chemistry C,2009,113(42):18125-18133.
    [105] Kern R., Sastrawan R., Ferber J., et al. Modeling and interpretation of electricalimpedance spectra of dye solar cells operated under open-circuit conditions [J].Electrochimica Acta,2002,47(26):4213-4225.
    [106] Fabregat-Santiago F., Bisquert J., Garcia-Belmonte G., et al. Influence of electrolyte intransport and recombination in dye-sensitized solar cells studied by impedancespectroscopy [J]. Solar Energy Materials and Solar Cells,2005,87(1-4):117-131.
    [107] Bouzidi K., Chegaar M., Bouhemadou A. Solar cells parameters evaluation consideringthe series and shunt resistance [J]. Solar Energy Materials and Solar Cells,2007,91(18):1647-1651.
    [108] Han L.Y., Koide N., Chiba Y., et al. Modeling of an equivalent circuit for dye-sensitizedsolar cells [J]. Applied Physics Letters,2004,84(13):2433-2435.
    [109] Han L.Y., Koide N., Chiba Y., et al. Modeling of an equivalent circuit for dye-sensitizedsolar cells: improvement of efficiency of dye-sensitized solar cells by reducing internalresistance [J]. Comptes Rendus Chimie,2006,9(5-6):645-651.
    [110] Murayama M., Mori T. Evaluation of treatment effects for high-performancedye-sensitized solar cells using equivalent circuit analysis [J]. Thin Solid Films,2006,509(1-2):123-126.
    [111] Koide N., Islam A., Chiba Y., et al. Improvement of efficiency of dye-sensitized solarcells based on analysis of equivalent circuit [J]. Journal of Photochemistry andPhotobiology a-Chemistry,2006,182(3):296-305.
    [112] Fabregat-Santiago F., Garcia-Belmonte G., Mora-Sero I., et al. Characterization ofnanostructured hybrid and organic solar cells by impedance spectroscopy [J]. PhysicalChemistry Chemical Physics,2011,13(20):9083-9118.
    [113] Fabregat-Santiago F., Bisquert J., Palomares E., et al. Correlation between photovoltaicperformance and impedance spectroscopy of dye-sensitized solar cells based on ionicliquids [J]. Journal of Physical Chemistry C,2007,111(17):6550-6560.
    [114] Halme J., Vahermaa P., Miettunen K., et al. Device Physics of Dye Solar Cells [J].Advanced Materials,2010,22(35): E210-E234.
    [115] Radziemska E. Dark I-U-T measurements of single crystalline silicon solar cells [J].Energy Conversion and Management,2005,46(9-10):1485-1494.
    [116] Altermatt P.P., Heiser G., Aberle A.G., et al. Spatially resolved analysis andminimization of resistive losses in high-efficiency Si solar cells [J]. Progress inPhotovoltaics: Research and Applications,1996,4(6):399-414.
    [117] Ishibashi K.-i., Kimura Y., Niwano M. An extensively valid and stable method forderivation of all parameters of a solar cell from a single current-voltage characteristic[J]. Journal of Applied Physics,2008,103(9):094507.
    [118] Pysch D., Mette A., Glunz S.W. A review and comparison of different methods todetermine the series resistance of solar cells [J]. Solar Energy Materials and Solar Cells,2007,91(18):1698-1706.
    [119] Tian H., Zhang X., Yuan S., et al. An improved method to estimate the equivalent circuitparameters in DSSCs [J]. Solar Energy,2009,83(5):715-720.
    [120] Colfen H., Antonietti M. Mesocrystals: Inorganic superstructures made by highlyparallel crystallization and controlled alignment [J]. Angewandte Chemie-InternationalEdition,2005,44(35):5576-5591.
    [121] Niederberger M., Coelfen H. Oriented attachment and mesocrystals: Non-classicalcrystallization mechanisms based on nanoparticle assembly [J]. Physical ChemistryChemical Physics,2006,8(28):3271-3287.
    [122] Zhou L., Smyth-Boyle D., O'Brien P. A facile synthesis of uniform NH4TiOF3mesocrystals and their conversion to TiO2mesocrystals [J]. Journal of the AmericanChemical Society,2008,130(4):1309-1320.
    [123] Liu Y., Zhang Y., Tan H., et al. Formation and Anisotropic Dissolution Behavior ofNH4TiOF3Mesocrystals [J]. Crystal Growth&Design,2011,11(7):2905-2912.
    [124] Liu S.-J., Gong J.-Y., Hu B., et al. Mesocrystals of Rutile TiO2: MesoscaleTransformation, Crystallization, and Growth by a Biologic Molecules-AssistedHydrothermal Process [J]. Crystal Growth&Design,2009,9(1):203-209.
    [125] Ye J., Liu W., Cai J., et al. Nanoporous Anatase TiO2Mesocrystals: Additive-FreeSynthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium InsertionBehavior [J]. Journal of the American Chemical Society,2010,133(4):933-940.
    [126] Hong Z., Wei M., Lan T., et al. Additive-free synthesis of unique TiO2mesocrystalswith enhanced lithium-ion intercalation properties [J]. Energy&Environmental Science,2012,5(1):5408-5413.
