用户名: 密码: 验证码:
碳材料对电极在染料敏化太阳能电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究的主要内容包括:对于绿色制备铂的纳米颗粒以及负载铂的碳材料对电极的研究;探讨二氧化钛的水凝胶改性碳材料对电极对于染料敏化太阳能电池的光电转换效率以及稳定性的影响;以及对于新型石墨烯气凝胶材料对电极的探索。取得主要研究成果如下:
     1、优化基于碳材料对电极的染料敏化太阳能电池的工艺参数。对于我们所研究的碳材料对电极体系而言,使用炭黑和石墨质量比为1:3时,其组装的染料敏化太阳能电池的光电转换效率最好;同时当羟乙基纤维素的质量占碳材料质量的2.5%时,碳材料对电极组装的染料敏化太阳能电池的光电转换效率最好,可达5.60%。
     2、研究了一种铂的纳米颗粒的制备方法,该方法具有简单、快速、绿色等优点。将这种所制备的铂的纳米颗粒应用碳材料对电极之中,可以在很大程度上减少铂的使用量。由碳/铂复合对电极组装的染料敏化太阳能电池,其光电转换效率可达6.42%,与普通碳材料对电极组装的器件相比,其光电转换效率提高了12%。
     3、研究了一种使用铂的纳米颗粒制备的碳材料对电极。通过测试这种负载铂的碳材料对电极的方块电阻,表明其具有较好的导电性能;通过对其进行循环伏安测试表征,表明其对于I-/I3-氧化还原电对具有良好的催化性能;通过由不同含量的负载铂的碳材料对电极组装的染料敏化太阳能电池的具体性能参数的对比,寻找到了一个最少的铂的用量,即使用1.0wt%的铂的纳米颗粒即可达到器件性能的最大收益,染料敏化太阳能电池的光电转换效率可达6.4%。这种简单的、环境友好型的制备碳材料对电极的方法,使得染料敏化太阳能电池的成本大幅度降低,有利于染料敏化太阳能电池的实际应用。
     4、研究了一种稳定的碳材料对电极的制备方法。通过在碳材料对电极浆料中引入二氧化钛的水凝胶,制备碳/二氧化钛水凝胶复合对电极。经过导电性测试,碳/二氧化钛水凝胶复合对电极比普通碳材料对电极具有更加好的导电性;在电化学催化活性方面,二氧化钛这种宽禁带半导体材料的引入,对于碳材料对电极的电化学催化活性没有明显的影响。具体来说,碳材料对电极对于I-3/I-这个还原反应的催化能力没有明显的影响;而且在另一方面,由碳/二氧化钛水凝胶复合对电极组装的染料敏化太阳能电池,其光电转换效率和长程稳定性等性能都比由普通碳材料电极组装的染料敏化太阳能电池要好。对于染料敏化太阳能电池性能的提高,其主要原因来自于二氧化钛的水凝胶的引入,二氧化钛的水凝胶经过退火之后形成二氧化钛纳米颗粒,这些二氧化钛纳米颗粒在碳材料对电极中起了两个重要作用:1、在碳材料颗粒之间起到了桥联作用;2、在碳材料颗粒与FTO导电玻璃衬底之间起到了粘结作用。由碳/二氧化钛水凝胶复合对电极组装的染料敏化太阳能电池,其最好的光电转换效率为6.3%,而由普通碳材料电极组装的染料敏化太阳能电池,其光电转换效率为5.8%。
     5、研究了一种新型材料-石墨烯气凝胶的制备、并对其进行表征。通过拉曼光谱测试、扫面电子显微镜测试以及能量色散谱测试,证明了所制备的产物为石墨烯气凝胶;通过BET测试,定量的得到了石墨烯气凝胶的比表面积;通过循环伏安测试,了解了石墨烯气凝胶的电化学性能;最后,我们将石墨烯气凝胶应用于染料敏化太阳能电池的对电极之中,其器件的光电转换效率为1.43%。
In this thesis, we have systematically studied the green synthesis of platinum nanoparticle and its application in low-Pt loading carbon counter electrode (CE); the stability of Ti-hydrogel modified carbon counter electrode; the novel counter electrode based on grapheme aerogel and its application in dye sensitized solar cell (DSSC). The main results and achievements are as following:
     1. Optimizing the parameters of the DSSC assembly process based on carbon counter electrode, In our research system, adding carbon black and graphite at the weight ratio of1:3in the carbon paste, the DSSC based on the as prepared carbon CE has the best performance. On the other side, adding the hydroxyethyl cellulose at the weight ratio of2.5%, the device showed the best power conversion efficiency (5.6%).
     2. We report a rapid and effective green chemistry route of the synthesis of Pt nanoparticles (PtNPs). Under optimized conditions, the PtNPs were found to distribute uniformly in a narrow size range of3.6to4.1nm and exhibit high stability in the colloids. In addition, these nanoparticles, having advantages of high surface area, narrow distribution and mono-dispersivity, were applied to enhance the catalytic activities of low-cost carbon based CEs for DSSCs. Consequently, the efficiencies of the cells showed a promising improvement from5.7%(of a typical carbon CE) to6.4%by using the carbon/PtNPs composite CE.
     3. A6.4%high efficiency Pt/carbon electrode was used in DSSCs with combination of low-cost, low Pt-loading and easy-fabrication. The effect of Pt content in carbon counter electrodes and the corresponding performance of DSSCs were investigated. Electrochemical measurement indicated that the optimized Pt content was1.00wt%and the catalytic activity of Pt/carbon counter electrode was saturated in device at this content. Low Pt-loading and high efficiency highlight the potential application of this Pt/carbon counter electrode in low-cost DSSC.
     4. We described a systematic investigation of the stability of a carbon/TiO2 counter electrode for use in DSSCs. In this system, nanoparticle additives were introduced by adding Ti-hydrogel. The additives then bound carbon particles and enhanced the adhesion of carbon materials to the conductive substrate. After introducing the Ti-hydrogel into the carbon paste, the carbon/Ti-hydrogel composited counter electrode (HC-CE) showed a better conductivity and stability compared with that of the carbon counter electrode (C-CE), while the catalytic activity was not influenced. The device based on the HC-CE showed superior power conversion efficiency (6.3%) and long-term stability over the device based on the C-CE (5.8%).
     5. A novel carbon CE were fabricated with graphene areogel. Though the Raman, SEM and EDS test, the product have been proved to be the graphene areogel. The as prepared graphene has large surface area though the BET test. However, the catalytic activity of this graphene areogel towards I-/I3-redox was limited. The DSSC based on this graphene areogel CE showed power conversion efficiency of1.43%.
引文
[1]葛新石,龚堡,太阳能工程:原理和应用,学术期刊出版社,(1988).
    [2]郭廷玮,太阳能的利用,科学技术文献出版社,(1987).
    [3]P.D. Maycock, Cost reduction in PV manufacturing impact on grid-connected and building-integrated markets, Sol. Energy Mater. Sol. Cells,47 (1997) 37-45.
    [4]U. Rau, N. Jensen, R.A. Hausner, R.B. Bergmann, J.H. Werner, Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells, Prog Photovoltaics,10 (2002) 1-13.
    [5]R.B. Bergmann, Crystalline Si thin-film solar cells:a review, Appl Phys a-Mater,69 (1999) 187-194.
