用户名: 密码: 验证码:
石墨烯及衍生物的功能化修饰与复合材料的制备及应用探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯具有独特的二维结构以及优异的物理化学性质,2004年被发现以来迅速成为了纳米领域研究的热点,石墨烯及其衍生物在表面化学改性和化学能量存储方面的研究吸引了越来越多的关注。
     本研究利用石墨烯片层的化学稳定性,使用自由基加成的方法将对苯磺酸基团通过共价键接载在石墨烯片层表面,并首次作为石墨烯基固体酸催化剂进行水解反应的探索。分析结果显示,磺酸根均匀地分布在石墨烯片层表面,磺酸根浓度达到2.0mmol g–1。在作为固体酸催化水解反应中时,磺酸化石墨烯具有64%的转化率,接近浓硫酸的催化活性。同时,该固体酸具有可重复利用的优点,五次回收复用之后催化活性未发生改变。此外,通过将磺酸化石墨烯上的磺酸根还原为巯基,得到了巯基化石墨烯,利用巯基和贵金属/金属氧化物之间的强相互作用力,首次通过简单混合即可制备得到不同金属/金属氧化物-石墨烯复合材料。
     以泡沫镍为模板,通过化学气相沉积(CVD)法合成出具有三维结构的泡沫石墨,该新型三维材料具有电导率高、热导率高,质量轻等特点,在能量存储方面具有广阔的应用前景。以泡沫石墨为模板,通过简单滴加涂布的方式将包裹有石墨烯的纳米硅颗粒均匀地负载在泡沫石墨上得到三维复合材料。该复合材料能够直接用于锂离子电池负极,具有983mAh g–1的总质量比容量,是目前商业化石墨锂电池负极(244mAh g–1)的四倍。该方法制备方式简单,可规模化生产,具有替代当前电池负极材料的前景。
     通过水热反应得到氢氧化镍/泡沫石墨复合材料,氢氧化镍由厚度为20nm左右的纳米片层自主装成多孔薄膜结构。泡沫石墨能够有效提高复合材料的电子传输能力,而氢氧化镍纳米多孔结构能有效降低离子在材料中的传输距离,提高活性材料利用率。将氢氧化镍/泡沫石墨复合材料组装成为非对称超级电容器,体现出与当前先进商业化超级电容器相当的能量密度(6.9Wh kg–1)以及更加优异的功率密度(44.0kW kg–1)。该氢氧化镍/泡沫石墨复合材料制备方式简单,易于大规模生产,有望成为商业化新型超级电容器电极。
Graphene, a two dimensional carbon material with high electrical conductivity, superiormechanical flexibility and low density, has aroused an increasing interest in the field ofnanomaterials research. Graphene and its derivants attract immense attentions in the applicationsof heterogeneous catalysis and energy storage.
     To Utilize the advantages of the excellent chemical stability and large surface area ofgraphene, a strategy of covalently attachment of sulfonic acid-containing aryl radicals ongraphene surface is explored. The–SO3H group is uniformly dispersed on the surface ofsulfonated graphene with a loading density of2.0mmol g–1. When testing the sulfonatedgraphene as a solid acid catalyst, a conversion rate of64%in hydrolysis reaction is achieved.The catalytic activity is comparable with the concentrated sulfuric acid. Meanwhile, the catalystexhibites excellent reuse stability, and the conversion rate remains unchanged after5runs. Onthe other hand, by reducing the–SO3H group to–SH group, sulfhydrylated graphene is obtained.Taken advantage of the strong bonding between–SH group and metal/metal oxide nanoparticles,metal-graphene composite can be easily obtained by simply mixing the pre-prepared metal/metaloxide nanoparticles solution and sulfhydrylated graphene solution.
     A three-demensional (3D) ultrathin-graphite foam (UGF) can be prepared via chemicalvaper deposition (CVD) method. The ultrathin-graphite foam provides a three-dimensionalinterconnected network with high electrical conductivity, high thermal conductivity and lowweight, which can be used as energy storage material. A Si/graphene composite is drop-casted onan ultrathin-graphite foam, forming a Si electrode with3D network. The Si/graphene/UGFelectrode has a high overall gravimetric capacity of983mAh g–1when acting as a lithium ionbattery anode electrode, which is4times as high as graphite anode commercially used (244mAhg–1). The simple preparation may be industrially scalable, suggesting that the Si/graphene/UGFelectrode is an attractive candidate for replacing the traditional flat electrode of commercial LIBs.
     Nanoporous nickel hydroxide (Ni(OH)2) thin film is grown on the surface of ultrathin-graphite foam (UGF) via a hydrothermal reaction. The resulting free-standing Ni(OH)2/UGFcomposite is used as the electrode in a supercapacitor without the need of additional binder ormetal-based current collector. The highly conductive3D UGF network facilitates electrontransport and the porous Ni(OH)2thin film structure shortens ion diffusion paths and facilitates the rapid migration of electrolyte ions. An fully packaged asymmetric supercapacitor constitutewith Ni(OH)2/UGF electrode shows a higher (2to27times higher) power density (44.0kW kg–1)and a comparable energy density (6.9Wh kg–1), when comparing with the high-endcommercially available supercapacitors. This simple and cost-effective synthetic method can beapplied to other electroactive materials and offers promise for high power energy storage.
引文
[1] Kroto H. W., Heath J. R., O'Brien S. C., et al., C60: Buckminsterfullerene, Nature,1985,318(6042):162-163.
    [2] Iijima. S., Helical microtubules of graphitic carbon, Nature,1991,354(6348):56-58.
    [3] Novoselov K. S., Geim A. K., Morozov S. V., et al., Electric field effect in atomicallythin carbon films, Science,2004,306(5296):666-669.
    [4] Geim A. K., Novoselov K. S., The rise of graphene, Nature Materials,2007,6(3):183-191.
    [5] Peierls R. E., Quelques proprietes typiques des corpses solides, Ann. Inst. Henri.Poincare,1935,5:177-222.
    [6] Landau L. D., Zur theorie der phasenumwandlungen ii, Phys. Z. Sowjetunion,1937,11:26-37.
    [7] Wallace P. R., The band theory of graphite, Physical Review,1947,71(9):622-634.
