用户名: 密码: 验证码:
非对称共面波导色散特性及应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前在微波集成电路以及毫米波和光学集成电路中,共面波导的应用已经越来越受到重视,但是,我们知道对称共面波导在理论设计上是对称结构的,但实际制作出来的共面波导一定是非对称的;而且在制作微波毫米波器件时,例如转接器和耦合器等,非对称共面波导也是很需要的。因此,非对称共面波导更具有一般性和应用灵活性。针对以上情况,本文使用时域有限差分法对非对称共面波导和带金属底板非对称共面波导的色散特性进行了研究,并首次使用矢量网络分析仪对其色散特性进行了测试。
     在各种数值计算方法中,时域有限差分法近年来由于它的一次时域计算就可以得到很宽频谱内信息的优势引起了人们高度的重视。本文使用时域有限差分法计算的时候,提出了全空间的计算模型和基于MUR-PML混合吸收边界条件。全空间计算模型是适合所有的不对称结构的待研究体的,而且包括了介质下面的空气部分,使仿真更加的接近实验真实情况;基于MUR-PML混合吸收边界条件的时域有限差分法非常适合计算传输线这种结构,因为传输线是传送电磁波的,电磁能量主要是沿着中心导带行进,因此在两个传输端面上设置PML完全匹配层吸收边界条件,在其他面上设置MUR二阶吸收边界条件,会大大提高计算效率,而且计算结果与XFDTD仿真软件计算结果相比较,基本趋于一致。
     在微波毫米波集成电路中,共面波导的应用越来越广泛,不但可以传输信号,还可以制作各种器件,然而在和别的传输线,例如槽线连接的时候,由于结构必须对称,因此限制了它的应用,而相对于对称共面波导来说,非对称共面波导就具有更大的灵活性,针对这种情况,本文给出了非对称共面波导一槽线转接器,并计算了它的S参数,通过使用这种转接器,大大提高了槽线和共面波导连接的灵活性。
Coplanar waveguide (CPW) is important planar transmission line in microwave and millimeter-wave integrated circuits (MMIC). It is known that CPW is symmetrical in theory, but it is asymmetrical in practice. And asymmetrical coplanar waveguide (ACPW) is very useful in some particular applications. Finite-Difference Time-Domain (FDTD) is first proposed to analyze dispersion characteristic of ACPW and ACPW with conductor backing, and the measurements are presented firstly in this paper.
    In all numerical arithmetics, FDTD is a very efficient method. It is proposed firstly in this paper that the full space calculation model and mixed absorbing boundary conditions (ABCs) based on MUR-PML. The full space calculation model, which suits for the asymmetric structure sometimes even including air below the surface of medium, can enable simulative result to approach real one. The FDTD algorithm based on the mixed ABCs is proper to calculate the transmission line where the electromagnetic wave is transmitted in order to send electromagnetic energy along central conductor. The calculation efficiency will be raised if the PML absorbing boundary condition is set on both planes of transmitting direction and so is the MUR two-order absorbing boundary condition in the other planes. The numerical result is almost consistent with the one in XFDTD software.
    CPW is extensively applied not only to transmit signal but also to manufacture a large number kinds of apparatus in MMIC, but it is prevented from connection to slotline due to its symmetric structure. Comparing with the CPW, ACPW is more common and flexible. So the ACPW-Slotline Transition is advanced firstly, and its S parameter is proposed in this paper.
引文
[1] 廖承恩.微波技术基础.西安:西安电子科技大学出版社,1995.
    [2] 黄志洵,王晓金.微波传输线理论与实用技术.北京:科学出版社,1996
    [3] 杨铨让.毫米波传输线.北京:电子工业出版社,1986.
    [4] Balaji Lakshminarayanan and T. Weller. CPW Line-to-Line Coupling on Glass and Low Resistivity Silicon. ARFTG Microwave Measurements Conference 2003: 239-242.
    [5] Lei Zhu. Guided-Wave Characteristics of Periodic Coplanar Waveguides With Inductive Loading-Unit-Length Transmission Parameters. IEEE Trans. on MTT., 2003 (10): 2133-2138.
    [6] Frank Schnieder, Thorsten Tisehler and Wolfgang Heinrieh. Modeling Dispersion and Radiation Characteristics of Conductor-Backed CPW With Finite Ground Width. IEEE Trans. on MTT., 2003(1): 137-143.
    [7] Xinn-Chsng Lin and Ling-Tong Wang. A Wideband CPW-Fed Patch Antenna With Defective Ground Plane. Antennas and Propagation Society International Symposium, 2004. IEEE Volume 4, 20-25 June 2004 Page(s): 3717-3720.
    [8] Chi-Hsueh Wang, Yo-Shen Lin, Mun-Chuan Tsai, Chun-Huai Chang, and Chun Hsiung Chen. An Input-Impedance-Based Circuit Model for Coplanar Waveguide-to-Slotline T-Junction. IEEE Trans. on MTT., 2004(6): 1585-1591.
    [9] J. Gao and L. Zhu. Asymmetric parallel-coupled CPW stages for harmonic suppressed 1=4 bandpass filters. Electronics Letters, 2004(18): 1122-1123.
    [10] L. Van, R. Williams and K.Rezazadeh. Broadband CPW multilayer directional couplers on GaAs for MMIC applications Krishnamurthy. High Frequency Postgraduate Student Colloquium, 2004: 183-188.
    [11] Lei Zhu. Broad-band microstrip-to-CPW transition via frequency-dependent electromagnetic coupling. IEEE Trans. on MTT., 2004(5): 1517-1522.
    [12] Amador-Perez, Rodriguez-Solis. Analysis of a CPW Fed Annular Slot Ring Antenna using DOE. Antennas and Propagation Society International Symposium 2006: 4301-4304.