    [6]O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, H. Wagner, Intrinsic microcrystalline silicon:A new material for photovoltaics, Sol. Energy Mater. Sol. Cells,62 (2000) 97-108.
    [7]M. Vanecek, A. Shah, E. Vallat-Sauvain, P. Torres, J. Meier, U. Kroll, C. Hof, C. Droz, M. Goerlitzer, N. Wyrsch, Intrinsic microcrystalline silicon (mu c-Si:H) deposited by VHF-GD (very high frequency-glow discharge):a new material for photovoltaics and optoelectronics, Materials Science and Engineering B-Solid State Materials for Advanced Technology,69 (2000) 219-226.
    [8]Z. Chen, P. Sana, J. Salami, A. Rohatgi, A novel and effective PECVD SiO2/SiN antireflection coating for Si solar cells, Electron Devices, IEEE Transactions on,40 (1993) 1161-1165.
    [9]K. Nakajima, S. Kodama, S. Miyashita, G. Sazaki, S. Hiyamizu, Growth of Ge-rich SixGel-x single crystal with uniform composition (x=0.02) on a compositionally graded crystal for use as GaAs solar cells, Journal of Crystal Growth,205 (1999) 270-276.
    [10]M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells, Progress in Photovoltaics:Research and Applications,7 (1999) 311-316.
    [11]J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, B.M. Keyes, Photocurrent of 1 eV GalnNAs lattice-matched to GaAs, Journal of Crystal Growth,195 (1998) 401-408.
    [12]M.A. Green, K. Emery, Y. Hishikawa, W. Wart a, Solar cell efficiency tables (version 35), Progress in Photovoltaics:Research and Applications,18 (2010) 144-150.
    [13]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,353 (1991) 737-740.
    [14]M. Gratzel, Photoelectrochemical cells, Nature,414 (2001) 338-344.
    [15]M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, Journal of Photochemistry and Photobiology A:Chemistry, 164 (2004) 3-14.
    [16]M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem.,44 (2005) 6841-6851.
    [17]M. Gratzel, Photovoltaic and photoelectrochemical conversion of solar energy, Philos T R Soc A,365 (2007) 993-1005.
    [18]K.X. Li, Z.X. Yu, Y.H. Luo, D.M. Li, Q.B. Meng, Recent progress of counter electrodes in nanocrystalline dye-sensitized solar cells, Journal of Materials Science & Technology,23 (2007) 577-582.
    [19]S. Guenes, N.S. Sariciftci, Hybrid solar cells, Inorg Chim Acta,361 (2008) 581-588.
    [20]M. GrAtzel, Recent Advances in Sensitized Mesoscopic Solar Cells, Accounts of Chemical Research,42 (2009) 1788-1798.
    [21]A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev.,110 (2010) 6595-6663.
    [22]J. Halme, P. Vahermaa, K. Miettunen, P. Lund, Device Physics of Dye Solar Cells, Adv Mater,22 (2010) E210-E234.
    [23]C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C.'ratzel, C.-G. Wu, S.M. Zakeeruddin, M.'ratzel, Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells, ACS Nano,3 (2009) 3103-3109.
    [24]T.L. Ma, M. Akiyama, E. Abe, I. Imai, High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode, Nano Lett.,5 (2005) 2543-2547.
    [25]D.B. Menzies, J.N. Hart, Y.B. Cheng, G.P. Simon, Q. Dai, L. Spiccia, Nanostructured TiO2 films in dye-sensitized solar cells, Int J Nanosci Ser,4 (2005) 785-793
    [26]K. Kameyama, Y. Komoda, H. Suzuki, H. Usui, Optimization of preparation and drying conditions of titanium dioxide slurry for coating on a plastic substrate, J Chem Eng Jpn,40 (2007) 973-979.
    [27]M.K.I. Senevirathna, P.K.D.D.P. Pitigala, E.V.A. Premalal, K. Tennakone, G.R.A. Kumara, A. Konno, Stability of the SnO2/MgO dye-sensitized photo electrochemical solar cell, Sol. Energy Mater. Sol. Cells,91 (2007) 544-547.
    [28]S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Gratzel, M.K. Nazeeruddin, M. Gratzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films,516 (2008) 4613-4619.
    [29]W. Sujuan, et al., Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering, Nanotechnology, 19(2008)215704.
    [30]S.J. Wu, H.W. Han, Q.D. Tai, J. Zhang, B.L. Chen, S. Xu, C.H. Zhou, Y. Yang, H. Hu, X.Z. Zhao, Improvement in dye-sensitized solar cells with a ZnO-coated TiO2 electrode by rf magnetron sputtering, Appl. Phys. Lett.,92 (2008) 122106.
    [31]N.S. Baek, J.-H. Yum, X. Zhang, H.K. Kim, M.K. Nazeeruddin, M. Gratzel, Functionalized alkyne bridged dendron based chromophores for dye-sensitized solar cell applications, Energ Environ Sci,2 (2009) 1082-1087.
    [32]D.H. Chen, F.Z. Huang, Y.B. Cheng, R.A. Caruso, Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes:A Superior Candidate for High-Performance Dye-Sensitized Solar Cells, Adv Mater,21 (2009) 2206.
    [33]S. Choopun, A. Tubtimtae, T. Santhaveesuk, S. Nilphai, E. Wongrat, N. Hongsith, Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells, Appl Surf Sci,256 (2009) 998-1002.
    [34]C.S. Chou, R.Y. Yang, C.K. Yeh, Y.J. Lin, Preparation of TiO2*/Nano-metal composite particles and their applications in dye-sensitized solar cells, Powder Technol,194 (2009) 95-105.
    [35]C.F. Lin, H. Lin, D.T. Zhuang, J.B. Li, Highly-Ordered Perpendicularly Oriented ZnO Nanobelt Array Films:Synthesis, Characterization, and Application, J Nanosci Nanotechno,9 (2009) 1976-1984.
    [36]L. Miranda, A. Chianese, Optimal Effect of TiO2 Particles Size on the Current-Potential Behaviour of Dye Sensitized TiO2 Solar Cells, Chem Engineer Trans,17 (2009) 975-980
    [37]M. Sangklinhom, J. Yamada, A Study on Radiative Transfer in a TiO2 Photoelectrode for Improvement of Dye-Sensitized Solar Cell Performance, J Therm Sci Tech-Jpn,4 (2009) 248-259.
    [38]K.R. Bae, C.H. Ko, Y. Park, Y. Kim, J.-S. Bae, J.H. Yeum, I.S. Kim, W.J. Lee, W. Oh, Structure control of nanocrystalline TiO2 for the dye-sensitized solar cell application, Curr Appl Phys,10 (2010) S406-S409.
    [39]H. Hafez, Z. Lan, Q. Li, J. Wu, High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode, Nanotechnology, Science and Applications,3 (2010) 45-51.
    [40]M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gratzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(11) charge-transfer sensitizers (X = CI-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc.,115 (1993) 6382-6390.
    [41]S. Xu, C-h. Zhou, Y. Yang, H. Hu, B. Sebo, B.-l. Chen, Q.-d. Tai, X. Zhao, Effects of Ethanol on Optimizing Porous Films of Dye-Sensitized Solar Cells, Energy & Fuels,25 (2011) 1168-1172.