    [8] Mermin N. D., Wagner H., Absence of ferromagnetism or antiferromagnetism in one-or2-dimensional isotropic heisenberg models, Physical Review Letters,1966,17(22):1133-1136.
    [9] Lu X. K., Yu M. F., Huang H., et al., Tailoring graphite with the goal of achieving singlesheets, Nanotechnology,1999,10(3):269-272.
    [10] Zhang Y. B., Small J. P., Pontius W. V., et al., Fabrication and electric-field-dependenttransport measurements of mesoscopic graphite devices, Applied Physics Letters,2005,86(7):073103.
    [11] Meyer J. C., Geim A. K., Katsnelson M. I., et al., The structure of suspended graphenesheets, Nature,2007,446(7131):60-63.
    [12] Kim K. S., Zhao Y., Jang H., et al., Large-scale pattern growth of graphene films forstretchable transparent electrodes, Nature,2009,457(7230):706-710.
    [13] Bolotin K. I., Sikes K. J., Jiang Z., et al., Ultrahigh electron mobility in suspendedgraphene, Solid State Communications,2008,146(9):351-355.
    [14] Abergel D. S. L., Apalkov V., Berashevich J., et al., Properties of graphene: A theoreticalperspective, Advances in Physics,2010,59(4):261-482.
    [15] Novoselov K. S., Jiang Z., Zhang Y., et al., Room-temperature quantum hall effect ingraphene, Science,2007,315(5817):1379-1379.
    [16] Ishigami M., Chen J. H., Cullen W. G., et al., Atomic structure of graphene on SiO2,Nano Letters,2007,7(6):1643-1648.
    [17] Ren Y. J., Chen S. S., Cai W. W., et al., Controlling the electrical transport properties ofgraphene by in situ metal deposition, Applied Physics Letters,2010,97(5):053107-053103.
    [18] Wang X. R., Li X. L., Zhang L., et al., N-doping of graphene through electrothermalreactions with ammonia, Science,2009,324(5928):768-771.
    [19] Ohta T., Bostwick A., Seyller T., et al., Controlling the electronic structure of bilayergraphene, Science,2006,313(5789):951-954.
    [20] Nair; R. R., Blake; P., Grigorenko; A. N., et al., Fine Structure Constant Defines VisualTransparency of Graphene, Science,2008,320(5881):1308-1308.
    [21] Lee C., Wei X. D., Kysar J. W., et al., Measurement of the elastic properties and intrinsicstrength of monolayer graphene, Science,2008,321(5887):385-388.
    [22] Nika D. L., Pokatilov E. P., Askerov A. S., et al., Phonon thermal conduction in graphene:Role of umklapp and edge roughness scattering, Physical Review B,2009,79(15):155413.
    [23] Berber S., Kwon Y. K., Tomanek D., Unusually high thermal conductivity of carbonnanotubes, Physical Review Letters,2000,84(20):4613-4616.
    [24] Balandin A. A., Ghosh S., Bao W. Z., et al., Superior thermal conductivity of single-layergraphene, Nano Letters,2008,8(3):902-907.
    [25] Fasolino A., Los J. H., Katsnelson M. I., Intrinsic ripples in graphene, Nature Materials,2007,6(11):858-861.
    [26] Meyer J. C., Geim A. K., Katsnelson M. I., et al., On the roughness of single-and bi-layer graphene membranes, Solid State Communications,2007,143(1-2):101-109.
    [27] Bunch; J. S., Yaish; Y., Brink; M., et al., Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots, Nano Letters,2005,5(2):287-290.
    [28] Hernandez Y., Nicolosi V., Lotya M., et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nature Nanotechnology,2008,3(9):563-568.
    [29] Li X., Zhang G., Bai X., et al., Highly conducting graphene sheets and Langmuir–Blodgett films, Nature Nanotechnology,2008,3(9):538-542.
    [30] Li Z. C., Wu P., Wang C. X., et al., Low-Temperature Growth of Graphene by ChemicalVapor Deposition Using Solid and Liquid Carbon Sources, ACS Nano,2011,5(4):3385-3390.
    [31] Sun Z., Yan Z., Yao J., et al., Growth of graphene from solid carbon sources, Nature,2010,468(7323):549-552.
    [32] Somani P. R., Somani S. P., Umeno M., Planer nano-graphenes from camphor by CVD,Chemical Physics Letters,2006,430(1-3):56-59.
    [33] Reina A., Jia X. T., Ho J., et al., Large area, few-layer graphene films on arbitrarysubstrates by chemical vapor deposition, Nano Letters,2009,9(1):30-35.
    [34] Li X., Cai W., An J., et al., Large-Area Synthesis of High-Quality and Uniform GrapheneFilms on Copper Foils, Science,2009,324(5932):1312-1314.
    [35] Li X. S., Cai W. W., Colombo L., et al., Evolution of graphene growth on Ni and Cu bycarbon isotope labeling, Nano Letters,2009,9(12):4268-4272.
    [36] Bae S., K im H., Lee Y., et al., Roll-to-roll production of30-inch graphene films fortransparent electrodes, Nature Nanotechnology,2010,5(8):574-578.
    [37] Peckett J. W., Trens P., Gougeon R. D., et al., Electrochemically oxidised graphite.Characterisation and some ion exchange properties, Carbon,2000,38(3):345-353.
    [38] Hudson M. J., Hunter-Fujita F. R., Peckett J. W., et al., Electrochemically preparedcolloidal, oxidised graphite, Journal of Materials Chemistry,1997,7(2):301-305.
    [39] Hummers W. S., Offeman R. E., Preparation of graphite oxide, Journal of the AmericanChemical Society,1958,80(6):1339-1339.
    [40] Brodie B. C., On the atomic weight of graphite, The Royal Society of London,1859:249-259.
    [41] Staudenmaier L., Verfahren zur darstellung der graphits ure, Berichte der deutschenchemischen Gesellschaft,1899,31(2):1484-1487.
    [42] Stankovich S., Piner R. D., Chen X., et al., Stable aqueous dispersions of graphiticnanoplatelets via the reduction of exfoliated graphite oxide in the presence ofpoly(sodium4-styrenesulfonate), Journal of Materials Chemistry,2006,16(2):155-158.