    [13] 张旭东,戴居丰,吴咏诗.单面单片微波集成电路对偶—矩量法电磁仿真.微波学报,1999年,15(3):193-198.
    [14] 周希郎,王曙.全屏蔽共面波导的准静态分析.微波学报,1999,15(3):234-237.
    [15] Liu W.C, Liu H. J. Compact CPW-fed monopole antenna for 5 GHz wireless application. Electronics Letters, 2006 (6): 837-839.
    [16] 阮成礼.非对称共面线的特性阻抗.电子科技大学学报,2000,29(2):136-139.
    [17] Rock J. C., Hudson T., Buncick M. and Tuck E. Kranz. Design, fabrication and testing of coplanar waveguide transmission lines for use in RF MEMS switches. Aerospace Conference 2004: 922-929.
    [18] Rajarajan Senguttuvan. Leonard Hayden and Andreas Weisshaar. Mode Coupling in Coplanar Waveguide Bends:A Simple Four-Port Model. 33rd European Microwave Conference, 2003, pp: 643-646.
    [19] Thomas M. Edge-Coupled Coplanar Waveguide Bandpass Filter Design. IEEE Trans. On MTT., 2000, 48(12): 2453-2458.
    [20] Mittra R.. A new technique for the analysis of the dispersion characteristics of microstrip line. IEEE Trans. on MTT., 1971, 19(1): 47-56.
    [21] T. Itoh, R. Mittra. Spectral-domain approach for Calculating the dispersion characteristics of microstrip line. IEEE Trans. on MTT., 1973, 21(7): 496-499.
    [22] V. Rizzoli. A unified variational solution to microstrip array problems. IEEE Trans. on MTT., 1975, 23(2): 223-234.
    [23] K. K. Joshi, etc. Analysis of inhomogeneously filled stripline and microstrip- line. IEE Proc., 1980, 127(1): 11-14.
    [24] B. N. Das, etc. Characteristic impedance of elliptic cylindrical strip and microstrip-lines filled with layered substrate. IEE Proc., 1983, 130(4): 245-250.
    [25] D. Homentcovschi, et al. An analytical solution for the coupled stripline-like microstrip line problem. IEEE Trans. on MTT., 1988, 36(6): 1002-1007.
    [26] C. Seo et al. Analysis of two-layer three-coupled microstrip lines on anisotropic substrates. IEEE Trans. MTT., 1994, 42(1): 160-162.
    [27] Yi-Jun He and Si-Fan Li. Analysis of arbitrary cross-section microstrip using the method of lines. IEEE Trans. MTT., 1994, 42(1): 163-165.
    [28] A. R. Djordjevic et al. Closed-form formulas for frequency-dependent resistance and inductance per unit length ofmicrostrip and strip transmission lines. IEEE Trans. MTT., 1994,42(2): 241-248.
    [29] C.N. Chang et al. Full-wave analysis of multilayer mierostrip lines, lEE Proc. Microw. Antennas Propag., 1994, 141(3): 185-188.
    [30] H. How et al. New formulation of dyadic Green's Function: Applied to a microstrip line. IEEE Trans. MTT., 1994, 42(8): 1580-1582.
    [31] F. Masot et al. Analysis and experimental validation of a type of three microstrip directional coupler. IEEE Trans. MTT., 1994, 42(9): 1624-1631.
    [32] Md. S. Alam et al. Analysis of shielded microstrip lines with arbitrary metallization cross section using a vector finite element method. IEEE Trans. MTT., 1994, 42(11): 2112-2117.
    [33] D. Homentcovschi. High accuracy formulas for calculation of the characteristic impedance of microstrip lines. IEEE Trans. MTT., 1995, 43(9): 2132-2137.
    [34] S. Kapoor et al. Characterization of microstrip discontinuities using conformal mapping and the finite-difference time-domain method. IEEE Trans. MTT., 1995, 43(11): 2636-2639.
    [35] Edwin K. L, Yeung, et al. Multi-layer microstrip structure analysis with matched load simulation. IEEE Trans. on MTT., 1995, 43(1): 143-149.
    [36] X. Zhang. Time-domain finite difference approach to the calculation of the frequency-dependent characteristics of the microstrip discontinuities. IEEE Trans. on MTT., 1988, 36(12):1775-1787.
    [37] G. Pan. Edge effect enforced boundary element analysis of multi-layered transmission lines. IEEE Trans. Circuits and Syst., 1992, 39(11): 1651-1659.
    [38] G. wang et al. Full wave Analysis of microstrip floating line structures by wavelet expansion method. IEEE Trans. on MTT., 1995, 43(1): 131-141.
    [39] G. Oberschmidt et al. Two dimensional wavelet-analysis of a microstrip open. IEEE Trans. on MTT., 1998, 46(5): 558-561.
    [40] 辛红.多小波分析二维电磁散射.中国电子学会微波学会,97全国微波学术会议论文集,1997:371-373.
    [41] 蓝序超.带有一个共面接地板的微带线的保角变换分析法.中国电子学会微波学会,全国微波学术会议,1995:62-64.
    [42] S. B. Cohn. Slot line on a dielectric substrate. IEEE Trans. on MTT., 1969, 17(10): 768-778.
    