    [42]D. Matthews, A. Kay, M. Gratzel, Electrophoretically Deposited Titanium Dioxide Thin Films for Photovoltaic Cells, Australian Journal of Chemistry,47 (1994) 1869-1877.
    [43]J.N. Hart, D. Menzies, Y.B. Cheng, G.P. Simon, L. Spiccia, TiO2 sol-gel blocking layers for dye-sensitized solar cells, Cr Chim,9 (2006) 622-626.
    [44]H. Han, X. Zhao, J. Liu, Enhancement in Photoelectric Conversion Properties of the Dye-Sensitized Nanocrystalline Solar Cells Based on the Hybrid TiO2 Electrode, J. Electrochem. Soc,152 (2005) A164-A166.
    [45]B. Peng, G. Jungmann, C. Jager, D. Haarer, H.-W. Schmidt, M. Thelakkat, Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells, Coordin Chem Rev,248 (2004) 1479-1489.
    [46]X.Z. Zhao, Y.M. Liu, X.H. Sun, Q.D. Tai, H. Hu, B.L. Chen, N. Huang, B. Sebo, Efficency enhancement in dye-sensitized solar cells by interfacial modification of conducting glass/mesoporous TiO2 using a novel ZnO compact blocking film, J Power Sources,196 (2011) 475-481.
    [47]H. Alarcon, G. Boschloo, P. Mendoza, J.L. Solis, A. Hagfeldt, Dye-Sensitized Solar Cells Based on Nanocrystalline TiO2 Films Surface Treated with Al3+lons:(?) Photovoltage and Electron Transport Studies, J. Phys. Chem. B,109 (2005) 18483-18490.
    [48]S. Wu, H. Han, Q. Tai, J. Zhang, S. Xu, C. Zhou, Y. Yang, H. Hu, B. Chen, X.-z. Zhao, Improvement in dye-sensitized solar cells employing TiO2 electrodes coated with AI2O3 by reactive direct current magnetron sputtering, J Power Sources,182 (2008) 119-123.
    [49]P.M. Sommeling, B.C. O'Regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, JJ.T. Smits, J.M. Kroon, J.A.M. van Roosmalen, Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells, J. Phys. Chem. B,110 (2006) 19191-19197.
    [50]F.J. Knorr, D. Zhang, J.L. McHale, Influence of TiCl4 Treatment on Surface Defect Photoluminescence in Pure and Mixed-Phase Nanocrystalline TiO2, Langmuir,23 (2007) 8686-8690.
    [51]B.C. O'Regan, J.R. Durrant, P.M. Sommeling, N.J. Bakker, Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells.2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit, J. Phys. Chem. C,111 (2007) 14001-14010.
    [52]M.K. Nazeeruddin, S.M. Zakeeruddin, J.J. Lagref, P. Liska, P. Comte, C. Barolo, G. Viscardi, K. Schenk, M. Gratzel, Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell, Coordin Chem Rev,248 (2004) 1317-1328.
    [53]A. Mishra, M.K.R. Fischer, P. Bauerle, Metal-Free Organic Dyes for Dye-Sensitized Solar Cells:From Structure:Property Relationships to Design Rules, Angewandte Chemie International Edition,48 (2009) 2474-2499.
    [54]M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel, Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell, J. Phys. Chem. B,107 (2003) 8981-8987.
    [55]E. Hosono, Y. Mitsui, H. Zhou, Metal-free organic dye sensitized solar cell based on perpendicular zinc oxide nanosheet thick films with high conversion efficiency, Dalton Transactions, (2008) 5439-5441.
    [56]P. Balraju, M. Kumar, M.S. Roy, G.D. Sharma, Dye sensitized solar cells (DSSCs) based on modified iron phthalocyanine nanostructured TiO2 electrode and PEDOT:PSS counter electrode, Synthetic Metals,159 (2009) 1325-1331.
    [57]K.-M. Lee, S.-J. Wu, C.-Y. Chen, C.-G. Wu, M. Ikegami, K. Miyoshi, T. Miyasaka, K.-C. Ho, Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer, J Mater Chem,19 (2009) 5009-5015.
    [58]C. Teng, X.C. Yang, C.Z. Yuan, C.Y. Li, R.K. Chen, H.N. Tian, S.F. Li, A. Hagfeldt, L.C. Sun, Two Novel Carbazole Dyes for Dye-Sensitized Solar Cells with Open-Circuit Voltages up to 1 V Based on Br-/Br3-Electrolytes, Organic Letters,11 (2009) 5542-5545.
    [59]Z.-S. Wang, N. Koumura, Y. Cui, M. Miyashita, S. Mori, K. Hara, Exploitation of Ionic Liquid Electrolyte for Dye-Sensitized Solar Cells by Molecular Modification of Organic-Dye Sensitizers, Chemistry of Materials,21 (2009) 2810-2816.
    [60]H. Choi, J.-J. Kim, K. Song, J. Ko, M.K. Nazeeruddin, M. Gratzel, Molecular engineering of panchromatic unsymmetrical squaraines for dye-sensitized solar cell applications, J Mater Chem,20 (2010) 3280-3286.
    [61]B.E. Hardin, J.H. Yum, E.T. Hoke, Y.C. Jun, P. Pechy, T. Torres, M.L. Brongersma, M.K. Nazeeruddin, M. Gratzel, M.D. McGehee, High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells, Nano Lett.,10 (2010) 3077-3083.
    [62]J.Y. Li, C.Y. Chen, C.P. Lee, S.C. Chen, T.H. Lin, H.H. Tsai, K.C. Ho, C.G. Wu, Unsymmetrical Squaraines Incorporating the Thiophene Unit for Panchromatic Dye-Sensitized Solar Cells, Organic Letters,12 (2010) 5454-5457.
    [63]X. Song, X.L. Yu, Y. Xie, J. Sun, T. Ling, X.W. Du, Improving charge separation of solar cells by the co-sensitization of CdS quantum dots and dye, Semicond Sci Tech, 25 (2010) 095014.
    [64]W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks, Chemistry of Materials,22 (2010) 1915-1925.
    [65]P.G. Bomben, K.D. Theriault, C.P. Berlinguette, Strategies for Optimizing the Performance of Cyclometalated Ruthenium Sensitizers for Dye-Sensitized Solar Cells, European Journal of Inorganic Chemistry, (2011) n/a-n/a.
    [66]N. Cai, S.-J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, M. Gratzel, An Organic D-π-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells, Nano Lett., (2011) null-null.
    [67]D. Cao, J. Peng, Y. Hong, X. Fang, L. Wang, H. Meier, Enhanced Performance of the Dye-Sensitized Solar Cells with Phenothiazine-Based Dyes Containing Double D-A Branches, Organic Letters, (2011) null-null.
    [68]U.B. Cappel, A.L. Smeigh, S. Plogmaker, E.M.J. Johansson, H.k. Rensmo, L. 'ammarstrom, A. Hagfeldt, G. Boschloo, Characterization of the Interface Properties and Processes in Solid State Dye-Sensitized Solar Cells Employing a Perylene Sensitizer, J. Phys. Chem. C, (2011) null-null.