    [43] Zhang L.-S., Wang W. D., Liang X.-Q., et al., Characterization of partially reducedgraphene oxide as room temperature sensor for H2, Nanoscale,2011,3(6):2458-2460.
    [44] Song P., Zhang X., Sun M., et al., Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide, RSC Advances,2012,2(3):1168-1173.
    [45] Li D., Müller M. B., Gilje S., et al., Processable aqueous dispersions of graphenenanosheets, Nature Nanotechnology,2008,3(2):101-105.
    [46] Kotov N. A., Dekany I., Fendler J. H., Ultrathin graphite oxide-polyelectrolytecomposites prepared by self-assembly: Transition between conductive and non-conductive states, Advanced Materials,1996,8(8):637-641.
    [47] Fan X., Peng W., Li Y., et al., Deoxygenation of Exfoliated Graphite Oxide underAlkaline Conditions: A Green Route to Graphene Preparation, Advanced Materials,2008,20(23):4490-4493.
    [48] Jiao L. Y., Zhang L., Wang X. R., et al., Narrow graphene nanoribbons from carbonnanotubes, Nature,2009,458(7240):877-880.
    [49] Li N., Wang Z., Zhao K., et al., Large scale synthesis of N-doped multi-layered graphenesheets by simple arc-discharge method, Carbon,2010,48(1):255-259.
    [50] Wu Z. S., Ren W. C., Gao L. B., et al., Synthesis of graphene sheets with high electricalconductivity and good thermal stability by hydrogen arc discharge exfoliation, ACS Nano,2009,3(2):411-417.
    [51] Chen Z., Ren W., Gao L., et al., Three-dimensional flexible and conductiveinterconnected graphene networks grown by chemical vapour deposition, NatureMaterials,2011,10:424-428.
    [52] Ji H., Zhang L., Pettes M. T., et al., Ultrathin Graphite Foam: A Three-DimensionalConductive Network for Battery Electrodes, Nano Letters,2012,12(5):2446-2451.
    [53] Wang J., Kaskel S., KOH activation of carbon-based materials for energy storage,Journal of Materials Chemistry,2012,22(45):23710-23725.
    [54] Zhu Y., Murali S., Stoller M. D., et al., Microwave assisted exfoliation and reduction ofgraphite oxide for ultracapacitors, Carbon,2010,48(7):2118-2122.
    [55] Zhu Y., Murali S., Stoller M. D., et al., Carbon-Based Supercapacitors Produced byActivation of Graphene, Science,2011,332(6037):1537-1541.
    [56] Zhang L., Zhang F., Yang X., et al., Porous3D graphene-based bulk materials withexceptional high surface area and excellent conductivity for supercapacitors, ScientificReports,2013, Doi:10.1038/srep01408.
    [57] Zu S. Z., Han B. H., Aqueous Dispersion of Graphene Sheets Stabilized by PluronicCopolymers: Formation of Supramolecular Hydrogel, Journal of Physical Chemistry C,2009,113(31):13651-13657.
    [58] Xu Y., Sheng K., Li C., et al., Self-Assembled Graphene Hydrogel via a One-StepHydrothermal Process, ACS Nano,2010,4(7):4324-4330.
    [59] Sun H., Xu Z., Gao C., Multifunctional, Ultra-Flyweight, Synergistically AssembledCarbon Aerogels, Advanced Materials,2013, DOI:10.1002/adma.201204576.
    [60] Dikin D. A., Stankovich S., Zimney E. J., et al., Preparation and characterization ofgraphene oxide paper, Nature,2007,448(7152):457-460.
    [61] Park S., Lee K. S., Bozoklu G., et al., Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties via Chemical Cross-Linking, ACS Nano,2008,2(3):572-578.
    [62] Zhang L. L., Zhao X., Stoller M. D., et al., Highly Conductive and Porous ActivatedReduced Graphene Oxide Films for High-Power Supercapacitors, Nano Letters,2012,12(4):1806-1812.
    [63] Hu W., Peng C., Luo W., et al., Graphene-Based Antibacterial Paper, ACS Nano,2010,4(7):4317-4323.
    [64] Chen C., Yang Q.-H., Yang Y., et al., Self-Assembled Free-Standing Graphite OxideMembrane, Advanced Materials,2009,21(29):3007-3011.
    [65] Stankovich S., Piner R. D., Nguyen S. T., et al., Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon,2006,44(15):3342-3347.
    [66] Wang S., Chia P.-J., Chua L.-L., et al., Band-like Transport in Surface-FunctionalizedHighly Solution-Processable Graphene Nanosheets, Advanced Materials,2008,20(18):3440-3446.
    [67] Yang H., Li F., Shan C., et al., Covalent functionalization of chemically convertedgraphene sheets via silane and its reinforcement, Journal of Materials Chemistry,2009,19(26):4632-4638.
    [68] Si Y., Samulski E. T., Synthesis of Water Soluble Graphene, Nano Letters,2008,8(6):1679-1682.
    [69] Huang p., Zhu H., Jing L., et al., Graphene Covalently Binding Aryl Groups:Conductivity Increa ses Rather than Decreases, ACS Nano,2011,5(10):7945-7949.
    [70] Zhao G., Jiang L., He Y., et al., Sulfonated Graphene for Persistent Aromatic PollutantManagement, Advanced Materials,2011,23(34):3959-3963.
    [71] Xu Y. F., Liu Z. B., Zhang X. L., et al., A graphene hybrid material covalentlyfunctionalized with porphyrin: Synthesis and optical limiting property, AdvancedMaterials,2009,21(12):1275-1279.
    [72] Lu C.-H., Yang H.-H., Zhu C.-L., et al., A Graphene Platform for Sensing Biomolecules,Angewandte Chemie International Edition,2009,48(26):4785-4787.
    [73] Yang X., Xu M., Qiu W., et al., Graphene uniformly decorated with gold nanodots: insitu synthesis, enhanced dispersibility and applications, Journal of Materials Chemistry,2011,21(22):8096-8103.
