用户名: 密码: 验证码:
基于多尺度分析的电站故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了保障电站的安全稳定运行,针对电站的故障诊断研究一直受到人们的关注。随着电站发展的日益大型化、复杂化和信息自动化,对电站的整体可靠性要求也进一步提高,故障诊断对象也不再局限于重点设备,更加关注电站一体化运行下的故障诊断。电站整体上属于一类复杂工业系统,目前故障诊断方法面对此复杂系统时,面临着整体数据量大而局部信息缺乏,建模和诊断代价过高等问题。多尺度是降低问题求解复杂度的重要思想,在复杂系统领域中得到了大量的研究。因此,利用多尺度思想对电站故障诊断进行研究,对完善电站故障诊断系统,提高电站运行的安全性和可靠性,具有重要的理论和现实意义。
     为此,本文围绕电站的多尺度故障诊断方法展开研究。在电站多尺度特性分析的基础上,研究了基于过程历史数据的多尺度统计故障诊断方法,然后对引入电站结构信息和考虑特征信息检测代价的故障诊断方法进行了研究。本文的主要工作包括以下几个方面:
     首先,利用多尺度思想对电站故障诊断特点进行了研究。多尺度思想就是将问题在不同尺度上分解并互相利用各尺度信息,从而降低问题的复杂程度。通过对故障诊断和多尺度研究的分析,特别将多尺度研究分为三部分:特征多尺度、测量多尺度和认知多尺度,将电站故障诊断的重点定位于研究协调这三个多尺度的故障诊断方法。从电站结构和运行过程两方面,分析了电站的特征多尺度、测量多尺度和认知多尺度特性。进一步对电站故障的诊断代价分析表明,完全使用规则式的诊断代价对于大系统来说是难以承受的。而利用电站的多尺度特性进行多尺度故障诊断将具有良好的优越性。
     其次,根据电站的多尺度特性研究了基于统计方法的故障诊断方法。利用测量信号时频尺度同电站空间尺度的对应关系,在不同时频尺度上使用关联规则来分析电站运行状态关系的变化情况,从而构造了多尺度关联规则故障检测算法。为了解决细节尺度缺乏宏观信息的问题,对系统整体运行特点的多尺度获取和评估进行分析,提出了利用系统整体特性的多尺度故障诊断方法。
     再次,考虑利用电站结构信息来进一步提高故障诊断精度。针对各电站监控系统中存在的测量元件差异,为了提高结构模型的适用范围,研究了含未测节点的符号有向图故障诊断方法。针对电站变工况特性,研究了在变工况条件下使用SDG模型的故障诊断方法。
     最后,考虑故障特征的获取代价下,构造最优故障诊断策略来以最小的诊断代价达到诊断的目的。电站故障特征的取值一般有多个,针对多值属性故障诊断问题进行分析,并提出了最优诊断策略算法。针对电站中常见的故障特征信息不完全现象,分析了不完全检测的故障诊断策略问题。根据诊断过程的搜索特点,引入表征诊断过程信息的尺度函数,从而提出了基于尺度函数的多值属性和不完全检测的诊断策略优化方法。
In order to ensure the reliable and economical operation of the thermal powerplants, the study of fault diagnosis of them has been given a significant attention. It isfurther complicated by the size and complexity of modern process plants with com-puter control system. But the requirement of the reliability of the whole power plantshave been improved with the competition growing. The focus of fault diagnosis isalso transferred from the key part equipments to the whole operation in power plants.Power plants can be recognized as one kinds of complex systems in which multiscaleidea has been studied intensively, it is therefor meaningful to study the methods offault diagnosis using multiscale idea for modifying the fault diagnosis system andimproving the safety and reality in power plants.
     So the study of this thesis has been developed around the multiscale fault diag-nosis in power plants. We analyzed the multiscale features and complexity of faultdiagnosis for power plants as a starter, next provide fault diagnosis methods of mul-tiscale statistic according to the process historic data, then consider the informationof multiscale structure and cost obtaining feature of fault detection and analysis somemethod for fault diagnosis. The contents in this thesis ware had mainly in the follow-ing aspects.