    [69]S.-Q. Fan, C. Kim, B. Fang, K.-X. Liao, G.-J. Yang, C.-J. Li, J.-J. Kim, J. Ko, Improved Efficiency of over 10% in Dye-Sensitized Solar Cells with a Ruthenium Complex and an Organic Dye Heterogeneously Positioning on a Single TiO2 Electrode, J. Phys. Chem. C, (2011) null-null.
    [70]Z. Fang, A.A. Eshbaugh, K.S. Schanze, Low-Bandgap Donor-Acceptor Conjugated Polymer Sensitizers for Dye-Sensitized Solar Cells, J. Am. Chem. Soc, (2011) null-null.
    [71]J.R. Jennings, Y. Liu, Q. Wang, S.M. Zakeeruddin, M. Gratzel, The influence of dye structure on charge recombination in dye-sensitized solar cells, Physical Chemistry Chemical Physics, (2011).
    [72]H. Kusama, H. Sugihara, K. Sayama, Effect of Cations on the Interactions of Ru Dye and Iodides in Dye-Sensitized Solar Cells:A Density Functional Theory Study, J. Phys. Chem. C, (2011).
    [73]F.d.r. Labat, I. Ciofini, H.P. Hratchian, M.J. Frisch, K. Raghavachari, C. Adamo, Insights into Working Principles of Ruthenium Polypyridyl Dye-Sensitized Solar Cells from First Principles Modeling, J. Phys. Chem. C, (2011).
    [74]L. Li, X. Yang, J. Zhao, J. Gao, A. Hagfeldt, L. Sun, Efficient organic dye sensitized solar cells based on modified sulfide/polysulfide electrolyte, J Mater Chem, (2011).
    [75]X. Lu, S. Wei, C.-M.L. Wu, S. Li, W. Guo, Can Polypyridyl Cu(1)-based Complexes Provide Promising Sensitizers for Dye-Sensitized Solar Cells? A Theoretical Insight into Cu(Ⅰ) versus Ru(Ⅱ) Sensitizers, J. Phys. Chem. C,115 (2011) 3753-3761.
    [76]K.L. McCall, J.R. Jennings, H. Wang, A. Morandeira, L.M. Peter, J.R. Durrant, L.J. Yellowlees, N. Robertson, Dinuclear Ru-Cu Complexes:Electronic Characterisation and Application to Dye-Sensitised Solar Cells, European Journal of Inorganic Chemistry,2011 (2011) 589-596.
    [77]G. Pozzi, S. Quici, M.C. Raffo, C.A. Bignozzi, S. Caramori, M. Orlandi, Fluorous Molecules for Dye-Sensitized Solar Cells:Synthesis and Photoelectrochemistry of Unsymmetrical Zinc Phthalocyanine Sensitizers with Bulky Fluorophilic Donor Groups, J. Phys. Chem. C, (2011).
    [78]K.D. Seo, H.M. Song, M.J. Lee, M. Pastore, C. Anselmi, F. De Angelis, M.K. Nazeeruddin, M. Graetzel, H.K. Kim, Coumarin Dyes Containing Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells, Dyes Pigments, In Press, Accepted Manuscript (2011).
    [79]D. Zhou, N. Cai, H. Long, M. Zhang, Y. Wang, P. Wang, An Energetic and Kinetic View on Cyclopentadithiophene Dye-Sensitized Solar Cells:The Influence of Fluorine vs Ethyl Substituent, J. Phys. Chem. C,115 (2011) 3163-3171.
    [80]D. Zhou, Q. Yu, N. Cai, Y. Bai, Y. Wang, P. Wang, Efficient organic dye-sensitized thin-film solar cells based on the tris(1,10-phenanthroline)cobalt(Ⅱ/Ⅲ) redox shuttle, Energ Environ Sci, (2011).
    [81]X.-F. Wang, H. Tamiaki, Cyclic tetrapyrrole based molecules for dye-sensitized solar cells, Energ Environ Sci,3 (2010) 94-106.
    [82]B.E. Hardin, E.T. Hoke, P.B. Armstrong, J.-H. Yum, P. Comte, T. Torres, J.M.J. Frechet, M.K. Nazeeruddin, M. Gratzel, M.D. McGehee, Increased light harvesting in dye-sensitized solar cells with energy relay dyes, Nat Photon,3 (2009) 406-411.
    [83]P. Brown, P.V. Kamat, Quantum Dot Solar Cells. Electrophoretic Deposition of CdSe-C60 Composite Films and Capture of Photogenerated Electrons with nC6o Cluster Shell, J. Am. Chem. Soc,130 (2008) 8890-8891.
    [84]L.M. Peter, K.G.U. Wijayantha, D.J. Riley, J.P. Waggett, Band-Edge Tuning in Self-Assembled Layers of Bi2S3 Nanoparticles Used To Photosensitize Nanocrystalline TiO2, J. Phys. Chem. B,107 (2003) 8378-8381.
    [85]J.D. Holbrey, K.R. Seddon, Ionic Liquids, Clean Technologies and Environmental Policy,1 (1999) 223-236.
    [86]D. Gebeyehu, C.J. Brabec, N.S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger, H. Schindler, Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials, Synthetic Metals,125 (2001) 279-287.
    [87]G.R.R.A. Kumara, A. Konno, G.K.R. Senadeera, P.V.V. Jayaweera, D.B.R.A. De Silva, K. Tennakone, Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide, Sol. Energy Mater. Sol. Cells,69 (2001) 195-199.
    [88]P. Falaras, G. Katsaros, T. Stergiopoulos, I.M. Arabatzis, K.G. Papadokostaki, A solvent-free composite polymer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells, J Photoch Photobio A,149 (2002) 191-198.
    [89]P. Falaras, T. Stergiopoulos, I.M. Arabatzis, G. Katsaros, Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells, Nano Lett.,2 (2002) 1259-1261.
    [90]G.R.A. Kumara, S. Kaneko, M. Okuya, K. Tennakone, Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate as a Cul Crystal Growth Inhibitor, Langmuir,18 (2002) 10493-10495.
    [91]G.R.A. Kumara, A. Konno, K. Shiratsuchi, J. Tsukahara, K. Tennakone, Dye-Sensitized Solid-State Solar Cellsi:(?) Use of Crystal Growth Inhibitors for Deposition of the Hole Collector, Chemistry of Materials,14 (2002) 954-955.
    [92]M.A. De Paoli, A.F. Nogueira, C. Longo, Polymers in dye sensitized solar cells: overview and perspectives, Coordin Chem Rev,248 (2004) 1455-1468.
    [93]YJ. Kim, J.H. Kim, M.S. Kang, M.J. Lee, J. Won, J.C. Lee, Y.S. Kang, Supramolecular electrolytes for use in highly efficient dye-sensitized solar cells, Adv Mater,16 (2004) 1753-1757.
    [94]S. Sakaguchi, H. Ueki, T. Kato, T. Kado, R. Shiratuchi, W. Takashima, K. Kaneto, S. Hayase, Quasi-solid dye sensitized solar cells solidified with chemically cross-linked gelators:Control of TiO2/gel electrolytes and counter Pt/gel electrolytes interfaces, Journal of Photochemistry and Photobiology A:Chemistry,164 (2004) 117-122.
    [95]H.W. Han, W. Liu, J. Zhang, X.Z. Zhao, A Hybrid Polyethylene oxide)/ Poly(vinylidene fluoride)/TiO2 Nanoparticle Solid-State Redox Electrolyte for Dye-Sensitized Nanocrystalline Solar Cells, Adv Funct Mater,15 (2005) 1940-1944.