    [74] Song B., Cuniberti G., Sanvito S., et al., Nucleobase adsorbed at graphene devices:Enhance bio-sensorics, Applied Physics Letters,2012,100(6):063101.
    [75] Wang J., Zhao Y., Ma F.-X., et al., Synthesis of a hydrophilic poly-l-lysine/graphenehybrid through multiple non-covalent interactions for biosensors, Journal of MaterialsChemistry B,2013,1(10):1406-1413.
    [76] Bai H., Xu Y., Zhao L., et al., Non-covalent functionalization of graphene sheets bysulfonated polyaniline, Chemical Communications,2009,45(13):1667-1669.
    [77] Song S. H., Park K. H., Kim B. H., et al., Enhanced Thermal Conductivity of Epoxy-Graphene Composites by Using Non-Oxidized Graphene Flakes with Non-CovalentFunctionalization, Advanced Materials,2013,25(5):732-737.
    [78] Sofo J., Chaudhari A., Barber G., Graphane: A two-dimensional hydrocarbon, PhysicalReview B,2007,75(15):153401.
    [79] Costamagna S., Neek-Amal M., Los J. H., et al., Thermal rippling behavior of graphane,Physical Review B,2012,86(4):041408.
    [80] Elias D. C., Nair R. R., Mohiuddin T. M. G., et al., Control of graphene's properties byreversible hydrogenation: Evidence for graphane, Science,2009,323(5914):610-613.
    [81] Mikoushkin V. M., Nikonov S. Y., Dideykin A. T., et al., Graphene hydrogenation bymolecular hydrogen in the process of graphene oxide thermal reduction, Applied PhysicsLetters,2013,102(7):071910.
    [82] Li Y., Chen H., Voo L. Y., et al., Synthesis of partially hydrogenated graphene andbrominated graphene, Journal of Materials Chemistry,2012,22(30):15021-15024.
    [83] Blake P., Brimicombe P. D., Nair R. R., et al., Graphene-Based Liquid Crystal Device,Nano Letters,2008,8(6):1704-1708.
    [84] Scheuermann G. M., Rumi L., Steurer P., et al., Palladium Nanoparticles on GraphiteOxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for theSuzuki-Miyaura Coupling Reaction, Journal of American Chemical Society,2009,131(23):8262-8270.
    [85] Li Y., Fan X., Qi J., et al., Palladium nanoparticle-graphene hybrids as active catalysts forthe Suzuki reaction, Nano Research,2010,3(6):429-437.
    [86] Kim J. D., Palani T., Kumar M. R., et al., Preparation of reusable Ag-decorated grapheneoxide catalysts for decarboxylative cycloaddition, Journal of Materials Chemistry,2012,22(38):20665-20670.
    [87] Li Y., Fan X., Qi J., et al., Gold nanoparticles-graphene hybrids as active catalysts forSuzuki reaction, Materials Research Bulletin,2010,45(10):1413-1418.
    [88] Chen H., Li Y., Zhang F., et al., Graphene supported Au-Pd bimetallic nanoparticles withcore-shell structures and superior peroxidase-like activities, Journal of MaterialsChemistry,2011,21(44):17658-17661.
    [89] Bong S., Uhm S., Kim Y.-R., et al., Graphene Supported Pd Electrocatalysts for FormicAcid Oxidation, Electrocatalysis,2010,1(2-3):139-143.
    [90] Zhou Y.-G., Chen J.-J., Wang F.-b., et al., A facile approach to the synthesis of highlyelectroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuelcells, Chemical Communications,2010,46(32):5951-5951.
    [91] Yoo E., Okata T., Akita T., et al., Enhanced Electrocatalytic Activity of PtSubnanoclusters on Graphene Nanosheet Surface, Nano Letters,2009,9(6):2255-2259.
    [92] Han M., Liu S., Zhang L., et al., Synthesis of Octopus-Tentacle-Like Cu Nanowire-AgNanocrystals Heterostructures and Their Enhanced Electrocatalytic Performance forOxygen Reduction Reaction, ACS Applied Materials&Interfaces,2012,4(12):6654-6660.
    [93] Dong L., Garia R. R. S., Li Z., et al., Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanoloxidation, Carbon,2010,48(3):781-787.
    [94] Guo S., Dong S., Wang E., Three-Dimensional Pt-on-Pd Bimetallic NanodendritesSupported on Graphene Nanosheet: Facile Synthesis and Used as an AdvancedNanoelectrocatalyst for Methanol Oxidation, ACS Nano,2010,4(1):547-555.
    [95] Zhang Y., Tang Z. R., Fu X., et al., Engineering the Unique2D Mat of Graphene toAchieve Graphene-TiO2Nanocomposite for Photocatalytic Selective Transformation:What Advantage does Graphene Have over Its Forebear Carbon Nanotube?, ACS Nano,2011,5(9):7426-7435.
    [96] Zhang L. L., Xiong Z. G., Zhao X. S., Pillaring Chemically Exfoliated Graphene Oxidewith Carbon Nanotubes for Photocatalytic Degradation of Dyes under Visible LightIrradiation, ACS Nano,2010,4(11):7030-7036.
    [97] Jia H.-P., Dreyer D. R., Bielawski C. W., Graphite Oxide as an Auto-Tandem Oxidation-Hydration-Aldol Coupling Catalyst, Advanced Synthesis&Catalysis,2011,353(4):528-532.
    [98] Long Y., Zhang C., Wang X., et al., Oxidation of SO2to SO3catalyzed by grapheneoxide foams, Journal of Materials Chemistry,2011,21(36):13934.
    [99] Verma S., Mungse H. P., Kumar N., et al., Graphene oxide: an efficient and reusablecarbocatalyst for aza-Michael addition of amines to activated alkenes, ChemicalCommunications,2011,47(47):12673-12675.
    [100] Qu L., Liu Y., Baek J. B., et al., Nitrogen-Doped Graphene as Efficient Metal-FreeElectrocatalyst for Oxygen Reduction in Fuel Cells, ACS Nano,2010,4(3):1321-1326.
    [101] Roy-Mayhew J. D., Bozym D. J., Punckt C., et al., Functionalized Graphene as aCatalytic Counter Electrode in Dye-Sensitized Solar Cells, ACS Nano,2010,4(10):6203-6211.
