用户名: 密码: 验证码:
量子点敏化TiO_2纳米晶太阳能电池的电极结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点敏化太阳能电池,作为一种新型太阳能电池,是有望成为替代硅系太阳能电池的低成本、高效率的太阳能电池之一。但是,量子点敏化太阳能电池的性能显著地受其半导体氧化物、量子点敏化材料、对电极及电解液等的影响。因此,本文以改善光伏性能为目标,制备了CdS量子点敏化TiO2多孔薄膜和TiO2纳米管阵列以及CuInS2量子点敏化TiO2纳米管阵列光阳极和碳对电极,研究了电池结构对太阳能电池性能的影响。主要研究结果及创新点如下:
     1.采用丝网印刷法制备纳米TiO2多孔薄膜,采用连续离子层吸附与反应法制备CdS量子点敏化TiO2多孔薄膜,采用碘电解液/Pt对电极体系时,TiO2多孔薄膜厚度与CdS量子点沉积量都对量子点敏化太阳能电池的光电转换性能有重要影响,随着TiO2多孔薄膜厚度和CdS量子点沉积量的增加,量子点敏化太阳能电池的光电转换性能均有一个先增加后降低的趋势。
     2.采用活性炭为原料在FTO导电玻璃上制备碳薄膜对电极,并考察了不同对电极对太阳能电池性能的影响。结果表明,与Pt对电极相比,碳对电极可明显提高CdS量子点敏化太阳能电池的光伏性能。交流阻抗谱分析表明,碳对电极可降低对电极/电解液的界面电阻,有利于电荷转移。
     3.制备了CdS量子点敏化TiO2纳米管阵列光阳极,结合多硫电解液与Pt对电极,研究了太阳能电池的光电性能。结果表明,随着CdS量子点沉积量的增加,CdS量子点敏化TiO2纳米管阵列电池的光电转换效率先增加后降低。在相同的条件下,CdS量子点/TiO2纳米管阵列电池的短路电流密度提高,说明TiO2纳米管阵列巨大的比表面积更有利于CdS量子点的沉积。
     4.采用溶剂热法制备三元硫化物CuInS2量子点,将CuInS2量子点沉积到双官能团分子功能化的TiO2纳米管阵列上,制备CuInS2量子点敏化TiO2纳米管阵列太阳能电池,并对其光伏性能进行了研究。结果表明,采用这种预先合成量子点的方式制备的量子点敏化太阳能电池效率较低,采用CuInS2/CdS量子点共敏化TiO2纳米管阵列,可以提高太阳能电池的光电转换效率。
Quantum dots sensitized solar cells(QDSCs), as a new type of solar cell, are regarded as potential low-cost and high efficient alternative to conventional Si-based solar cell. However, the performance of QDSC is significantly influenced by semiconductor oxide, quantum dots, counter electrode and electrolyte. For the purpose to improve the performance of QDSC, we have prepared the photoanodes based on CdS quantum dots sensitized TiO2porous film and TiO2nanotube arrays and CuInS2quantum dots TiO2nanotube arrays, and the carbon counter electrode, and studied the performance of the quantum dot sensitized solar cell based on these electrodes. The main results and conclusions can be summarized as follows:
     1. TiO2nanocrystalline porous film is prepared by screen printing method. The effects of the screen printing cycles on morphology and structure of TiO2porous film were studied. CdS QDs sensitized TiO2porous film was prepared by successive ionic layer absorption and reaction (SILAR) method and its photovoltaic performance was studied. The results show that for I-/I3-electrolyte/Pt counter electrode system, both the thickness of TiO2porous film and CdS QDs deposition amount can influence the QDSC's photoelectric conversion performance. With the increasing film thickness and CdS QDs deposit amount, the photovoltaic performance of QDSC first increases to maximum and then decreases.
     2. Carbon counter electrode on FTO conducting glass is prepared using activated carbon as raw materials. The effect of counter electrode on the photovoltaic performance of polysulfide electrolyte based QDSC. The results reveal that, carbon counter electrode prepared by doctor blade method can obviously improve the photovoltaic performance of QDSC. From the EIS analysis, carbon counter electrode reduces the resistance on the counter electrode/electrolyte interface, and is benefical to charge transfer.
     3. TiO2nanotube arrays are prepared by constant voltage anode oxidation, and sensitized by CdS QDs. The photovoltaic performance of CdS QDs sensitized TiO2nanotube arrys in polysulfide electrolyte is studied. The results show that with the increasing CdS QDs depositon amount, the photoelectric conversion efficiency of CdS QDs sensitized TiO2nanotube arrays solar cell increases to a maximum and then decreases. In the same other conditions on polysulfide electrolyte/Pt counter electrode, Jsc of QDSC based TiO2nanotube arrays is higher than that of QDSC based on TiO2nanoparticle film. This result demonstrats that the higher area surface ratio of TiO2nanotube arrays can be beneficial to deposit CdS QDs.
     4. Ternary sulfide CuInS2QDs are synthesized by solthermal method. The CuInS2QDs are deposited on TiO2nanotube arrays functioned by bifunctional linker to prepare CuInS2QDs sensitized TiO2nanotube arrays. The photovoltaic performance of CuInS2QDs sensitized TiO2nanotube arrays solar cell is studied. The results show that the efficiency of pre-synthesized CuInS2QDs sensitized solar cell is relatively low.Using CuInS2/CdS co-sensitized TiO2nanotube arrays,can improve the efficiency of the solar cell.