    [96]X. Pan, S.Y. Dai, K.J. Wang, C.W. Shi, L. Guo, Development and application of electrolyte based on ionic liquid in dye-sensitized solar cells, Acta Phys-Chim Sin,21 (2005) 697-702.
    [97]Q. Dai, D.B. Menzies, D.R. MacFarlane, S.R. Batten, S. Forsyth, L. Spiccia, Y.B. Cheng, M. Forsyth, Dye-sensitized nanocrystalline solar cells incorporating ethylmethylimidazolium-based ionic liquid electrolytes, Cr Chim,9 (2006) 617-621.
    [98]V. Jovanovski, E. Stathatos, B. Orel, P. Lianos, Dye-sensitized solar cells with electrolyte based on a trimethoxysilane-derivatized ionic liquid, Thin Solid Films,511 (2006) 634-637.
    [99]V.C. Nogueira, C. Longo, A.F. Nogueira, M.A. Soto-Oviedo, M.A. De Paoli, Solid-state dye-sensitized solar cell:Improved performance and stability using a plasticized polymer electrolyte, J Photoch Photobio A,181 (2006) 226-232.
    [100]J.H. Wu, Z. Lan, D.B. Wang, S.C. Hao, J.M. Lin, Y.L Wei, S. Yin, T. Sato, Quasi-solid state dye-sensitized solar cells-based gel polymer electrolytes with poly(acrylamide)-poly(ethylene glycol) composite, J Photoch Photobio A,181 (2006) 333-337.
    [101]Y.Y. Xia, X. Zhang, H. Yang, H.M. Xiong, F.Y. Li, A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte, J Power Sources,160 (2006) 1451-1455.
    [102]X.Z. Zhao, J. Zhang, H.W. Han, S.J. Wu, S. Xu, Y. Yang, C.H. Zhou, Conductive carbon nanoparticles hybrid PEO/P(VDF-HFP)/SiO2 nanocomposite polymer electrolyte type dye sensitized solar cells, Solid State Ionics,178 (2007) 1595-1601.
    [103]S.A. Cerneaux, S.M. Zakeeruddin, M. Gratzel, Y.B. Cheng, L. Spiccia, New functional triethoxysilanes as iodide sources for dye-sensitized solar cells, J Photoch Photobio A,198 (2008) 186-191.
    [104]C.W. Shi, Q. Ge, B. Li, L. Tao, Q.A. Liu, Influence of Additives on the Performance of Electrolytes in Bye-Sensitized Solar Cells, Acta Phys-Chim Sin,24 (2008) 2327-2330.
    [105]C.M. Chen, H.S. Shiu, S.J. Cheng, T.C. Wei, Preparation of polymer film of micro-porous or island-like structure and its application in dye-sensitized solar cell, J Power Sources,188 (2009) 319-322.
    [106]C.P. Lee, K.M. Lee, P.Y. Chen, K.C. Ho, On the addition of conducting ceramic nanoparticles in solvent-free ionic liquid electrolyte for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells,93 (2009) 1411-1416.
    [107]S. Rani, R.M. Mehra, ZnO solid-state dye sensitized solar cells using composite electrolyte of poly(3-hexylthiophene-2,5-diyl) and carbon nanotubes, J Renew Sustain Ener,1(2009) 003109.
    [108]G. Vijayakumar, M.J. Lee, M. Song, S.H. Jin, J.W. Lee, C.W. Lee, Y.S. Gal, H.J. Shim, Y. Kang, G.W. Lee, K. Kim, N.G. Park, S. Kim, New Liquid Crystal-Embedded PVdF-co-HFP-Based Polymer Electrolytes for Dye-Sensitized Solar Cell Applications, Macromol Res,17 (2009) 963-968.
    [109]S. Yanagida, Y.H. Yu, K. Manseki, lodine/lodide-Free Dye-Sensitized Solar Cells, Accounts of Chemical Research,42 (2009) 1827-1838.
    [110]P. Balraju, M. Kumar, Y.S. Deol, M.S. Roy, G.D. Sharma, Photovoltaic performance of quasi-solid state dye sensitized solar cells based on perylene dye and modified TiO2 photo-electrode, Synthetic Metals,160 (2010) 127-133.
    [111]M.-J. Kim, C.-R. Lee, W.-S. Jeong, J.-H. Im, T.I. Ryu, N.-G. Park, Unusual Enhancement of Photocurrent by Incorporation of Bronsted Base Thiourea into Electrolyte of Dye-Sensitized Solar Cell, J. Phys. Chem. C,114 (2010) 19849-19852.
    [112]C.P. Lee, P.Y. Chen, R. Vittal, K.C. Ho, Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black, J Mater Chem,20 (2010) 2356-2361.
    [113]L. Tao, Y.Z. Yang, C.W. Shi, Y.C. Wu, X.Y. Wu, Improved Preparation of Benzothiazolium Iodides and Their Application in Dye Sensitized Solar Cells, Acta Phys-Chim Sin,26 (2010) 578-582.
    [114]Z. Yu, M. Gorlov, G. Boschloo, L. Kloo, Synergistic Effect of N-Methylbenzimidazole and Guanidinium Thiocyanate on the Performance of Dye-Sensitized Solar Cells Based on Ionic Liquid Electrolytes, J. Phys. Chem. C,114 (2010) 22330-22337.
    [115]Y. Bai, J. Zhang, Y. Wang, M. Zhang, P. Wang, Lithium-Modulated Conduction Band Edge Shifts and Charge-Transfer Dynamics in Dye-Sensitized Solar Cells Based on a Dicyanamide Ionic Liquid, Langmuir, (2011).
    [116]S. Jeon, Y. Jo, K.-J. Kim, Y. Jun, C.-H. Han, High Performance Dye-Sensitized Solar Cells with Alkylpyridinium Iodide Salts in Electrolytes, ACS Appl. Mater. Interfaces,3 (2011) 512-516.
    [117]K.K.S. Lau, S. Nejati, Pore Filling of Nanostructured Electrodes in Dye Sensitized Solar Cells by Initiated Chemical Vapor Deposition, Nano Lett.,11 (2011) 419-423.
    [118]P.K. Singh, R.K. Nagarale, S.P. Pandey, H.W. Rhee, B. Bhattacharya, Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes, Adv. Nat. Sci.:Nanosci. Nanotechnol.,2 (2011) 023002.
    [119]W. Zhang, Y. Cheng, X. Yin, B. Liu, Solid-State Dye-Sensitized Solar Cells with Conjugated Polymers as Hole-Transporting Materials, Macromolecular Chemistry and Physics,212 (2011) 15-23.
    [120]W. Zhang, R. Zhu, F. Li, Q. Wang, B. Liu, High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter, J. Phys. Chem. C, (2011)
    [121]G. Oskam, B.V. Bergeron, G.J. Meyer, P.C. Searson, Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells, J. Phys. Chem. B,105 (2001) 6867-6873.
    [122]T. Daeneke, T.-H. Kwon, A.B. Holmes, N.W. Duffy, U. Bach, L. Spiccia, High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes, Nat Chem, 3 (2011) 211-215.