    [102] Dreyer D. R., Jia H. P., Bielawski C. W., Graphene Oxide: A Convenient Carbocatalystfor Facilitating Oxidation and Hydration Reactions, Angewandte Chemie InternationalEdition,2010,49(38):6813-6816.
    [103] Stoller M. D., Park S. J., Zhu Y. W., et al., Graphene-based ultracapacitors, Nano Letters,2008,8(10):3498-3502.
    [104] Jeong H. M., Lee J. W., Shin W. H., et al., Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes,Nano Letters,2011,11(6):2472-2477.
    [105] Yu G., Hu L., Vosgueritchian M., et al., Solution-Processed Graphene/MnO2Nanostructured Textiles for High-Performance Electrochemical Capacitors, Nano Letters,2011,11(7):2905-2911.
    [106] Wu Z.-S., Wang D.-W., Ren W., et al., Anchoring Hydrous RuO2on Graphene Sheets forHigh-Performance Electrochemical Capacitors, Advanced Functional Materials,2010,20(20):3595-3602.
    [107] Wu Q., Xu Y. X., Yao Z. Y., et al., Supercapacitors Based on FlexibleGraphene/Polyaniline Nanofiber Composite Films, ACS Nano,2010,4(4):1963-1970.
    [108] Bose S., Kim N. H., Kuila T., et al., Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode, Nanotechnology,2011,22(29):295202.
    [109] Yoo E., Kim J., Hosono E., et al., Large Reversible Li Storage of Graphene NanosheetFamilies for Use in Rechargeable Lithium Ion Batteries, Nano Letters,2008,8(8):2277-2282.
    [110] Pan D., Wang S., Zhao B., et al., Li Storage Properties of Disordered GrapheneNanosheets, Chemistry of Materials,2009,21(14):3136-3142.
    [111] Zhou X., Yin Y.-X., Wan L.-J., et al., Self-Assembled Nanocomposite of SiliconNanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-IonBatteries, Advanced Energy Materials,2012:1086-1090.
    [112] Paek S. M., Yoo E., Honma I., Enhanced cyclic performance and lithium storage capacityof SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexiblestructure, Nano Letters,2009,9(1):72-75.
    [113] Li Y., Wang Z. Q., Yang L., et al., Efficient coating of polystyrene microspheres withgraphene nanosheets, Chemical Communications,2011,47(38):10722-10724.
    [114] Bao C. L., Guo Y. Q., Song L., et al., Poly(vinyl alcohol) nanocomposites based ongraphene and graphite oxide: a comparative investigation of property and mechanism,Journal of Materials Chemistry,2011,21(36):13942-13950.
    [115] Duan H. G., Xie E. Q., Han L., et al., Turning PMMA nanofibers into graphenenanoribbons by in situ electron beam irradiation, Advanced Materials,2008,20(17):3284-3288.
    [116] Zhang X. Y., Yin J. L., Peng C., et al., Distribution and biocompatibility studies ofgraphene oxide in mice after intravenous administration, Carbon,2011,49(3):986-995.
    [117] Wang X., Zhi L. J., Mullen K., Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Letters,2008,8(1):323-327.
    [118] Henwood D., Carey J. D., Ab initio investigation of molecular hydrogen physisorption ongraphene and carbon nanotubes, Physical Review B,2007,75(24):245413.
    [119] Clark J. H., Solid acids for green chemistry, Accounts of Chemical Research,2002,35(9):791-797.
    [120] Busca G., Acid catalysts in industrial hydrocarbon chemistry, Chemical Reviews,2007,107(11):5366-5410.
    [121] Melero J. A., Grieken R., Morales G., Advances in the synthesis and catalyticapplications of organosulfonic-functionalized mesostructured materials, ChemicalReviews,2006,106(9):3790-3812.
    [122] Reddy B. M., Patil M. K., Organic Syntheses and Transformations Catalyzed by SulfatedZirconia, Chemical Reviews,2009,109(6):2185-2208.
    [123] Okuhara T., Water-tolerant solid acid catalysts, Chemical Reviews,2002,102(10):3641-3665.
    [124] Stein A., Wang Z. Y., Fierke M. A., Functionalization of Porous Carbon Materials withDesigned Pore Architecture, Advanced Materials,2009,21(3):265-293.
    [125] Hara M., Yoshida T., Takagaki A., et al., A carbon material as a strong protonic acid,Angewandte Chemie-International Edition,2004,43(22):2955-2958.
    [126] Okamura M., Takagaki A., Toda M., et al., Acid-Catalyzed Reactions on FlexiblePolycyclic Aromatic Carbon in Amorphous Carbon, Chemistry of Materials,2006,18(13):3039-3045.
    [127] Toda M., Takagaki A., Okamura M., et al., Green chemistry-Biodiesel made with sugarcatalyst, Nature,2005,438(7065):178-178.
    [128] Wang X. Q., Liu R., Waje M. M., et al., Sulfonated ordered mesoporous carbon as astable and highly active protonic acid catalyst, Chemistry of Materials,2007,19(10):2395-2397.
    [129] Peng F., Zhang L., Wang H. J., et al., Sulfonated carbon nanotubes as a strong protonicacid catalyst, Carbon,2005,43(11):2405-2408.
    [130] Allen M. J., Tung V. C., Kaner R. B., Honeycomb Carbon: A Review of Graphene,Chemical Reviews,2010,110(1):132-145.
    [131] Lerf A., He H. Y., Forster M., et al., Structure of graphite oxide revisited, Journal ofPhysical Chemistry B,1998,102(23):4477-4482.
    [132] Jiang D., Sumpter B. G., Dai S., How Do Aryl Groups Attach to a Graphene Sheet?,Journal of Physical Chemistry B,2006,110:23628-23632.
    [133] Ferrari A. C., Meyer J. C., Scardaci V., et al., Raman spectrum of graphene and graphenelayers, Physical Review Letters,2006,97(18):187401.
    [134] Mohiuddin T. M. G., Lombardo A., Nair R. R., et al., Uniaxial strain in graphene byRaman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,Physical Review B,2009,79(20):205433.