    [43] T. Itoh, R. Mittra. Dispersion characteristics of Slot line. Electronics Letters, 1971(13): 364-365.
    
    [44] T. Kitazawa, Y. Hayashi M.Suzuki. Analysis of the Dispersion Characteristic of Slot Line with Thick Metal Coating. IEEE Trans, on MTT., 1980, 28(4): 387-392.
    
    [45] P. J. Meier. Integrated Fin-line Millimeter Components. IEEE Trans, on MTT., 1974,22(12): 1209-1216.
    
    [46] L.P.Schmidt. Spectral domain analysis of dominated higher order nodes in fin-lines. IEEE Trans. on MTT., 1980, 28(9): 981-985.
    
    [47] 黄亚非。单面鳍线的正则解。电子学报, 1993,21(12): 44-52.
    
    [48] S. K. Koul, B. Bhat. Inverted Microstrip and Suspended Microstrip with Anisotropic Substrates. Proc.IEE., 1982, 70(10): 1230-1231.
    
    [49] R. S. Tomar and P. Bhartia. New Quasi-Static Models for the Computer-aided Design of Suspended and Inverted Microstrip Lines. IEEE Trans, on MTT., 1987, 35(4): 453-457.
    
    [50] I. P. Polichronakis and S. S. Kouris. Computation of the dispersion characteristics of a shielded suspended substrate microstrip line. IEEE Trans, on MTT., 1992, 40(3): 581-584.
    