引文
[1]Brown A S,Green M A. Detailed balance limit for the series constrained two terminal tandem solar cell[J]. Physica E:Low-dimensional Systems and Nanostructures,2002,14:95-100.
    [2]Shockley W. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells[J]. J. Appl. Phys.,1961,32:510-519.
    [3]Green M A,Emery K,Hishikawa Y,et al. Solar cell efficiency tables (Version 34)[J]. Progress in Photovoltaics:Research and Applications,2009,17:320-326.
    [4]Hodes G. Comparison of Dye- and Semiconductor-Sensitized Porous Nanocrystalline Liquid Junction Solar Cells[J]. The Journal of Physical Chemistry C,2008,112:17778-17787.
    [5]Watson D F,Meyer G J.Electron injection at dye-sensitized semiconductor electrodes. Annual Reviews,2005:119-156.
    [6]O'Regan B,Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature,1991,353:737-740.
    [7]Cao Y M,Bai Y,Yu Q J,et al. Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine[J]. Journal of Physical Chemistry C.2009,113:6290-6297.
    [8]Hagfeldt A,Gratzel M. Molecular Photovoltaics[J]. Accounts of Chemical Research,2000, 33:269-277.
    [9]Soloviev V N,Eichhofer A,Fenske D,et al. Size-Dependent Optical Spectroscopy of a Homologous Series of CdSe Cluster Molecules[J]. Journal of the American Chemical Society,2001,123:2353-2364.
    [10]Jdira L,Liljeroth P,Stoffels E,et al. Size-dependent single-particle energy levels and interparticle Coulomb interactions in CdSe quantum dots measured by scanning tunneling spectroscopy[J]. Physical Review B,2006,73:115305.
    [11]Anikeeva P O,Halpert J E,Bawendi M G,et al. Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum[J]. Nano Letters,2009,9: 2532-2536.
    [12]Wuister S F.van Houselt A,de Mello Donega C,et al. Temperature Antiquenching of the Luminescence from Capped CdSe Quantum Dots[J]. Angewandte Chemie International Edition,2004,43:3029-3033.
    [13]Tessler N,Medvedev V,Kazes M,et al. Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes[J]. Science,2002,295:1505-1508.
    [14]Rogach A L,Franzl T,Klar T A,et al. Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals: State-of-the-Art[J]. The Journal of Physical Chemistry C,2007,111:14628-14637.
    [15]Toyoda T.Kobayashi J.Shen Q.Correlation between crystal growth and photo sensitization of nanostructured TiO2 electrodes using supporting Ti substrates by self-assembled CdSe quantum dots,Kobe, JAPAN,2006,Elsevier Science Sa:2425-2431.
    [16]Ruhle S.Shalom M,Zaban A. Quantum-Dot-Sensitized Solar Cells[J].ChemPhys Chem, 2010,11:2290-2304.
    [17]Takagahara T.Takeda K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials[J]. Physical Review B,1992,46:15578-15581.
    [18]Kan S,Mokari T,Rothenberg E,et al. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods[J]. Nature Materials,2003,2:154-158.
    [19]Zhu QPan L,Xu T,et al. One-Step Synthesis of CdS Sensitized TiO2 Photoanodes for Quantum Dot-Sensitized Solar Cells by Microwave Assisted Chemical Bath Deposition Method[J]. Acs Applied Materials & Interfaces,2011,3:1472-1478.
    [20]Zidek K,Zheng K,Ponseca C S,et al. Electron transfer in quantum-dot-sensitized ZnO nanowires:ultrafast time-resolved absorption and terahertz study[J]. J Am Chem Soc,2012, 134:12110-12117.
    [21]Zhou J.Song B,Zhao Qet al. TiO2 Nanorod Arrays Sensitized with CdS Quantum Dots for Solar Cell Applications:Effects of Rod Geometry on Photoelectrochemical Performance [J]. Applied Physics A,2012,107:321-331.
    [22]Yang S Y.Nair A S, Zhu P N,et al. Electrospun TiO2 nanostructures sensitized by CdS in conjunction with CoS counter electrodes:Quantum dot-sensitized solar cells all prepared by successive ionic layer adsorption and reaction[J]. Materials Letters,2012,76:42-46.
    [23]Zeng T, Tao H Z,Sui X T, et al. Growth of free-standing TiO2 nanorod arrays and its application in CdS quantum dots-sensitized solar cells[J]. Chemical Physics Letters,2011,508: 130-133.
    [24]Sui X T,Zeng T.Yin G C,et al. CdS-sensitized solar cell based on screen-printed TiO2 nanoporous electrode[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2011,5:220-223.
    [25]Sun S.Gao L.Liu Y,et al. Assembly of CdSe nanoparticles on graphene for low-temperature fabrication of quantum dot sensitized solar cell[J]. Applied Physics Letters,2011,98: 093112.
    [26]Zhao F.Tang QZhang J,et al. Improved performance of CdSe quantum dot-sensitized TiO2 thin film by surface treatment with TiCl4[J]. Electrochimica Acta,2012,62:395-401.
    [27]Poulose A C,Veeranarayanan S.Varghese S H,et al. Functionalized electrophoretic deposition of CdSe quantum dots onto TiO2 electrode for photovoltaic application[J]. Chemical Physics Letters,2012,539-540:197-203.