    [135] Lazzeri M., Mauri F., Nonadiabatic Kohn anomaly in a doped graphene monolayer,Physical Review Letters,2006,97(26):266407.
    [136] Bekyarova E., Itkis M. E., Ramesh P., et al., Chemical Modification of EpitaxialGraphene: Spontaneous Grafting of Aryl Groups, Journal of the American ChemicalSociety,2009,131(4):1336-1337.
    [137] Murphy C. J., Gole A. M., Stone J. W., et al., Gold Nanoparticles in Biology: BeyondToxicity to Cellular Imaging, Accounts of Chemical Research,2008,41(12):1721-1730.
    [138] Wang D. S., Li Y. D., Bimetallic Nanocrystals: Liquid-Phase Synthesis and CatalyticApplications, Advanced Materials,2011,23:1044-1060.
    [139] Nikoobakht B., El-Sayed M. A., Preparation and growth mechanism of gold nanorods(NRs) using seed-mediated growth method, Chemistry of Materials,2003,15(10):1957-1962.
    [140] Jiang H. L., Akita T., Ishida T., et al., Synergistic Catalysis of Au@Ag Core-ShellNanoparticles Stabilized on Metal-Organic Framework, Journal of the AmericanChemical Society,2011,133(5):1304-1306.
    [141] Yang N. L., Zhai J., Wang D., et al., Two-Dimensional Graphene Bridges EnhancedPhotoinduced Charge Transport in Dye-Sensitized Solar Cells, ACS Nano,2010,4(2):887-894.
    [142] Chen J. H., Mao S., Lu G. H., et al., Specific Protein Detection Using Thermally ReducedGraphene Oxide Sheet Decorated with Gold Nanoparticle-Antibody Conjugates,Advanced Materials,2010,22(32):3521-3526.
    [143] Manga K. K., Wang S., Jaiswal M., et al., High-Gain Graphene-Titanium OxidePhotoconductor Made from Inkjet Printable Ionic Solution, Advanced Materials,2010,22(46):5265-5270.
    [144] Cui Y., Wang H. L., Cui L. F., et al., Mn3O4-Graphene Hybrid as a High-Capacity AnodeMaterial for Lithium Ion Batteries, Journal of the American Chemical Society,2010,132(40):13978-13980.
    [145] Ji J. Y., Zhang G. H., Chen H. Y., et al., Sulfonated graphene as water-tolerant solid acidcatalyst, Chemical Science,2011,2(3):484-487.
    [146] Sau T. K., Murphy C. J., Room temperature, high-yield synthesis of multiple shapes ofgold nanoparticles in aqueous solution, Journal of the American Chemical Society,2004,126(28):8648-8649.
    [147] Massart R., Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEETrans. Magnetics,1981,17(2):1247-1248.
    [148] Castner D. G., Hinds K., Grainger D. W., X-ray Photoelectron Spectroscopy Sulfur2pStudy of Organic Thiol and Disulfide Binding Interactions with Gold Surfaces, Langmuir,1996,12(1):5083-5086.
    [149] Joseph Y., Besnard I., Rosenberger M., et al., Self-Assembled GoldNanoparticle/Alkanedithiol Films: Preparation, Electron Microscopy, XPS-Analysis,Charge Transport, and Vapor-Sensing Properties, J. Phys. Chem. B,2003,107(30):7406-7413.
    [150] Armand M., Tarascon J. M., Building better batteries, Nature,2008,451:652-657.
    [151] Tarascon J. M., Armand M., Issues and challenges facing rechargeable lithium batteries,Nature,2001,414:359-367.
    [152] Dunn B., Kamath H., Tarascon J. M., Electrical Energy Storage for the Grid: A Battery ofChoices, Science,2011,334(6058):928-935.
    [153] Liu C., Li F., Ma L.-P., et al., Advanced Materials for Energy Storage, AdvancedMaterials,2010,22(8): E28-E62.
    [154] Whittingham M. S., Lithium Batteries and Cathode Materials, Chemical Review,2004,104:4271-4301.
    [155] Guo Y.-G., Hu J.-S., Wan L.-J., Nanostructured Materials for Electrochemical EnergyConversion and Storage Devices, Advanced Materials,2008,20(15):2878-2887.
    [156] Li H., Wang Z., Chen L., et al., Research on Advanced Materials for Li-ion Batteries,Advanced Materials,2009,21(45):4593-4607.
    [157] Lou X. W., Deng D., Lee J. Y., et al., Self-Supported Formation of Needlelike Co3O4Nanotubes and Their Application as Lithium-Ion Battery Electrodes, Advanced Materials,2008,20(2):258-262.
    [158] Park C.-M., Kim J.-H., Kim H., et al., Li-alloy based anode materials for Li secondarybatteries, Chemical Society Reviews,2010,39(8):3115-3141.
    [159] Szczech J. R., Jin S., Nanostructured silicon for high capacity lithium battery anodes,Energy&Environmental Science,2011,4(1):56-72.
    [160] Wu H., Cui Y., Designing nanostructured Si anodes for high energy lithium ion batteries,Nano Today,2012,7(5):414-429.
    [161] Qu Y., Zhou H., Duan X., Porous silicon nanowires, Nanoscale,2011,3(10):4060-4068.
    [162] Liu X. H., Zhong L., Huang S., et al., Size-Dependent Fracture of Silicon NanoparticlesDuring Lithiation, ACS Nano,2012,6:1522-1531.
    [163] Hu Y.-S., Demir-Cakan R., Titirici M.-M., et al., Superior Storage Performance of aSi@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries, AngewandteChemie International Edition,2008,47(9):1645-1649.
    [164] Wu H., Zheng G., Liu N., et al., Engineering Empty Space between Si Nanoparticles forLithium-Ion Battery Anodes, Nano Letters,2012,12(2):904-909.
    [165] Ma H., Cheng F., Chen J. Y., et al., Nest-like Silicon Nanospheres for High-CapacityLithium Storage, Advanced Materials,2007,19(22):4067-4070.
    [166] Park M. H., Kim M. G., Joo J., et al., Silicon Nanotube Battery Anodes, Nano Letters,2009,9:3844-3847.