    [51] J. M. Schellenberg. CAD models for suspended and inverted microstrip. IEEE Trans, on MTT., 1995, 43(6): 1247-1252.
    
    [52] C. P. Wen. Coplanar waveguide:A surface strip transmission line suitable for nonreciprocal gyro-magnetic device applications. IEEE Trans, on MTT., 1969, 17(12): 1087-1090.
    
    [53] C.P. Wen. Coplanar waveguide directional couplers. IEEE Trans. MTT., 1970, 18(12): 318-322.
    
    [54] M.E.Davis, et al. Finite boundary corrections to the coplanar waveguide analysis. IEEE Trans, on MTT., 1973, 21(9): 594-596.
    
    [55] J. B. Knorr and K. D. Kuchler. Analysis of coupled slots and coplanar strips on dielectric substrate. IEEE Trans, on MTT., 1975, 23(7): 541-548.
    
    [56] A. Gopinath. Losses in coplanar waveguides. IEEE Trans. MTT., 1982, 30(7): 1101-1104.
    
    [57] C. Veyres and V. Fouad Hanna. Extension of the application of conformal mapping techniques to coplanar lines with finite dimensions. INT. J. Electronics, 1980, 48(1): 47-56.
    [58] T. Hatsuda. Computation of coplanar type stripline characteristics by relaxation method and its application to microwave circuits. IEEE Trans. on MTT., 1975, 23(10): 795-802.
    
    [59] C. N. Chang. Full-wave analysis of coplanar waveguides by variational conformal mapping technique. IEEE Trans. MTT., 1990, 38(9): 1339-1343.
    
    [60] H. klingbeil and W. Heinrich. Calculation of CPW A.C. resistance and inductance using a quasi-static mode-matching approach. IEEE Trans. MTT., 1994, 42(6): 1004-1007.
    
    [61] X. Zhang and T. Miyoshi. Optimum design of coplanar waveguide for LiNbO_3 optical modulator. IEEE Trans. MTT., 1995, 43(3): 523-528.
    
    [62] Guo-Chun Liang, Yao-Wu Liu, Kenneth K.Mei. Full-Wave Analysis of Coplanar Waveguide and Slotline Using the Time- Domain Finite- Difference Method. IEEE Trans. MTT., 1989, 37(12): 1949-1957.
    
    [63] Shibata T, Sano E. Characterization of MIS Structure Coplanar Transmission Lines for Investigation of Signal Propagation in Integrated Circuits. IEEE Trans, on MTT., 1990, 38(7): 881-890.
    
    [64] V. Fouad Hanna and D. Thebault. Analysis of asymmetrical coplanar waveguides. INT. J. Electronics, 1981, 50(3): 221-224.
    
    [65] V. Fouad Hanna and D. Thebault. Theoretical and experimental investigation of asymmetrical coplanar waveguides. IEEE Trans, on MTT., 1984, 32(12): 1649-1651.
    
    [66] T. Kitazawa. Quasi-static characteristic of asymmetrical and coupled coplanar type transmission lines. IEEE Trans, on MTT., 1985, 33(10): 771-778.
    
    [67] G. Ghione. A CAD-oriented analytical model for the losses of general asymmetric coplanar lines in hybrid and monolithic MICs. IEEE Trans, on MTT., 1993, 41(9): 1499-1510.
    
    [68] Y. C. Shih and T. Itoh. Analysis of conductor-backed coplanar waveguide. Electron. Lett.,1982, 18(12): 538-540.
    
    [69] G. Ghione and C. Naldi. Parameters of coplanar waveguides with lower ground plane. Electron. Lett., 1983, 19(12): 734-735.
    
    [70] R. N.Simons. Coupled slot line field components. IEEE Trans, on MTT., 1982, 30(7): 1094-1099.
    