    [123]P. Wang, S.M. Zakeeruddin, P. Comte, I. Exnar, M. Gratzel, Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Sol id-State Dye-Sensitized Solar Cells, J. Am. Chem. Soc.,125 (2003) 1166-1167.
    [124]G.P. Kalaignan, M.-S. Kang, Y.S. kang, Effects of compositions on properties of PEO-KI-I2 salts polymer electrolytes for DSSC, Solid State Ionics,177 (2006) 1091-1097.
    [125]P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M. Gr tzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nat Mater,2 (2003) 402-407.
    [126]S. Yanagida, W. Kubo, K. Murakoshi, T. Kitamura, Y. Wada, K. Hanabusa, H. Shirai, Fabrication of quasi-solid-state dye-sensitized TiO2 solar cells using low molecular weight gelators, Chemistry Letters, (1998) 1241-1242.
    [127]S. Yanagida, W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine, J. Phys. Chem. B,105 (2001) 12809-12815.
    [128]S. Yanagida, W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes, J. Phys. Chem. B,107 (2003) 4374-4381.
    [129]H.W. Schmidt, N. Mohmeyer, P. Wang, S.M. Zakeeruddin, M. Gratzel, Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-O-benzylidene-D-sorbitol derivatives as low molecular weight organic gelators, J Mater Chem,14 (2004) 1905-1909.
    [130]X.Z. Zhao, J. Zhang, Y. Yang, S.J. Wu, S. Xu, C.H. Zhou, H. Hu, B.L. Chen, X.D. Xiong, B. Sebo, H.W. Han, End-functional silicone coupling agent modified PEO/P(VDF-HFP)/SiO2 nanocomposite polymer electrolyte DSSC, Nanotechnology,19 (2008).
    [131]M. Gratzel, The artificial leaf, molecular photovoltaics achieve efficient generation of electricity from sunlight, Coordin Chem Rev,111 (1991) 167-174.
    [132]A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochim. Acta,46 (2001) 3457-3466.
    [133]M. Gratzel, T.N. Murakami, Counter electrodes for DSC:Application of functional materials as catalysts, Inorg Chim Acta,361 (2008) 572-580.
    [134]N. Papageorgiou, W.F. Maier, M. Gratzel, An lodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media, J. Electrochem. Soc.,144 (1997) 876-884.
    [135]M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho, M. Gratzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc.,127 (2005) 16835-16847.
    [136]Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%, Jpn J Appl Phys,45 (2006) L638.
    [137]C.Y. Chen, M.K. Wang, J.Y. Li, N. Pootrakulchote, L. Alibabaei, C.H. Ngoc-le, J.D. Decoppet, J.H. Tsai, C. Gratzel, C.G. Wu, S.M. Zakeeruddin, M. Gratzel, Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells, ACS Nano,3 (2009) 3103-3109.
    [138]E. Olsen, G. Hagen, S. Eric Lindquist, Dissolution of platinum in methoxy propionitrile containing Lil/I2, Sol. Energy Mater. Sol. Cells,63 (2000) 267-273.
    [139]Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, I-/I3-redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells, J Photoch Photobio A,164 (2004) 153-157.
    [140]Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin, L. Fan, Application of microporous polyaniline counter electrode for dye-sensitized solar cells, Electrochem. Commun., 10 (2008) 1299-1302.
    [141]H.C. Sun, Y.H. Luo, Y.D. Zhang, D.M. Li, Z.X. Yu, K.X. Li, Q.B. Meng, In Situ Preparation of a Flexible Polyaniline/Carbon Composite Counter Electrode and Its Application in Dye-Sensitized Solar Cells, J. Phys. Chem. C,114 (2010) 11673-11679.
    [142]J. Zhang, T. Hreid, X. Li, W. Guo, L. Wang, X. Shi, H. Su, Z. Yuan, Nanostructured polyaniline counter electrode for dye-sensitised solar cells:Fabrication and investigation of its electrochemical formation mechanism, Electrochim. Acta,55 (2010) 3664-3668.
    [143]Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo, X.-Z. Zhao, In Situ Prepared Transparent Polyaniline Electrode and Its Application in Bifacial Dye-Sensitized Solar Cells, ACS Nano,5 (2011) 3795-3799.
    [144]J. Ko, S.S. Jeon, C. Kim, S.S. Im, Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells, J Mater Chem,21 (2011) 8146-8151.
    [145]A. Kay, M. Gratzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Sol. Energy Mater. Sol. Cells,44 (1996) 99-117.
    [146]H.W. Han, U. Bach, Y.B. Cheng, R.A. Caruso, C. MacRae, A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode, Appl. Phys. Lett.,94 (2009) 103102.
    [147]K.X. Li, Y.H. Luo, Z.X. Yu, M.H. Deng, D.M. Li, Q.B. Meng, Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells, Electrochem. Commun.,11 (2009) 1346-1349.
    [148]P.J. Li, J.H. Wu, J.M. Lin, M.L. Huang, Y.F. Huang, Q.G. Li, High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells, Sol Energy,83 (2009) 845-849.
    [149]P. Joshi, Y. Xie, M. Ropp, D. Galipeau, S. Bailey, Q.Q. Qiao, Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode, Energ Environ Sci,2 (2009) 426-429.
    [150]T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, M. Gratzel, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes, J. Electrochem. Soc.,153 (2006) A2255-A2261.
    [151]K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells, Chemistry Letters,32 (2003) 28-29.
    [152]J. Han, H. Kim, D.Y. Kim, S.M. Jo, S.Y. Jang, Water-Soluble Polyelectrolyte-Grafted Multiwalled Carbon Nanotube Thin Films for Efficient Counter Electrode of Dye-Sensitized Sotar Cells, ACS Nano,4 (2010) 3503-3509.
    [153]Z. Hongwei, et al., Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes, Nanotechnology,19 (2008) 465204.
    [154]E. Ramasamy, WJ. Lee, D.Y. Lee, J.S. Song, Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3-)) reduction in dye-sensitized solar cells, Electrochem. Commun.,10 (2008) 1087-1089.
    [155]J.E. Trancik, S.C. Barton, J. Hone, Transparent and catalytic carbon nanotube films, Nano Lett.,8 (2008) 982-987.
    [156]C.S. Chou, R.Y. Yang, M.H. Weng, C.I. Huang, The applicability of SWCNT on the counter electrode for the dye-sensitized solar cell, Adv Powder Technol,20 (2009) 310-317.
    [157]W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, Efficient Dye-Sensitized Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes, ACS Appl. Mater. Interfaces, 1 (2009) 1145-1149.
    [158]S. Pimanpang, W. Maiaugree, W. Jarernboon, S. Maensiri, V. Amornkitbamrung, Influences of magnesium particles incorporated on electrophoretically multiwall carbon nanotube film on dye-sensitized solar cell performance, Synthetic Metals,159 (2009) 1996-2000.
    [159]H.J. Choi, J.E. Shin, G.W. Lee, N.G. Park, K. Kim, S.C. Hong, Effect of surface modification of multi-walled carbon nanotubes on the fabrication and performance of carbon nanotube based counter electrodes for dye-sensitized solar cells, Curr Appl Phys,10 (2010) S165-S167.
    [160]K.C. Huang, Y.C. Wang, R.X. Dong, W.C. Tsai, K.W. Tsai, C.C. Wang, Y.H. Chen, R. Vittal, J.J. Lin, K.C. Ho, A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode, J Mater Chem,20 (2010) 4067-4073.