     First, the multiscale theory is introduced to diagnosis method of power station.In the multscale theory, the problem is decomposed at different scale and the infor-mation is used between each scale. It can reduce the complexity of the problem. Themultiscale study is divided into three part through the analysis of fault diagnosis andmultiscale research: characteristic multiscale, measure multiscale and cognitive mul-tiscale. The point of power station diagnosis is focused on the coordination of thisthree multscale diagnosis method. The characteristic multiscale, measure multiscaleand cognitive multiscale in power station is analysis from power station structure andrun procedures. The further analysis to the complexity of power station diagnosisshow that complexity of regular classical diagnosis cause the problem can not be re-alized and the multiscale diagnosis have advantage in this aspect.
     Second, the multiscale research in power station is diagnosis method based on statistical techniques. By using of the correspondence between time scale of mea-surement signal and space scale of power station, association rules is applianced toanalysis the change of running state relations in different time scale. From this, thefault detection method is introduced. In order to solve the problem that the detail scalecontain little macroscopic information. The multiscale diagnosis method of utilizingentire characteristic is given by the catching and analysis multiscale characteristic ofsystem running.
     Again, the structure information of power station is used to improve fault diag-nosis precision accuracy. Due to the discrepancy of measuring elements in monitoringsystem, the directed graph diagnosis method concluding unmeasured node symbol isresearched to improve the application extent of scale model. Due to the performanceof variable working condition, the diagnosis method of using SDG model is study.
     Finally, the optimization problem of fault diagnosis strategy is study in thoughtof detecting expense diversity. Most of detection property is multiple values.Multiple-valued attribute problem is analyzed and optimal diagnostic strategy algo-rithm is proposed. Due to the common phenomena of detecting information is imper-fect. We analyze the diagnostic strategy base on imperfect information. According tothe research feature in diagnosis process, the scale function represent diagnosis pro-cess information is introduced, therefore, diagnostic strategy optimization methods ofmultiple-valued attributes and imperfect information is suggested.
引文
1戴佩琨,程钧培.火力发电新技术发展.发电设备. 2004, (1):1–6
    2中电联统计信息部. 2007年全国电力工业统计快报.中国电力企业管理.2008, (3):84–86
    3黄文虎,夏松波,刘瑞岩.设备故障诊断原理技术及应用.科学出版社,1996
    4于达仁,张志强.某机组事故过程中转速信号的复现.中国电机工程学报.2002, 22(8):113–117
    5侯子良. SIS十年从概念走向壮大.电厂自动化. 2007, (3):1–3
    6郭喜燕.火电机组动态过程性能在线监测研究.华北电力大学博士学位论文. 2004
    7牛征.基于多元统计分析的火电厂控制系统故障诊断研究.华北电力大学(河北)博士学位论文. 2006
    8卢学军.汽轮发电机组故障诊断系统中几个关键技术的研究.浙江大学博士学位论文. 2001
    9李令莱.非线性系统的鲁棒故障诊断.清华大学博士学位论文. 2006
    10 F. Filippetti, G. Franceschini, C. Tassoni, et al. Recent Developments of Induc-tion Motor Drives Fault Diagnosis Using AI Techniques. IEEE Transactions onIndustrial Electronics. 2000, 47(5):994–1005
    11 R. Sehgal, O. P. Gandhi, S. Angra. Failure Cause Identification of Tribo-mechanical Systems Using Fault—Tree a Digraph Approach. Tribology Inter-national. 2003, 36(12):889–901
    12 V. Uraikul, C. W. Chan, P. Tontiwachwuthikul. Artificial Intelligence for Mon-itoring and Supervisory Control of Process Systems. Engineering Applicationsof Artificial Intelligence. 2007, 20(2):115–131
    13 J. Chen, R. J. Patton. Robust Model-based Fault Diagnosis for Dynamic Sys-tems. Kluwer Academic Publishers Norwell, MA, USA, 1999