    [71] Wilson A. Artuzi Jr. and T. Yoneyama. Characterization and measurements of laterally shielded coplanar waveguide at millimeter wavelengths. IEEE Trans, on MTT., 1994, 42(1): 150-153.
    [72] E. Drake et al. Quick computation of [C] and [L] matrices of generalized multi-conductor coplanar waveguide transmission lines. IEEE Trans. MTT., 1994, 42(12): 2328-2335.
    [73] C. N. Chang. Hybrid quasi-static analysis of multi-layer coplanar lines. IEE Proc. H., 1993, 1(2): 79-83.
    [74] Alessandri F.. Theoretical and experimental characterization of non-symmetrically shielded coplanar waveguides for millimeter-wave circuits. IEEE Trans. MTT., 1989, 37(12): 2020-2023.
    [75] K.K.M. Cheng. Quasi-TEM analysis of V-shaped conductor backed coplanar waveguide. IEEE Trans. MTT., 1995, 43(8): 1992-1994.
    [76] R. Schmidt and P. Russer. Modeling of cascaded coplanar waveguide discontinuities by the mode-matching approach. IEEE Trans. MTT., 1995, 43(12): 2910-2916.
    [77] M.D. Wu, et al. Full-wave characterization of the mode conversion in a coplanar waveguide right-angled bend. IEEE Trans. MTT., 1995, 43(11): 2532-2538.
    [78] C. L. Holloway and E. F. Kuester. A quasi-closed form expression for the conductor loss of CPW lines with an investigation of edge shape effects. IEEE Trans. MTT., 1995, 43(12):2695-2700.
    [79] L. Zhu and E. Yamashita. Effects of conductor edge profile on transmission properties of conductor-backed coplanar waveguides. IEEE Trans. MTT., 1995, 43(4): 847-853.
    [80] G. Ghione, et al. Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite extent ground planes, and line-to-line coupling. IEEE Trans. MTT., 1987,35(3): 260-267.
    [81] S. Gevorgian, et al. CAD models for shielded multi-layered CPW. IEEE Trans. MTT., 1995, 43(4): 772-778.
    [82] Nihad I. Dib. Minoo Gupta. George E. Ponchak and Linda P. B. Katehi. Characterization of Asymmetric Coplanar Waveguide Discontinuities. IEEE Trans. MTT., 1993, 41(9): 1549-1558.
    [83] Fang Shao-jun. Analysis of Asymmetric Coplanar Waveguide with Conductor Backing. IEEE Trans. on MTT., 1999, 47(2): 238-240.
    [84] A. Gorur and CKarpuz. Effect of finite ground-plane widths on quasistatic parameters of asymmetrical coplanar waveguides, IEE Proc. Micro. Antennas Propag., 2000(10): 343-347.
    [85] 房少军,王百锁.面向CAD的非对称共面波导模型及分析.电子学报,2002,30(6), pp: 804-807.
    
    [86] Menon S.K., Vasudevan K., Aanandan C.K. and Mohanan P. Compact asymmetric coplanar waveguide filter. Electronics Letters, 2005(5): 649-650.
    
    [87] Taylor C D. Lam D, Hand Shumpert T H. EM pulse scattering in time varying inhomogeneous media. IEEE Trans. Antennas Propagat., 1969, 17(5): 585-589.
    
    [88] Merewether D E. Transient currents induced on a metallic body of revolution by an EM pulse. IEEE Trans. Tlectromagn. Compat, 1971, 13(1): 41-44.
    
    [89] Taflove A and Brodwin M E. Numerical solution of steady-state EM scattering problems using the time-dependent Maxwell equations. IEEE Trans. Microwave Theory Tech., 1975, 23(8): 623-630.
    
    [90] Holland R. THREDE:A free-field EMP coupling and scattering code. IEEE Trans. Nuclear Science, 1977, 24(6): 2416-2421.
    
    [91] Kunz K S and Lee K M. A 3-D finite difference solution of the external response of an aircraft to a complex transient EM environment:I-The method and its implementation. IEEE Trans, Electromagn. Compat., 1978, 20(2): 328-333.
    
    [92] Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations. IEEE Trans. Electromagn. Compat., 1981, 23(4): 377-382.
    
    [93] Umashankar K R and Taflove A. A novel method of analyzing electromagnetic scattering of complex objects. IEEE Trans. Electromagn. Compat., 1982, 24(4): 397-405.
    
    [94] Umashankar K R. Taflove A and Beker B. Calculation and experimental validation of induced currents on coupled waves in an arbitrary shaped cavity. IEEE Trans. Antennas Propagat, 1987,35(11): 1248-1257.
    