    [161]S.U. Lee, W.S. Choi, B. Hong, A comparative study of dye-sensitized solar cells added carbon nanotubes to electrolyte and counter electrodes, Sol. Energy Mater. Sol. Cells,94 (2010) 680-685.
    [162]J.G. Nam, Y.J. Park, B.S. Kim, J.S. Lee, Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode, Scripta Mater,62 (2010) 148-150.
    [163]R.A. Sayer, S.L. Hodson, T.S. Fisher, Improved Efficiency of Dye-Sensitized Solar Cells Using a Vertically Aligned Carbon Nanotube Counter Electrode, J Sol Energ-T Asme,132 (2010)-
    [164]D.W. Zhang, X.D. Li, S. Chen, F. Tao, Z. Sun, X.J. Yin, S.M. Huang, Fabrication of double-walled carbon nanotube counter electrodes for dye-sensitized solar sells, J Solid State Electr,14 (2010) 1541-1546.
    [165]G. Wang, W. Xing, S. Zhuo, Application of mesoporous carbon to counter electrode for dye-sensitized solar cells, J Power Sources,194 (2009) 568-573.
    [166]F.S. Cai, J. Liang, Z.H. Tao, J. Chen, R.S. Xu, Low-Pt-loading acetylene-black cathode for high-efficient dye-sensitized solar cells, J Power Sources,177 (2008) 631-636.
    [167]X. Wang, L. Zhi, K. Mullen, Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells, Nano Lett.,8 (2007) 323-327.
    [168]M.A. Worsley, T.Y. Olson, J.R.I. Lee, T.M. Willey, M.H. Nielsen, S.K. Roberts, P.J. Pauzauskie, J. Biener, J.H. Satcher, T.F. Baumann, High Surface Area, sp2-Cross-Linked Three-Dimensional Graphene Monoliths, The Journal of Physical Chemistry Letters,2 (2011) 921-925.
    [169]N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells, ACS Nano,4 (2010) 887-894.
    [170]S. Chengwu, D. Songyuan, W. Kongjia, P. Xu, G. Li, Z. Longyue, H. Linhua, K. Fantai, Influence of l-methyl-3-propylimidazolium iodide on I3-/I- redox behavior and photovoltaic performance of dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 86 (2005) 527-535.
    [171]T. Welton, Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chem. Rev.,99 (1999) 2071-2084.
    [172]P. Bonhote, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Hydrophobic, Highly Conductive Ambient-Temperature Molten Saltst, Inorg. Chem., 35 (1996) 1168-1178.
    [173]M. Poliakoff, P. Anastas, A principled stance, Nature,413 (2001) 257-257.
    [174]M. Poliakoff, J.M. Fitzpatrick, T.R. Farren, P.T. Anastas, Green chemistry:Science and politics of change, Science,297 (2002) 807-810.
    [175]J.A. Dahl, B.L.S. Maddux, J.E. Hutchison, Toward greener nanosynthesis, Chem. Rev.,107 (2007) 2228-2269.
    [176]T.K. Sau, A. Pal, T. Pal, Size regime dependent catalysis by gold nanoparticles for the reduction of eosin, J. Phys. Chem. B,105 (2001) 9266-9272.
    [177]J.J. Storhoff, C.A. Mirkin, Programmed materials synthesis with DNA, Chem. Rev.,99 (1999) 1849-1862.
    [178]Schon.G., Simon.U., A fascinating new field in colloid science:small ligand-stabilized metal clusters and possible application in microelectronics, Colloid & Polymer Science,273 (1995) 101-117.
    [179]C. Collier, R. Saykally, J. Shiang, S. Henrichs, J. Heath, Reversible tuning of silver quantum dot monolayers through the metal-insulator transition, Science,277 (1997) 1978.
    [180]A. Creighton.J, B.C. G, G. Albrecht.M, Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength, Journal of the Chemical Society, Faraday Transactions 2,75 (1979) 790-798.
    [181]P. Lee, D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols, J. Phys. Chem,86 (1982) 3391-3395.
    [182]S. Ayyappan, R. Gopalan, G. Subbanna, C. Rao, Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts, Journal of Materials Research,12 (1997) 398-401.
    [183]P. Raveendran, J. Fu, S.L. Wallen, Completely "green" synthesis and stabilization of metal nanoparticles, J. Am. Chem. Soc.,125 (2003) 13940-13941.
    [184]C. Engelbrekt, K.H. Sorensen, J.D. Zhang, A.C. Welinder, P.S. Jensen, J. Ulstrup, Green synthesis of gold nanoparticles with starch-glucose and application in bioelectrochemistry, J Mater Chem,19 (2009) 7839-7847.
    [185]B. Baruwati, V. Polshettiwar, R.S. Varma, Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves, Green Chem,11 (2009) 926-930.
    [186]M.N. Nadagouda, R.S. Varma, Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2:density-assisted self-assembly of nanospheres, wires and rods, Green Chem,8 (2006) 516-518.
    [187]W. Yang, X. Wang, F. Yang, C. Yang, X. Yang, Carbon Nanotubes Decorated with Pt Nanocubes by a Noncovalent Functionalization Method and Their Role in Oxygen Reduction, Adv Mater,20 (2008) 2579-2587.
    [188]H. Ye, R.M. Crooks, Electrocatalytic 02 Reduction at Glassy Carbon Electrodes Modified with Dendrimer-Encapsulated Pt Nanoparticles, J. Am. Chem. Soc.,127 (2005) 4930-4934.
    [189]E.B. Bustos, M.G.G. Jimenez, B.R. Diaz-Sanchez, E. Juaristi, T.W. Chapman, L.A. Godinez, Glassy carbon electrodes modified with composites of starburst-PAMAM dendrimers containing metal nanoparticles for amperometric detection of dopamine in urine, Talanta,72 (2007) 1586-1592.
    [190]Z.-Q. Tian, Z.-L. Yang, B. Ren, J.-F. Li, Y. Zhang, X.-F. Lin, J.-W. Hu, D.-Y. Wu, Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape, Faraday Discussions,132 (2006) 159-170.
    [191]K. Benaissi, L. Johnson, D.A. Walsh, W. Thielemans, Synthesis of platinum nanoparticles using cellulosic reducing agents, Green Chem,12 (2010) 220-222.
    [192]Y. Shin, I.T. Bae, G.J. Exarhos, "Green" approach for self-assembly of platinum nanoparticles into nanowires in aqueous glucose solutions, Colloids and Surfaces a-Physicochemical and Engineering Aspects,348 (2009) 191-195.
    [193]C.H. Yoon, R. Vittal, J. Lee, W.S. Chae, K.J. Kim, Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode, Electrochim. Acta,53 (2008) 2890-2896.
    [194]H.C. Gaur, H.L Jindal, Standard electrode potentials in molten chlorides, Electrochim. Acta,13 (1968) 835-842.
    [195]H.C. Gaur, H.L. Jindal, Standard electrode potentials in molten chlorides--Ⅱ, Electrochim. Acta,15 (1970) 1113-1126.
    [196]K. Philippot, B. Chaudret, Organometallic approach to the synthesis and surface reactivity of noble metal nanoparticles, Cr Chim,6 (2003) 1019-1034.