    [28]Martinez-Ferrero E,Sero I M,Albero J,et al. Charge transfer kinetics in CdSe quantum dot sensitized solar cells[J]. Physical Chemistry Chemical Physics,2010,12:2819-2821.
    [29]Samadpour M,Zad A I,Taghavinia N,et al. A new structure to increase the photostability of CdTe quantum dot sensitized solar cells[J].Journal of Physics D-Applied Physics,2011, 44:045103.
    [30]Yang H,Fan W,Vaneski A,et al. Heterojunction Engineering of CdTe and CdSe Quantum Dots on TiO2 Nanotube Arrays:Intricate Effects of Size-Dependency and Interfacial Contact on Photoconversion Efficiencies[J].Advanced Functional Materials,2012,22:2821-2829.
    [31]Tachan Z,Shalom M,Hod I,et al. PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells[J]. Journal of Physical Chemistry C,2011,115: 6162-6166.
    [32]Mali S S,Desai S K,Kalagi S S,et al. PbS quantum dot sensitized anatase TiO2 nanocorals for quantum dot-sensitized solar cell applications[J]. Dalton Transactions,2012,41:6130-6136.
    [33]Zhao N.Osedach T P,Chang L-Y,et al. Colloidal PbS Quantum Dot Solar Cells with High Fill Factor[J]. ACS Nano,2010,4:3742-3752.
    [34]Peter L M,Wijayantha K G U,Riley D J,et al. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2[J]. Journal of Physical Chemistry B,2003,107:8378-8381.
    [35]Zaban A,Micic O I,Gregg B A,et al. Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots[J], Langmuir,1998,14:3152-3156.
    [36]Yu P R,Zhu K,Norman A G,et al. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots[J]. Journal of Physical Chemistry B,2006,110:25451-25454.
    [37]Tubtimtae A,Wu K-L,Tung H-Y,et al. Ag2S quantum dot-sensitized solar cells[J]. Electrochemistry Communications,2010,12:1158-1160.
    [38]Xie Y,Yoo S H,Chen C,et al. Ag2S quantum dots-sensitized TiO2 nanotube array photoelectrodes[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2012,177:105-111.
    [39]Chen C,Xie Y,Ali G,et al. Improved conversion efficiency of Ag2S quantum dot-sensitized solar cells based on TiO2 nanotubes with a ZnO recombination barrier layer[J]. Nanoscale Res Lett,2011,6:462.
    [40]Vogel R,Hoyer P.Weller H. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors[J]. The Journal of Physical Chemistry,1994,98:3182-3188.
    [41]Lim C-S,Im S H,Kim H-j,et al. Enhancing the device performance of Sb2S2.sensitized heterojunction solar cells by embedding Au nanoparticles in the hole-conducting polymer layer[J]. Physical Chemistry Chemical Physics,2012,14:3622-3626.
    [42]Lim C-S,Im S H,Rhee J H,et al. Hole-conducting mediator for stable Sb2S2.sensitized photoelectrochemical solar cells[J]. Journal of Materials Chemistry,2012,22:1107-1111.
    [43]Miyauchi M. Tailoring of SnS quantum dots in mesoporous media for efficient photoelectrochemical device[J]. Chemical Physics Letters,2011,514:151-155.
    [44]Tsukigase H,Suzuki Y,Berger M H,et al. Synthesis of SnS Nanoparticles by SILAR Method for Quantum Dot-Sensitized Solar Cells[J]. Journal of Nanoscience and Nanotechnology, 2011,11:1913-1922.
    [45]Tsukigase H.Suzuki Y,Berger M H,et al. Wet Chemical Synthesis and Self-Assembly of SnS2 Nanoparticles on TiO2 for Quantum Dot-Sensitized Solar Cells[J]. Journal of Nanoscience and Nanotechnology,2011,11:3214-3221.
    [46]Yu X,Zhu J,Zhang Y,et al. SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors[J]. Chem Commun,2012,48:3323-3326.
    [47]Ning Z,Tian H,Yuan C,et al. Solar cells sensitized with type-Ⅱ ZnSe-CdS core/shell colloidal quantum dots[J]. Chemical Communications,2011,47:1535-1538.
    [48]Li T-L,Teng H. Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes[J]. Journal of Materials Chemistry,2010,20:3655-3664.
    [49]Fan J Q,Zhou Z J,Zhou W H,et al. Fabrication of CuInS2 Sensitized TiO2 Nanorod Arrays for Photovoltaic Devices[J]. Journal Of Inorganic Materials,2012,27:49-53.
    [50]Chen L-C,Ho Y-C,Yang R-Y,et al. Electrodeposited AgInSe2 onto TiO2 films for semiconductor-sensitized solar cell application:The influence of electrodeposited time[J]. Applied Surface Science,2012,258:6558-6563.
    [51]Yang Z,Chang H-T. CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2%[J].Solar Energy Materials and Solar Cells,2010,94: 2045-2051.
    [52]Niitsoo O,Sarkar S K,Pejoux C,et al. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells[J].Journal of Photochemistry and Photobiology a-Chemistry,2006,181: 305-313.
    [53]Diguna L J,Shen Q,Kobayashi J,et al. High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells[J]. Applied Physics Letters.2007,91:023116.
    [54]Xinku Q.Wenxiu Q,Xingtian Y,et al. ZnO/CdS/CdSe Core/double Shell Nanorod Arrays Derived by a Successive Ionic Layer Adsorption and Reaction Process for Quantum Dot-sensitized Solar Cells[J]. Semiconductor Science and Technology,2011,26:095028.