    [167] Chan C. K., Peng H., Liu G., et al., High-performance lithium battery anodes usingsilicon nanowires, Nature Nanotechnology,2007,3(1):31-35.
    [168] Wu H., Chan G., Choi J. W., et al., Stable cycling of double-walled silicon nanotubebattery anodes through solid-electrolyte interphase control, Nature Nanotechnology,2012,7:310-315.
    [169] Zhao X., Hayner C. M., Kung M. C., et al., In-Plane Vacancy-Enabled High-Power Si-Graphene Composite Electrode for Lithium-Ion Batteries, Advanced Energy Materials,2011,1(6):1079-1084.
    [170] Zhou X., Yin Y.-X., Wan L.-J., et al., Facile synthesis of silicon nanoparticles insertedinto graphene sheets as improved anode materials for lithium-ion batteries, ChemicalCommunications,2012,48(16):2198-2200.
    [171] Wang J. Z., Zhong C., Chou S. L., et al., Flexible free-standing graphene-siliconcomposite film for lithium-ion batteries, Electrochemistry Communications,2010,12(11):1467-1470.
    [172] Xin X., Zhou X., Wang F., et al., A3D porous architecture of Si/graphene nanocompositeas high-performance anode materials for Li-ion batteries, Journal of Materials Chemistry,2012,22(16):7724-7730.
    [173] Abouimrane A., Compton O. C., Amine K., et al., Non-Annealed Graphene Paper as aBinder-Free Anode for Lithium-Ion Batteries, Journal of Physical Chemistry C,2010,114(29):12800-12804.
    [174] Li N., Chen Z., Ren W., et al., Flexible graphene-based lithium ion batteries with ultrafastcharge and discharge rates, PNAS,2012,109(43):17360-17365.
    [175] Stankovich S., Dikin D. A., Dommett G. H. B., et al., Graphene-based compositematerials, Nature,2006,442(7100):282-286.
    [176] Zhang H., Braun P. V., Three-Dimensional Metal Scaffold Supported BicontinuousSilicon Battery Anodes, Nano Letters,2012,12(6):2778-2783.
    [177] Zhang H., Yu X., Braun P. V., Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes, Nature Nanotechnology,2011,6:277-281.
    [178] Taberna P. L., Mitra S., Poizot P., et al., High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nature Materials,2006,5(7):567-573.
    [179] Ji X., Lee K. T., Nazar L. F., A highly ordered nanostructured carbon-sulphur cathode forlithium-sulphur batteries, Nature Materials,2009,8:500-506.
    [180] Shin H. C., Liu M., Three-Dimensional Porous Copper-Tin Alloy Electrode forRechargeable Lithium Batteries, Advanced Functional Materials,2005,15:282-286.
    [181] Sa Q., Wang Y., Ni foam as the current collector for high capacity C-Si compositeelectrode, Journal of Power Sources,2012,208:46-51.
    [182] Zhou X., Cao A.-M., Wan L.-J., et al., Spin-coated silicon nanoparticle/grapheneelectrode as a binder-free anode for high-performance lithium-ion batteries, NanoResearch,2012,5(12):845-853.
    [183] Cao Y., Xiao L., Ai X., et al., Surface-Modified Graphite as an Improved IntercalatingAnode for Lithium-Ion Batteries, Electrochemical and Solid-State Letters,2003,6(2):A30-A33.
    [184] Yao Y., McDowell M. T., Ryu I., et al., Interconnected Silicon Hollow Nanospheres forLithium-Ion Battery Anodes with Long Cycle Life, Nano Letters,2011,11(7):2949-2954.
    [185] Wang H. Y., Yoshio M., Carbon-coated natural graphite prepared by thermal vapordecomposition process, a candidate anode material for lithium-ion battery, Journal ofPower Sources,2001,93:123-129.
    [186] Mukherjee R., Thomas A. V., Krishnamurthy A., et al., Photothermally ReducedGraphene as High-Power Anodes for Lithium-Ion Batteries, ACS Nano,2012,6(9):7867-7878.
    [187] Stoller M. D., Murali S., Quarles N., et al., Activated graphene as a cathode material forLi-ion hybrid supercapacitors, Physical Chemistry Chemical Physics,2012,14(10):3388-3391.
    [188] Gowda S. R., Pushparaj V., Herle S., et al., Three-Dimensionally Engineered PorousSilicon Electrodes for Li Ion Batteries, Nano Letters,2012,12(12):6060-6065.
    [189] Johnson B. A., White R. E., Characterization of commercially available lithium-ionbatteries, Journal of Power Sources,1998,70:48-54.
    [190] Wang G., Zhang L., Zhang J., A review of electrode materials for electrochemicalsupercapacitors, Chemical Society Reviews,2012,41(2):797-828.
    [191] Zhang L. L., Zhao X. S., Carbon-based materials as supercapacitor electrodes, ChemicalSociety Reviews,2009,38(9):2520-2531.
    [192] Simon P., Gogotsi Y., Materials for electrochemical capacitors, Nature Materials,2008,7:845-854.
    [193] Miller J. R., Simon P., Electrochemical Capacitors for Energy Management, Science,2008,321(5889):651-652.
    [194] Lang J.-W., Kong L.-B., Wu W.-J., et al., Facile approach to prepare loose-packed NiOnano-flakes materials for supercapacitors, Chemical Communications,2008,(35):4213-4215.
    [195] Kim H., Popov B. N., Characterization of hydrous ruthemium oxide/carbonnanocomposite supercapacitors prepared by a colloidal method, Journal of PowerSources,2002,104:52-61.
    [196] Hu C. C., Chang K. H., Lin M. C., et al., Design and Tailoring of the NanotubularArrayed Architecture of Hydrous RuO2for Next Generation Supercapacitors, NanoLetters,2006,6(12):2690-2695.
    [197] Wu Z.-S., Ren W., Wang D.-W., et al., High-Energy MnO2Nanowire/Graphene andGraphene Asymmetric Electrochemical Capacitors, ACS Nano,2010,4(10):5835-5842.
    [198] Chou S.-L., Wang J.-Z., Chew S.-Y., et al., Electrodeposition of MnO2nanowires oncarbon nanotube paper as free-standing, flexible electrode for supercapacitors,Electrochemistry Communications,2008,10(11):1724-1727.