    [95] Taflove A, Umashankar K R, Beker B, Harfoush F and Yee K S. Detailed FDTD analysis of EM fields penetrating narrow slots and lapped joints in thick conducting screens. IEEE Trans. Antennas Propagat., 1988, 36(2): 247-257.
    
    [96] Choi D H and Hoefer W J R. The finite difference time domain method and its application to eigenvalue problem. IEEE Trans. Microwave Theory Tech., 1986, 34(12): 1464-1470.
    [97] Kasher J C and Yee K S. A numerical example of a two dimensional scattering problem using a subgrid. Applied Computational Electromagnetic Scoiety Journal and Newsletter, 1987. 2(2): 75-102.
    
    [98] Mei K K, Cangellaris A and Angelakos D J. Conformal time domain finite difference method. Radio Science, 1984, 19(5): 1145-1147.
    
    [99] Zhang X and Mei K K. TD-FD approach to the calculation of the frequency dependent characteristics of microstrip discontinuities. IEEE Trans. Microwave Theory Tech., 1988, MTT-36(12): 1775-1787.
    
    [100] Liang G C, Lin Y W and Mei K K. Full wave analysis of coplanar waveguide and slotline using the TDFD method. IEEE Trans. Microwave Theory Tech., 1989, 37(12): 1949-1957.
    
    [101] Gwarek W K. Analysis of arbitrarily shaped 2-D microwave circuit by FDTD method. IEEE Trans. Microwave Theory Tech., 1988, 36(4): 738-744.
    
    [102] Sheen D M, Ali S M, Abouzahra M D and Kong J A. Application of the 3-D FDTD method to the analysis of planar microstrip circuit. IEEE Trans. Microwave Theory Tech., 1990, 38(7): 849-857.
    
    [103] Maloney J G, Smith G S and Scott R. Accurate computation of the radiation from simple antennas using the FDTD method. IEEE Trans. Antennas Propagat., 1990, 38(7): 1059-1068.
    
    [104] Sullivan D. 3-D computer simulation in deep regional hyperthermia using the FDTD method. IEEE Trans. Microwave Theory Tech., 1990, 38(2): 204-211.
    
    [105] Britt C L. Solution of EM scattering problems using time domain techniques. IEEE Transl Antennas Propagat., 1989, 37(9): 1181-1192.
    
    [106] Yee K S, Ingham D and Shalger K. Time-domain extrapolation to the far field based on FDTD calculations. IEEE Trans. Antennas Propagat., 1991, 39(3): 410-413.
    
    [107] Luebbers R J, Kunz K S, Schneider M and Hunsberger F. A finite difference time domain near zone to far zone transformation. IEEE Trans. Antennas Prapagat., 1991, 39(4): 429-433.
    
    [108] Luebbers R J, Ryan D and Beggs J. A two-dimensional time-domain near-zone to far-zone transformation. IEEE Trans. Antennas Propagat., 1992, 40(7): 848-851.
    [109] Larson R W. Special purpose computers for the time-domain advance of Maxwell equations. IEEE Trans. Magnetics. 1989, 25(4): 2913-2915.
    
    [110] Perlik A T, Opsahl T and Taflove A. Prediction scattering of EM fields using FDTD on a connection machine. IEEE Trans. Magnetics, 1989, 25(4): 2910-2912.
    
    [111] Luebbers R J, Hrnsberger F, Kunz K S, Standler R B and Schneider M. A frequency dependent finite difference time domain formulation for dispersive materials. IEEE Trans. Electromagn. Compat., 1990, 32(3): 222-227.
    
    [112] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. J. Compyt. Phys., 1994, 114(2): 185-200.
    
    [113] Gedney DS D. An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices. IEEE Trans. Antennas Propagat., 1996, 44(12): 1630-1639.
    
    [114] Prather D W and Shi S Y. Formulation and application of the finite difference time domain method for the analysis of axially symmetric diffractive optical elements. J. Opt. Soc. Am. A, 1999, 16(5): 1131-1142.
    