    [55]Lee H,Wang M,Chen P,et al. Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process[J]. Nano Letters,2009,9:4221-4227.
    [56]Lee Y-L, Lo Y-S. Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe[J]. Advanced Functional Materials,2009,19:603-609.
    [57]Shen Y-J, Lee Y-L. Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications[J]. Nanotechnology,2008,19:045602.
    [58]Mora-Sero I,Gimenez S,Moehl T,et al. Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell:the role of the linker molecule and of the counter electrode[J]. Nanotechnology,2008,19:7.
    [59]Chen J,Song J L,Sun X W,et al. An oleic acid-capped CdSe quantum-dot sensitized solar cell[J]. Applied Physics Letters,2009,94,153115.
    [60]Robel I,Subramanian V,Kuno M,et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films[J]. Journal of the American Chemical Society,2006,128:2384-2393.
    [61]Guijarro N,Lana-Villarreal T,Mora-Sero I,et al. CdSe Quantum Dot-Sensitized TiO2 Electrodes:Effect of Quantum Dot Coverage and Mode of Attachment[J]. The Journal of Physical Chemistry C,2009,113:4208-4214.
    [62]Lee Y-L,Huang B-M,Chien H-T. Highly Efficient CdSe-Sensitized TiO2 Photoelectrode for Quantum-Dot-Sensitized Solar Cell Applications[J].Chemistry of Materials,2008,20:6902-6905.
    [63]King L A,Riley D J. Importance of QD Purification Procedure on Surface Adsorbance of QDs and Performance of QD Sensitized Photoanodes[J]. Journal of Physical Chemistry C,2012,116:3349-3355.
    [64]Chen J,Song J L,Sun X W,et al. An oleic acid-capped CdSe quantum-dot sensitized solar cell[J]. Applied Physics Letters,2009,94:153114-153113.
    [65]Wijayantha K G U,Peter L M,Otley L C. Fabrication of CdS quantum dot sensitized solar cells via a pressing route[J]. Solar Energy Materials and Solar Cells,2004,83:362-369.
    [66]Gim6nez S,Mora-Sero I,Macor L,et al. Improving the performance of colloidal quantum-dot-sensitized solar cells[J]. Nanotechnology,2009,20:295204.
    [67]Vaenas N,Stergiopoulos T,Kontos A G,et al. Sensitizer activated solar cells based on self-organized TiO2 nanotubes[J]. Microelectronic Engineering,2012,90:62-65.
    [68]Shu T,Xiang P,Zhou Z-M,et al. Mesoscopic nitrogen-doped TiO2 spheres for quantum dot-sensitized solar cells[J]. Electrochimica Acta,2012,68:165-171.
    [69]Zhu G A,Lv T A,Pan L K,et al. All spray pyrolysis deposited CdS sensitized ZnO films for quantum dot-sensitized solar cells[J]. Journal of Alloys and Compounds,2011,509:362-365.
    [70]Thambidurai M,Muthukumarasamy N,Arul N S,et al. CdS quantum dot-sensitized ZnO nanorod-based photoelectrochemical solar cells[J]. Journal of Nanoparticle Research,2011, 13:3267-3273.
    [71]Sudhagar P.Song T,Lee D H,et al. High Open Circuit Voltage Quantum Dot Sensitized Solar Cells Manufactured with ZnO Nanowire Arrays and Si/ZnO Branched Hierarchical Structures[J]. The Journal of Physical Chemistry Letters,2011,2:1983-1990.
    [72]Shen Q,Yanai M,Katayama K,et al. Optical absorption, photosensitization, and ultrafast carrier dynamic investigations of CdSe quantum dots grafted onto nanostructured SnO2 electrode and fluorine-doped tin oxide (FTO) glass[J]. Chemical Physics Letters,2007, 442:89-96.
    [73]Bingqiang C.Weiping C.Yue L,et al. Ultraviolet-light-emitting ZnO nanosheets prepared by a chemical bath deposition method[J]. Nanotechnology,2005,16:1734.
    [74]Tena-Zaera R,Elias J,Wang G,et al. Role of Chloride Ions on Electrochemical Deposition of ZnO Nanowire Arrays from O2 Reduction[J]. The Journal of Physical Chemistry C,2007,111:16705-16711.
    [75]Zheng M J,Zhang L D,Li G H,et al. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique[J]. Chemical Physics Letters,2002,363:122-128.
    [76]Krunks M,Dedova T,Oja Acik I. Spray pyrolysis deposition of zinc oxide nanostructured layers[J]. Thin Solid Films,2006,515:1157-1160.
    [77]Lao C S.Gao P X.Yang R S,et al. Formation of double-side teethed nanocombs of ZnO and self-catalysis of Zn-terminated polar surface[J]. Chemical Physics Letters,2006,417:358-362.
    [78]Liang Z-H,Zhu Y-J,Cheng G-F,et al. Synthesis of ZnO nanosheets by room-temperature decomposition of a layered precursor synthesized by microwave heating[J]. Journal of Materials Science,2007,42:477-482.
    [79]Gao P X,Ding Y,Mai W,et al. Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices[J]. Science,2005,309:1700-1704.
    [80]Pol V G,Zaban A. Growing TiO2-Based Pillars by Chemisorbed Nanotitania Followed by Annealing[J]. The Journal of Physical Chemistry C,2007,111:14573-14578.