    [199] Lee J. W., Ahn T., Soundararajan D., et al., Non-aqueous approach to the preparation ofreduced graphene oxide/α-Ni(OH)2hybrid composites and their high capacitancebehavior, Chemical Communications,2011,47(22):6305-6307.
    [200] Wang H. L., Casalongue H. S., Liang Y. Y., et al., Ni(OH)2Nanoplates Grown onGraphene as Advanced Electrochemical Pseudocapacitor Materials, Journal of theAmerican Chemical Society,2010,132(21):7472-7477.
    [201] Cao L., Lu M., Li H.-L., Preparation of Mesoporous Nanocrystalline Co3O4and ItsApplicability of Porosity to the Formation of Electrochemical Capacitance, Journal of theElectrochemical Society,2005,152(5): A871-A875.
    [202] Bastakoti B. P., Huang H.-S., Chen L.-C., et al., Block copolymer assisted synthesis ofporous α-Ni(OH)2microflowers with high surface areas as electrochemicalpseudocapacitor materials, Chemical Communications,2012,48(73):9150-9152.
    [203] Lang J.-W., Kong L.-B., Wu W.-J., et al., A facile approach to the preparation of loose-packed Ni(OH)2nanoflake materials for electrochemical capacitors, Journal of SolidState Electrochemistry,2008,13(2):333-340.
    [204] Park J. H., Park O. O., Shin K. H., et al., An Electrochemical Capacitor Based on aNi(OH)2/Activated Carbon Composite Electrode, Electrochemical and Solid-StateLetters,2002,5(2): H7-H10.
    [205] Huang Q., Wang X., Li J., et al., Nickel hydroxide/activated carbon composite electrodesfor electrochemical capacitors, Journal of Power Sources,2007,164(1):425-429.
    [206] Tang Z., Tang C.-h., Gong H., A High Energy Density Asymmetric Supercapacitor fromNano-architectured Ni(OH)2/Carbon Nanotube Electrodes, Advanced FunctionalMaterials,2012,22(6):1272-1278.
    [207] Zhang L. L., Xiong Z., Zhao X. S., A composite electrode consisting of nickel hydroxide,carbon nanotubes, and reduced graphene oxide with an ultrahigh electrocapacitance,Journal of Power Sources,2013,222:326-332.
    [208] Yan J., Fan Z., Sun W., et al., Advanced Asymmetric Supercapacitors Based onNi(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density,Advanced Functional Materials,2012,22(12):2632-2641.
    [209] Yang S., Wu X., Chen C., et al., Spherical α-Ni(OH)2nanoarchitecture grown ongraphene as advanced electrochemical pseudocapacitor materials, ChemicalCommunications,2012,48(22):2773-2775.
    [210] Wang H., Liang Y., Mirfakhrai T., et al., Advanced asymmetrical supercapacitors basedon graphene hybrid materials, Nano Research,2011,4(8):729-736.
    [211] Duan G., Cai W., Luo Y., et al., A Hierarchically Structured Ni(OH)2MonolayerHollow-Sphere Array and Its Tunable Optical Properties over a Large Region, AdvancedFunctional Materials,2007,17(4):644-650.
    [212] Lee J. W., Ahn T., Kim J. H., et al., Nanosheets based mesoporous NiO microsphericalstructures via facile and template-free method for high performance supercapacitors,Electrochimica Acta,2011,56(13):4849-4857.
    [213] Zhu L.-P., Liao G.-H., Yang Y., et al., Self-Assembled3D Flower-Like Hierarchical β-Ni(OH)2Hollow Architectures and their In Situ Thermal Conversion to NiO, NanoscaleResearch Letters,2009,4(6):550-557.
    [214] Yuan C., Zhang X., Su L., et al., Facile synthesis and self-assembly of hierarchicalporous NiO nano/micro spherical superstructures for high performance supercapacitors,Journal of Materials Chemistry,2009,19(32):5772-5777.
    [215] Wang D. B., Song C. X., Hu Z. S., et al., Fabrication of Hollow Spheres and Thin Filmsof Nickel Hydroxide and Nickel Oxide with Hierarchical Structures, Journal of PhysicalChemistry B,2005,109:1125-1129.
    [216] Patil U. M., Gurav K. V., Fulari V. J., et al., Characterization of honeycomb-like “β-Ni(OH)2” thin films synthesized by chemical bath deposition method and theirsupercapacitor application, Journal of Power Sources,2009,188(1):338-342.
    [217] Cai F.-S., Zhang G.-Y., Chen J., et al., Ni(OH)2Tubes with Mesoscale Dimensions asPositive-Electrode Materials of Alkaline Rechargeable Batteries, Angewandte ChemieInternational Edition,2004,43(32):4212-4216.
    [218] Corrigan D. A., Bendert R. M., Effect of Coprecipitated Metal Ions on theElectrochemistry of Nickel Hydroxide Thin Films: Cyclic Voltammetry in1M KOH,Journal of the Electrochemical Society,1989,136(3):723-728.
    [219] Wu Q. D., Gao X. P., Li G. R., et al., Microstructure and Electrochemical Properties ofAl-Substituted Nickel Hydroxides Modified with CoOOH Nanoparticles, Journal ofPhysical Chemistry C,2007,111(45):17082-17087.
    [220] Murali S., Quarles N., Zhang L. L., et al., Volumetric capacitance of compressedactivated microwave-expanded graphite oxide (a-MEGO) electrodes, Nano Energy,2013.DOI:10.1016/j.nanoen.201301007.
    [221] Skinner B., Chen T., Loth M. S., et al., Theory of volumetric capacitance of an electricdouble-layer supercapacitor, Physical Review E,2011,83(5):056102.
    [222] Lang J.-W., Kong L.-B., Liu M., et al., Asymmetric supercapacitors based on stabilizedα-Ni(OH)2and activated carbon, Journal of Solid State Electrochemistry,2009,14(8):1533-1539.
    [223] Long J. W., Bélanger D., Brousse T., et al., Asymmetric electrochemical capacitors-Stretching the limits of aqueous electrolytes, Mrs Bulletin,2011,36(07):513-522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700