    [127] Cai J., Ye J., Chen S., et al. Self-cleaning, broadband and quasi-omnidirectionalantireflective structures based on mesocrystalline rutile TiO2nanorod arrays [J]. Energy&Environmental Science,2012,5(6):7575-7581.
    [128] Zhou L., Chen J., Ji C., et al. A facile solid phase reaction to prepare TiO2mesocrystalswith exposed {001} facets and high photocatalytic activity [J]. Crystengcomm,2013,15(25):5012-5015.
    [129] Hong Z., Wei M., Lan T., et al. Self-assembled nanoporous rutile TiO2mesocrystalswith tunable morphologies for high rate lithium-ion batteries [J]. Nano Energy,2012,1(3):466-471.
    [130] Wohrle D., Meissner D. Organic solar cells [J]. Advanced Materials,1991,3(3):129-138.
    [131] Chegaar M., Ouennoughi Z., Hoffmann A. A new method for evaluating illuminatedsolar cell parameters [J]. Solid-State Electronics,2001,45(2):293-296.
    [132] Ocakoglu K., Yakuphanoglu F., Durrant J.R., et al. The effect of temperature on thecharge transport and transient absorption properties of K27sensitized DSSC [J]. SolarEnergy Materials and Solar Cells,2008,92(9):1047-1053.
    [133] Bisquert J. Theory of the impedance of electron diffusion and recombination in a thinlayer [J]. Journal of Physical Chemistry B,2002,106(2):325-333.
    [134] Bisquert J., Fabregat-Santiago F., Mora-Sero I., et al. Electron Lifetime inDye-Sensitized Solar Cells: Theory and Interpretation of Measurements [J]. Journal ofPhysical Chemistry C,2009,113(40):17278-17290.
    [135] Bisquert J. Influence of the boundaries in the impedance of porous film electrodes [J].Physical Chemistry Chemical Physics,2000,2(18):4185-4192.
    [136] Yong V., Ho S.-T., Chang R.P.H. Modeling and simulation for dye-sensitized solar cells[J]. Applied Physics Letters,2008,92(14):143506.
    [137] Gomez R., Salvador P. Photovoltage dependence on film thickness and type ofillumination in nanoporous thin film electrodes according to a simple diffusion model[J]. Solar Energy Materials and Solar Cells,2005,88(4):377-388.
    [138] Wu W.-Q., Liao J.-Y., Chen H.-Y., et al. Dye-sensitized solar cells based on a doublelayered TiO2photoanode consisting of hierarchical nanowire arrays and nanoparticleswith greatly improved photovoltaic performance [J]. Journal of Materials Chemistry,2012,22(34):18057-18062.
    [139] He C., Zheng Z., Tang H.L., et al. Electrochemical Impedance SpectroscopyCharacterization of Electron Transport and Recombination in ZnO NanorodDye-Sensitized Solar Cells [J]. Journal of Physical Chemistry C,2009,113(24):10322-10325.
    [140] Tornow J., Schwarzburg K. Transient electrical response of dye-sensitized ZnO nanorodsolar cells [J]. Journal of Physical Chemistry C,2007,111(24):8692-8698.
    [141] Wang X.X., He G.F., Fong H., et al. Electron Transport and Recombination inPhotoanode of Electrospun TiO2Nanotubes for Dye-Sensitized Solar Cells [J]. Journalof Physical Chemistry C,2013,117(4):1641-1646.
    [142] Xuan P., Changhong C., Kai Z., et al. TiO2nanotubes infiltrated with nanoparticles fordye sensitized solar cells [J]. Nanotechnology,2011,22(23):235402(235407pp.)-235402(235407pp.).
    [143] Cai J., Qi L. TiO2mesocrystals: Synthesis, formation mechanisms and applications [J].Science China-Chemistry,2012,55(11):2318-2326.
    [144]彭丽华. TiO2纳米晶材料的形貌调控与染料敏化太阳电池的效率提升[D]:华南理工大学,2012.
    [145] Usami A. Theoretical study of application of multiple scattering of light to adye-sensitized nanocrystalline photoelectrochemical cell [J]. Chemical Physics Letters,1997,277(1-3):105-108.
    [146] Tan B., Wu Y. Dye-sensitized solar cells based on anatase TiO2nanoparticle/nanowirecomposites [J]. Journal of Physical Chemistry B,2006,110(32):15932-15938.
    [147] Zhong P., Que W.X., Zhang J., et al. Charge transport and recombination indye-sensitized solar cells based on hybrid films of TiO2particles/TiO2nanotubes [J].Journal of Alloys and Compounds,2011,509(29):7808-7813.
    [148] Yan K., Qiu Y., Chen W., et al. A double layered photoanode made of highly crystallineTiO2nanooctahedra and agglutinated mesoporous TiO2microspheres for high efficiencydye sensitized solar cells [J]. Energy&Environmental Science,2011,4(6):2168-2176.
    [149] Halme J., Boschloo G., Hagfeldt A., et al. Spectral characteristics of light harvesting,electron injection, and steady-state charge collection in pressed TiO2dye solar cells [J].Journal of Physical Chemistry C,2008,112(14):5623-5637.
    [150] Heli W., Jianjun H., Boschloo G., et al. Electrochemical investigation of traps in ananostructured TiO2film [J]. Journal of Physical Chemistry B,2001,105(13):2529-2533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700