    [81]Wolfbauer G,Bond A M,Eklund J C,et al. A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells[J], Solar Energy Materials and Solar Cells,2001,70:84-101.
    [82]Yeh M-H,Lee C-P,Chou C-Y,et al. Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte[J]. Electrochimica Acta,2011,57:277-284.
    [83]Shi J-F,Wan Q-C,Xu Qet al. Influence of Temperature on the Properties of Polysulfide Electrolyte and Quantum Dot Sensitized Solar Cells[J]. Acta Physico-chimica Sinica,2011, 27:2360-2366.
    [84]Lee H J,Yum J-H,Leventis H C,et al. CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity[J]. The Journal of Physical Chemistry C,2008,112: 11600-11608.
    [85]Lee H.Wang M,Chen P,et al. Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process[J]. Nano Letters, 2009,9:4221-4227.
    [86]Sapp S A,Elliott C M,Contado C,et al. Substituted Polypyridine Complexes of Cobalt(Ⅱ/Ⅲ) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells[J]. Journal of the American Chemical Society,2002,124:11214-11222.
    [87]Tachibana Y,Akiyama H Y,Ohtsuka Y,et al. CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells[J]. Chemistry Letters,2007,36:88-89.
    [88]Lee H,Leventis H C,Moon S-J,et al. PbS and CdS Quantum Dot-Sensitized-Solid-State Solar Cells:"Old Concepts, New Results"[J]. Advanced Functional Materials,2009,19: 2734-2742.
    [89]Plass R,Pelet S,Krueger J,et al. Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells[J]. The Journal of Physical Chemistry B,2002,106:7578-7580.
    [90]Larramona QChone C,Jacob A,et al. Nanostructured Photovoltaic Cell of the Type Titanium Dioxide, Cadmium Sulfide Thin Coating, and Copper Thiocyanate Showing High Quantum Efficiency [J]. Chemistry of Materials,2006,18:1688-1696.
    [91]Shen Q,Yamada A,Tamura S,et al. CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode[J]. Applied Physics Letters,2010, 97:123107..
    [92]Cahen D,Hodes G,Gratzel M,et al. Nature of Photovoltaic Action in Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry B.2000,104:2052-2059.
    [93]Zhu K,Schiff E A,Park N Qet al. Determining the locus for photocarrier recombination in dye-sensitized solar cells[J]. Applied Physics Letters,2002,80:684-687.
    [94]Zwilling V,Aucouturier M,Darque-Ceretti E. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach[J]. Electrochimica Acta,1999,45:921-929.
    [95]Gong D.Grimes C A.Varghese O K,et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research,2001,16:3331-3334.
    [96]Cai Q Y,Paulose M,Varghese O K,et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation[J]. Journal of Materials Research,2005,20:230-236.
    [97]Paulose M.Shankar K,Yoriya S,et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134μm in length[J]. Journal of Physical Chemistry B,2006,110:16179-16184.
    [98]Paulose M,Prakasam H E,Varghese O K,et al. TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil:Phenol red diffusion[J]. Journal of Physical Chemistry C,2007,111:14992-14997.
    [99]Prakasam H E,Shankar K,Paulose M,et al. A new benchmark for TiO2 nanotube array growth by anodization[J]. Journal of Physical Chemistry C,2007,111:7234-7241.
    [100]Zhu K,Neale N R,Miedaner A,et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays[J]. Nano Letters,2007,7:69-74.
    [101]Yoriya S,Mor G K,Sharma S,et al. Synthesis of ordered arrays of discrete, partially crystalline titania nanotubes by Ti anodization using diethylene glycol electrolytes[J]. Journal of Materials Chemistry,2008,18:3332-3336.
    [102]Allam N K,Shankar K,Grimes C A. Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes[J]. Journal of Materials Chemistry,2008,18:2341-2348.
    [103]Mor G K,Varghese O K,Paulose M,et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications [J]. Solar Energy Materials and Solar Cells,2006,90:2011-2075.
    [104]Mor G K,Varghese O K,Paulose M,et al. Fabrication of tapered, conical-shaped titania nanotubes[J]. Journal of Materials Research,2003,18:2588-2593.
    [105]Zhao J L,Wang X H,Chen R Z,et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation[J]. Solid State Communications,2005,134:704-710.
    [106]Raja K S,Misra M,Paramguru K. Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium[J]. ElectrochimicaActa,2005,51:153-165.
    [107]Likodimos V,Stergiopoulos T,Falaras P,et al. Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays:A Polarized Micro-Raman Investigation[J]. The Journal of Physical Chemistry C,2008,112:12687-12696.
    [108]Mor G K, Varghese O K,Paulose M,et al. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements[J]. Thin Solid Films,2006, 496:42-48.
    [109]Varghese O K,Gong D.Paulose M,et al. Hydrogen sensing using titania nanotubes[J]. Sensors and Actuators B:Chemical,2003,93:338-344.
    [110]Beranek R,Hildebrand H,Schmuki P. Self-Organized Porous Titanium Oxide Prepared in H2SO4/HF Electrolytes[J]. Electrochemical and Solid-State Letters,2003,6:B12.
    [111]Ghicov A,Tsuchiya H,Macak J M,et al. Titanium oxide nanotubes prepared in phosphate electrolytes[J]. Electrochemistry Communications,2005,7:504-509.