    [115] Liu Bo, Gao Benqing, Tan Wei and Ren Wu. A new FDTD algorithm- ADI/R-FDTD. Electromagnetic Compatibility 2002: 250-253.
    
    [116] Mustafa T, Celal Y and Seref S. Neural model for conventional coplanar waveguide sandwiched between two dielectric substrates. IEEE International Symposium on Electromagnetic Compatibility 2003: 296-299.
    
    [117] Waldschmidt G and Taflove A. Three-dimensional CAD-based mesh Generator for the Dey-Mittra conformal FDTD algorithm. IEEE Transactions on Antennas and Propagation, 2004 (7): 1658-1664.
    
    [118] Hue Y. K, Teixeira F.L, Martin L.E.S and Bittar, M. Modeling of EM logging tools in arbitrary 3-D borehole geometries using PML-FDTD. Geoscience and Remote Sensing Letters, 2005(1): 78-81.
    
    [119] Luk K.M, Xiangyu Cao and Changhong Liang. The absorbing boundary algorithm ingeneral FDTD method. Antennas and Propagation Society International Symposium 2003: 345-348.
    [120] Taflove A and Brodwin M E. Numerical solution of steady-state electromagnetic scattering problem using the time-dependent Maxwell equations. IEEE Trans. On MTT., 1975, 23(8): 623-630.
    
    [121] Berenger J P. A perfectly matched layer for the absorption of electromagnetic wave. J Comput Phys, 1994, 114(2): 185-200.
    
    [122] Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations. IEEE Trans Electromagn Compat, 1981, 23(4): 377-382.
    
    [123] Railton C J, Daniel E M, Paul D L, et al. Optimized absorbing boundary conditions for the analysis of planar circuits using the finite difference time domain method. IEEE Trans Microwave Theory Tech., 1993, 41(2): 290-297.
    
    [124] Zhao P, Litva J. A new stable and very dispersive boundary condition for the FDTD method. IEEE MTT-s Int Symp, 1994, 35-38.
    
    [125] Liao Z P, Wong H L, Yang B P, et al. A transmitting boundary for transient wave analysis. Science in China, Ser A, 1984, 27(10): 1063-1076.
    
    [126] Kunz K S and Luebbers R J. The finite difference time domain method for electromagnetics. Boca Raton, FL, CRC Press, 1993.
    
    [127] XFDTD 软件广告. IEEE Antennas Propagat.Magazine, 1996, 38(6): 115.
    
    [128] EMA3D 软件广告. IEEE Antennas Propagat.Magazine, 1997, 39(3): 71.
    
    [129] Yang M W and Chen Y C. Auto Mesh: An automatically adjustable monuniform orthogonal FDTD mesh generator. IEEE Antennas Propagat.Magazing, 1999, 41(2): 13-19.
    
    [130] Yu W and Mittra R. A conformal FDTD software package modeling antennas and microstrip circuit components. IEEE Antennas Propagat.Magazine, 2000, 42(5): 28-39.
    
    [131] V F Fusco and Q Chen. Slotline to Coplanar Waveguide Band-Stop Filter Modelling. Silicon Monolithic Integrated Circuits in RF Systems, 2000, 125-130.
    
    [132] Lei ZHU and Ke WU. Hybrid FGCPW/CPS scheme in the building block design of low-cost uniplanar and multilayer circuit and antenna. IEEE MTT-S International Microwave Symposium 1999, 867-870.
    [133] J. S. Chen and S. Y. Lin. Triple-frequency rectangular-ring slot antennas fed by CPW and microstrip line. Microwave Opt Technol Lett., 2003, 37, 243-246.
    
    [134] T.F.Huang, S. W. Luand P. Hsu. Analysis and design of coplanar waveguide-fed slot antenna array. IEEE Trans Antennas Propagat, 1999, 47, 1560-1565.
    
    [135] K.Li~*. C.H.Cheng, T.Matsui and M.Izutsu. Coplanar Patch Antennas:Principle, Simulation and Experiment. IEEE APS Int. symposium, Boston, 2001, 3, 402-405.
    
    [136] L.Guo, J.Liang, C. G. Parini and X.Chen. A Time Domain Study of CPW-Fed Disk Monopole for UWB Applications. APMC2005, 2005, 100-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700