    [197]I. Capek, Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions, Advances in Colloid and Interface Science,110 (2004) 49-74.
    [198]L.Y. Han, N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui, R. Yamanaka, Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance, Appl. Phys. Lett.,86 (2005) 213501.
    [199]K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata, High-performance carbon counter electrode for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells,79 (2003) 459-469.
    [200]J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, I.A. Aksay, Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells, ACS Nano,4 (2010) 6203-6211.
    [201]A. Goyal, M. Mohl, A. Kumar, R. Puskas, A. Kukovecz, Z. Konya, I. Kiricsi, P.M. Ajayan, In situ synthesis of catalytic metal nanoparticle-PDMS membranes by thermal decomposition process, Compos Sci Technol,71 (2011) 129-133.
    [202]X.Z. Zhao, C.H. Zhou, H. Hu, Y. Yang, B.L. Chen, J. Zhang, S.J. Wu, S. Xu, X.D. Xiong, H.W. Han, Effect of thickness on structural, electrical, and electrochemical properties of platinum/titanium bilayer counterelectrode, J Appl Phys,104 (2008) 034910.
    [203]J. Kroon, N. Bakker, H. Smit, P. Liska, K. Thampi, P. Wang, S. Zakeeruddin, M. Gratzel, A. Hinsch, S. Hore, Nanocrystalline dye-sensitized solar cells having maximum performance, Prog Photovoltaics,15 (2007) 1-18.
    [204]Q. Wang, J.E. Moser, M. Gratzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells, J. Phys. Chem. B,109 (2005) 14945-14953.
    [205]M. Adachi, M. Sakamoto, J.T. Jiu, Y. Ogata, S. Isoda, Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy, J. Phys. Chem. B,110 (2006) 13872-13880.
    [206]G. Veerappan, K. Bojan, S.-W. Rhee, Sub-micrometer-sized Graphite As a Conducting and Catalytic Counter Electrode for Dye-sensitized Solar Cells, ACS Appl. Mater. Interfaces,3 (2011) 857-862.
    [207]P. Wang, C. Klein, R. Humphry-Baker, S.M. Zakeeruddin, M. Gratzel, Stable>= 8%efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility, Appl. Phys. Lett.,86 (2005) 123508.
    [208]N. Matuda, S. Baba, A. Kinbara, Internal stress, young's modulus and adhesion energy of carbon films on glass substrates, Thin Solid Films,81 (1981) 301-305.
    [209]H. Lindstrom, A. Holmberg, E. Magnusson, S.-E. Lindquist, L. Malmqvist, A. Hagfeldt, A New Method for Manufacturing Nanostructured Electrodes on Plastic Substrates, Nano Lett.,1 (2001) 97-100.
    [210]H. Sakane, T. Mitsui, H. Tanida, I. Watanabe, XAFS analysis of triiodide ion in solutions, J. Synchrotron. Radiat.,8 (2001) 674-676.
    [211]M.S. Shuman, Nonunity electrode reaction orders and stationary electrode polarography, Anal. Chem.,41 (1969) 142-146.
    [212]Y. Huang, S.Y. Dai, S.H. Chen, C.N. Zhang, Y.F. Sui, S.F. Xiao, L.H. Hu, Theoretical modeling of the series resistance effect on dye-sensitized solar cell performance, Appl. Phys. Lett.,95 (2009)-.
    [213]A.K. Geim, K.S. Novoselov, The rise of graphene, Nat.Mater,6 (2007) 183-191.
    [214]C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science,321 (2008) 385-388.
    [215]X.L. Li, G.Y. Zhang, X.D. Bai, X.M. Sun, X.R. Wang, E. Wang, H.J. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films, Nature Nanotechnology,3 (2008) 538-542.
    [216]C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets, Nano Lett.,7 (2007) 3499-3503.
    [217]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
    [218]C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science,321 (2008) 385-388.
    [219]G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nature Nanotechnology,3(2008) 270-274.
    [220]S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, Graphene-based electrochemical supercapacitors, J. Chem. Sci.,120 (2008) 9-13.
    [221]E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett.,8 (2008) 2277-2282.
    [222]A. Vollmer, X.L. Feng, X. Wang, L.J. Zhi, K. Mullen, N. Koch, J.P. Rabe, Electronic and structural properties of graphene-based transparent and conductive thin film electrodes, Appl Phys a-Mater,94 (2009) 1-4.
    [223]X. Wang, L.J. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett.,8 (2008) 323-327.
    [224]P.W. Sutter, J.I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium, Nat.Mater,7 (2008) 406-411.
    [225]Z.H. Tang, S.L. Shen, J. Zhuang, X. Wang, Noble-Metal-Promoted Three-Dimensional Macroassembly of Single-Layered Graphene Oxide, Angew. Chem.-Int. Edit.,49 (2010) 4603-4607.
    [226]F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat.Mater, 6 (2007) 652-655.
    [227]Y.Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y.H. Lin, Graphene Based Electrochemical Sensors and Biosensors:A Review, Electroanalysis,22 (2010) 1027-1036.
    [228]J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, B.H. Weiller, Practical Chemical Sensors from Chemically Derived Graphene, ACS Nano,3 (2009) 301-306.
    [229]T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud'homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites, Nature Nanotechnology,3 (2008) 327-331.
    [230]S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature,442 (2006) 282-286.
    [231]R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, J.A. de Saja, M.A. Lopez-Manchado, Functionalized graphene sheet filled silicone foam nanocomposites, J.Mater.Chem,18 (2008) 2221-2226.
    [232]L.J. Cote, R. Cruz-Silva, J.X. Huang, Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite, J. Am. Chem. Soc.,131 (2009) 11027-11032.
    [233]J.L. Vickery, A.J. Patil, S. Mann, Fabrication of Graphene-Polymer Nanocomposites With Higher-Order Three-Dimensional Architectures, Adv.Mater,21 (2009) 2180-2184.
    [234]F. Liu, T.S. Seo, A Controllable Self-Assembly Method for Large-Scale Synthesis of Graphene Sponges and Free-Standing Graphene Films, Adv.Funct.Mater,20 (2010) 1930-1936.
    [235]J. Wang, M.W. Ellsworth, Graphene Aerogels, in:Y. Obeng, S. DeGendt, P. Srinivasan, D. Misra, H. Iwai, Z. Karim, D.W. Hess, H. Grebel (Eds.) Graphene and Emerging Materials for Post-Cmos Applications, Electrochemical Society Inc, Pennington,2009, pp.241-247.
    [236]Y.X. Xu, K.X. Sheng, C. Li, G.Q. Shi, Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process, ACS Nano,4 (2010) 4324-4330.
    [237]S.Z. Zu, B.H. Han, Aqueous Dispersion of Graphene Sheets Stabilized by Pluronic Copolymers:Formation of Supramolecular Hydrogel, J. Phys. Chem. C,113 (2009) 13651-13657.
    [238]Z.S. Wu, W.C. Ren, L.B. Gao, J.P. Zhao, Z.P. Chen, B.L. Liu, D.M. Tang, B. Yu, C.B. Jiang, H.M. Cheng, Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation, ACS Nano,3 (2009) 411-417.
    [239]W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339.
    [240]A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon,39 (2001) 507-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700