    [112]Paulose M, Varghese O K,Mor G K,et al. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes[J]. Nanotechnology,2006,17:398-402.
    [113]Taveira L V,Macak J M,Tsuchiya H,et al. Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F/(NH4)SO4 Electrolytes[J] Journal of the Electrochemical Society,2005,152:B404-B410.
    [114]Macak J M,Sirotna K,Schmuki P. Self-organized porous titanium oxide' prepared in Na2SO4/NaF electrolytes[J]. Electrochimica Acta,2005,50:3679-3684.
    [115]Macak J M,Tsuchiya H,Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium[J]. Angewandte Chemie-International Edition,2005,44:2100-2102.
    [116]Ruan C M,Paulose M,Varghese O K,et al. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte[J]. Journal of Physical Chemistry B.2005,109:15753-15759.
    [117]E. P H,K. S,M. P,et al. A new benchmark for TiO2 nanotube array growth by anodization[J]. Journal of Physical Chemistry C,2007,111:7234-7241.
    [118]Allam N K,Grimes C A. Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte[J]. Journal of Physical Chemistry C,2007,111: 13028-13032.
    [119]Paulose M,Peng L,Popat K C,et al. Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes[J]. Journal of Membrane Science, 2008,319:199-205.
    [120]Wang J,Lin Z Q. Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization[J]. Chemistry of Materials,2008,20:1257-1261.
    [121]Albu S P.Ghicov A,Macak J M,et al. Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications[J]. Nano Letters,2007,7:1285-1289.
    [122]Cheng H,Zhao X J,Sui X T,et al. Fabrication and characterization of CdS-sensitized TiO2 nanotube photoelectrode[J]. Journal of Nanoparticle Research,2011,13:554-562.
    [123]Mor G K,Varghese O K,Paulose M,et al. Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films[J]. Advanced Functional Materials,2005, 15:1291-1296.
    [124]Paulose M,Shankar K,Varghese O K,et al. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells[J]. Journal of Physics D:Applied Physics, 2006,39:2498-2503.
    [125]Rani S,Roy S C,Paulose M,et al. Synthesis and applications of electrochemically self-assembled titania nanotube arrays[J]. Physical Chemistry Chemical Physics.2010,12: 2780-2800.
    [126]Varghese O K,Paulose M,Grimes C A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells[J]. Nat Nano,2009,4:592-597.
    [127]Macak J M,Tsuchiya H,Ghicov A,et al. Dye-sensitized anodic TiO2 nanotubes[J]. Electrochemistry Communications,2005,7:1133-1137.
    [128]Haidekker M A,Akers W,Lichlyter D,et al. Sensing of Flow and Shear Stress Using Fluorescent Molecular Rotors[J]. Sensor Letters,2005,3:42-48.
    [129]Paulose M,Shankar K, Varghese O K,et al. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells[J]. Journal of Physics D-Applied Physics,2006,39:2498-2503.
    [130]Chen C-C,Chung H-W,Chen C-H,et al. Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C,2008,112:19151-19157.
    [131]Li L-L,Tsai C-Y,Wu H-P,et al. Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells[J]. Journal of Materials Chemistry,2010,20:2753-2758.
    [132]Mor G K,Shankar K,Paulose M,et al. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells[J]. Nano Letters,2005,6:215-218.
    [133]Lei B-X,Liao J-Y,Zhang R,et al. Ordered Crystalline TiO2 Nanotube Arrays on Transparent FTO Glass for Efficient Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C,2010,114:15228-15233.
    [134]Sun W-T,Yu Y,Pan H-Y,et al. CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes[J]. Journal of the American Chemical Society,2008,130:1124-1125.
    [135]Lee W,Kang S H,Min S K,et al. Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum[J]. Electrochemistry Communications,2008,10:1579-1582.
    [136]Huang S,Zhang Q,Huang X,et al. Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays[J]. Nanotechnology,2010,21:375201.
    [137]Guan X-F,Huang S-Q,Zhang Q-X,et al. Front-side illuminated CdS/CdSe quantum dots co-sensitized solar cells based on TiO2 nanotube arrays[J]. Nanotechnology,2011,22: 465402.
    [138]Shankar K,Mor G K,Prakasam H E,et al. Self-Assembled Hybrid Polymer-TiO2 Nanotube Array Heterojunction Solar Cells[J]. Langmuir,2007,23:12445-12449.
    [139]Mor G K,Kim S,Paulose M,et al. Visible to Near-Infrared Light Harvesting in TiO2 Nanotube Array-P3HT Based Heterojunction Solar Cells[J]. Nano Letters,2009,9:4250-4257.
    [140]Fabregat-Santiago F,Bisquert J.Garcia-Belmonte G,et al. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy[J]. Solar Energy Materials and Solar Cells,2005,87:117-131.
    [141]Bisquert J.Garcia-Belmonte G,Fabregat-Santiago F,et al. Doubling Exponent Models for the Analysis of Porous Film Electrodes by Impedance. Relaxation of TiO2 Nanoporous in Aqueous Solution[J]. The Journal of Physical Chemistry B,2000,104:2287-2298.
    [142]Bisquert J. Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer[J]. The Journal of Physical Chemistry B,2001,106:325-333.
    [143]Chang C H,Lee Y L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells[J]. Applied Physics Letters, 2007,91:053503.
    [144]Yau S-L,Moriyama T.Uchida H,et al. STM observation with atomic resolution on platinum film electrodes formed by a sputtering method[J]. Chemical Communications,2000,2279-2280.
    [145]Lee Y-L,Chen C-L,Chong L-W,et al. A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells[J].Electrochemistry Communications, 2010,12:1662-1665.
    [146]Lin L-Y,Nien P-C,Lee C-P,et al. Low-Temperature Flexible Photoanode and Net-Like Pt Counter Electrode for Improving the Performance of Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C,2010,114:21808-21815.
    [147]王耀琼,魏子栋,蔡洪英,等.溅射-置换法制备染料敏化太阳能电池对电极Pt/FTO.物理化学学报[J].2010,26(11):2957-2961.
    [148]Gloaguen F.Leger J M,Lamy C,et al. Platinum electrodeposition on graphite:electrochemical study and STM imaging[J]. Electrochimica Acta,1999,44:1805-1816.
    [149]Yoon C H,Vittal R,Lee J,et al. Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode[J]. Electrochimica Acta,2008,53:2890-2896.
    [150]Kelaidopoulou A.Kokkinidis G,Milchev A. Nucleation and growth of metal catalysts. Part I. Electrodeposition of platinum on tungsten[J]. Journal of Electroanalytical Chemistry, 1998,444:195-201.
    [151]Chen L,Tan W,Zhang J,et al. Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells[J]. Electrochimica Acta, 2010,55:3721-3726.
    [152]陈今茂,马玉涛,王桂强,等.纳晶敏化太阳能电池中铂修饰对电极的一种新制法.2005,50:28-31.
    [153]Lin C-Y,Lin J-Y,Lan J-L,et al. Electroless Platinum Counter Electrode for Dye-Sensitized Solar Cells by Using Self-Assembly Monolayer Modification[J]. Electrochemical and Solid-State Letters.2010,13:D77-D79.
    [154]Chen C-M,Chen C-H,Wei T-C.Chemical deposition of platinum on metallic sheets as counterelectrodes for dye-sensitized solar cells[J]. Electrochimica Acta,2010,55:1687-1695.
    [155]范乐庆,吴季怀,,黄昀防,等.阴极修饰对染料敏化TiO2太阳能电池性能的改进.电子元件与材料[J].2003,22(5):1-3
    [156]Chen J,Li K,Luo Y,et al. A flexible carbon counter electrode for dye-sensitized solar cells[J].Carbon,2009,47:2704-2708.
    [157]Lei B-X,Fang W-J,Hou Y-F,et al. All-solid-state electrolytes consisting of ionic liquid and carbon black for efficient dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A:Chemistry,2010,216:8-14.
    [158]Jiang Q W,Li G R,Wang F,et al. Highly ordered mesoporous carbon arrays from natural wood materials as counter electrode for dye-sensitized solar cells[J].Electrochemistry Communications,2010,12:924-927.
    [159]Fan S-Q,Fang B.Kim J H,et al. Ordered Multimodal Porous Carbon as Highly Efficient Counter Electrodes in Dye-Sensitized and Quantum-Dot Solar Cells[J]. Langmuir,2010,26: 13644-13649.
    [160]Aitola K.Kaskela A,Halme J,et al. Single-Walled Carbon Nanotube Thin-Film Counter Electrodes for Indium Tin Oxide-Free Plastic Dye Solar Cells[J]. Journal of the Electrochemical Society,2010,157:B 1831-B1837.
    [161]Han J,Kim H.Kim D Y.et al. Water-Soluble Polyelectrolyte-Grafted Multiwalled Carbon Nanotube Thin Films for Efficient Counter Electrode of Dye-Sensitized Solar Cells[J]. ACS Nano,2010,4:3503-3509.
    [162]Lee W J,Ramasamy E,Lee D Y,et al. Efficient Dye-Sensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes[J]. ACS applied materials & interfaces, 2009,1:1145-1149.
    [163]Choi H,Kim H,Hwang S,et al. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode[J].Solar Energy Materials and Solar Cells,2011,95:323-325.
    [164]Kavan L,Yum J H,Gratzel M. Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets[J]. ACS Nano,2010,5:165-172.
    [165]Hong W,Xu Y,Lu G,et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells[J].Electrochemistry Communications,2008,10:1555-1558.
    [166]Lee K-M,Hsu C-Y,Chen P-Y,et al. Highly porous PProDOT-Et2 film as counter electrode for plastic dye-sensitized solar cells[J].Physical Chemistry Chemical Physics,2009,11:3375-3379.
    [167]Ameen S,Akhtar M S,Kim Y S,et al. Sulfamic Acid-Doped Polyaniline Nanofibers Thin Film-Based Counter Electrode:Application in Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C,2010,114:4760-4764.
    [168]Lee K-M,Chiu W-H,Wei H-Y,et al. Effects of mesoscopic poly(3,4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells[J].Thin Solid Films,2010,518: 1716-1721.
    [169]Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry,1985,57:603-619.
    [170]Rouquerol J,Avnir D,Fairbridge C W,et al. Recommendations for the characterization of porous solids (Technical Report)[J]. Pure and Applied Chemistry,1994,66:1739.
    [171]Robel I,Kuno M,Kamat P V. Size-Dependent Electron Injection from Excited CdSe Quantum Dots into TiO2 Nanoparticles[J].Journal of the American Chemical Society,2007,129:4136-4137.
    [172]Kamat P V. Meeting the clean energy demand:Nanostructure architectures for solar energy conversion[J]. Journal of Physical Chemistry C,2007,111:2834-2860.
    [173]Toyoda T,Qing S,Sato T,et al. Photoacoustic and photoelectrochemical characterization of CdSe-sensitized TiO2 electrodes composed of nanotubes and nanowires[J].Thin Solid Films, 2006,499:299-305.
    [174]Mora-Sero I,Gimenez S,Fabregat-Santiago F, et al. Recombination in Quantum Dot Sensitized Solar Cells[J]. Accounts of Chemical Research,2009,42:1848-1857.
    [175]Mor G K,Carvalho M A.Varghese O K,et al. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination[J]. Journal of Materials Research.2004,19:628-634.
    [176]Wang Q,Pan Y Z,Huang S S,et al. Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor[J]. Nanotechnology,2011,22:025501.
    [177]Song Y-Y,Schmuki P. Modulated TiO2 nanotube stacks and their use in interference sensors[J], Electrochemistry Communications,2010,12:579-582.
    [178]Lin C-J,Lu Y-T,Hsieh C-H,et al. Surface modification of highly ordered TiO2 nanotube arrays for efficient photoelectrocatalytic water splitting[J].Applied Physics Letters,2009, 94:113102-113103.
    [179]Varghese O K,Paulose M,Shankar K,et al. Water-Photolysis Properties of Micron-Length Highly-Ordered Titania Nanotube-Arrays[J]. Journal of Nanoscience and Nanotechnology, 2005,5:1158-1165.
    [180]Nam W.Oh S,Joo H,et al. Preparation of anodized TiO2 photoanode for photoelectrochemical hydrogen production using natural seawater[J].Solar Energy Materials and Solar Cells, 2010,94:1809-1815.
    [181]Liu Z,Zhang X,Nishimoto S,et al. Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol[J].The Journal of Physical Chemistry C,2007,112:253-259.
    [182]Quan X,Ruan X,Zhao H,et al. Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode[J].Environmental Pollution,2007, 147:409-414.
    [183]Cardoso J C,Lizier T M,Zanoni M V B. Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine[J].Applied Catalysis B:Environmental,2010,99:96-102.
    [184]Song Y-Y,Schmidt-Stein F,Bauer S,et al. Amphiphilic TiO2 Nanotube Arrays:An Actively Controllable Drug Delivery System[J]. Journal of the American Chemical Society,2009, 131:4230-4232.
    [185]Zhao QLei Y,Zhang Y,et al. Growth and Favorable Bioelectrocatalysis of Multishaped Nanocrystal Au in Vertically Aligned TiO2 Nanotubes for Hemoprotein[J].The Journal of Physical Chemistry C,2008,112:14786-14795.
    [186]Oh S-H,Finones R R,Daraio C,et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes[J]. Biomaterials,2005,26:4938-4943.
    [187]Xu C.Shin P H,Cao L,et al. Ordered TiO2 Nanotube Arrays on Transparent Conductive Oxide for Dye-Sensitized Solar Cells[J]. Chemistry of Materials,2009,22:143-148.
    [188]Chen C-H,Chen K-C,He J-L.Transparent conducting oxide glass grown with TiO2-nanotube array for dye-sensitized solar cell[J].Current Applied Physics,2010,10:S176-S179.
    [189]Kim J Y,Noh J H,Zhu K,et al. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes:illumination geometry and transport properties[J]. ACS Nano,2011,5=2647-2656.
    [190]Lai Y,Lin Z,Zheng D,et al. CdSe/CdS quantum dots co-sensitized TiO2 nanotube array photoelectrode for highly efficient solar cells[J]. Electrochimica Acta,2012,79:175-181.
    [191]Gao X-F,Sun W-T,Ai G,et al. Photoelectric performance of TiO2 nanotube array photoelectrodes cosensitized with CdS/CdSe quantum dots[J].Applied Physics Letters,2010,96:153104.
    [192]Gao X,Li H-B,Sun W,et al. CdTe Quantum Dots-Sensitized TiO2 Nanotube Array Photoelectrodes[J]. The Journal of Physical Chemistry C,2009,113:7531-7535.
    [193]Liu G,Wang K,Hoivik N,et al. Progress on free-standing and flow-through TiO2 nanotube membranes[J]. Solar Energy Materials and Solar Cells,2012,98:24-38.
    [194]Yue L,Gao W,Zhang D,et al. Colloids Seeded Deposition:Growth of Titania Nanotubes in Solution[J]. Journal of the American Chemical Society,2006,128:11042-11043.
    [195]Huogen YJiaguo Y,Bei C,et al. Novel preparation and photocatalytic activity of one-dimensional TiO2 hollow structures[J]. Nanotechnology,2007,18:065604.
    [196]Kasuga T,Hiramatsu M,Hoson A,et al. Formation of Titanium Oxide Nanotube[J]. Langmuir,1998,14:3160-3163.
    [197]Jung J H,Kobayashi H,van Bommel K J C,et al. Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template[J]. Chemistry of Materials,2002,14:1445-1447.
    [198]Du W.Qian X,Yin J,et al. Shape- and Phase-Controlled Synthesis of Monodisperse, Single-Crystalline Ternary Chalcogenide Colloids through a Convenient Solution Synthesis Strategy[J]. Chemistry-A European Journal,2007,13:8840-8846.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700