    14蒋浩天.工业系统的故障检测与诊断.机械工业出版社, 2001
    15 D. M. Himmelblau. Fault Detection and Diagnosis in Chemical and Petrochem-ical Processes. Distributors For the US and Canada, Elsevier North-HollandNew York, 1978
    16 P. M. Frank. Fault Diagnosis in Dynamic Systems Using Analytical andKnowledge-based Redundancy- a Survey and some New Results. Automatica.1990, 26(3):459–474
    17 V. Venkatasubramanian, R. Rengaswamy, K. Yin, et al. A Review of ProcessFault Detection and Diagnosis Part I: Quantitative Model-based Methods. Com-puters and Chemical Engineering. 2003, 27(3):293–311
    18 V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri. A Review of ProcessFault Detection and Diagnosis Part Ii: Qualitative Models and Search Strategies.Computers and Chemical Engineering. 2003, 27(3):313–326
    19 V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, et al. A Review ofProcess Fault Detection and Diagnosis Part Iii: Process History Based Methods.Computers and Chemical Engineering. 2003, 27(3):327–346
    20周东华,叶银忠.现代故障诊断与容错控制.清华大学出版社, 2000
    21 M. Basseville, I. V. Nikiforov. Detection of Abrupt Changes: Theory and Ap-plication. Prentice-Hall, Inc., Simon and Schuster Company, Englewood Cliffs,NJ., 1993
    22 S. Narasimhan, C. Jordache. Data Reconciliation and Gross Error Detection:anIntelligent Use of Process Data. Gulf Professional Publishing, 2000
    23 P. R. Prasad, J. F. Davis, Y. Jirapinyo, et al. Structuring Diagnostic Knowledgefor Large-scale Process Systems. Computers and Chemical Engineering. 1998,22(12):1897–1905
    24 M. Modarres, S. W. Cheon. Function-centered Modeling of Engineering Sys-tems Using the Goal Tree-success Tree Technique and Functional Primitives.Reliability Engineering and System Safety. 1999, 64(2):181–200
    25 J.Gao, D.Alt-Kadi. Fault Diagnosis Based on Fault Tree Analysis. Applicationof Statistics and Management. 1993, (Supplement):134–139
    26 R. M. Sinnamon, J. D. Andrews. Improved Efficiency in Qualitative Fault TreeAnalysis. Quality and reliability engineering international. 1997, 13(5):293–298
    27 Y. Papadopoulos. Model-based System Monitoring and Diagnosis of FailuresUsing Statecharts and Fault Trees. Reliability Engineering and System Safety.2003, 81(3):325–341
    28 E. E. Tarifa, N. J. Scenna. Fault Diagnosis, Direct Graphs, and Fuzzy Logic.Computers and Chemical Engineering. 1997, 21:649–654
    29 M. R. Maurya, R. Rengaswamy, V. Venkatasubramanian. A Signed DirectedGraph and Qualitative Trend Analysis-based Framework for Incipient Fault Di-agnosis. Chemical Engineering Research and Design. 2007, 85(A10):1407–1422
    30 M. Iri, K. Aoki, E. O’Shima, et al. A Graphical Approach to the Problem ofLocating the Origin of the System Failure. Journal of the Operations ResearchSociety of Japan. 1980, 23(4):295–312
    31 J. Shiozaki, B. Shibata, H. Matsuyama. Fault Diagnosis of Chemical ProcessesUtilizing Signed Directed Graphs-improvement by Using Temporal Informa-tion. IEEE Transactions on Industrial Electronics. 1989, 36(4):469–474
    32 M. R. Maurya, R. Rengaswamy, V. Venkatasubramanian. A Signed DirectedGraph-based Systematic Framework for Steady-state Malfunction Diagnosis In-side Control Loops. Chemical Engineering Science. 2006, 61(6):1790–1810
    33 M. R. Maurya, R. Rengaswamy, V. Venkatasubramanian. A Systematic Frame-work for the Development and Analysis of Signed Digraphs for Chemical Pro-cesses. 1. Algorithms and Analysis. Industrial and Engineering Chemistry Re-search. 2003, 42(20):4789–4810
    34 M. R. Maurya, R. Rengaswamy, V. Venkatasubramanian. A Systematic Frame-work for the Development and Analysis of Signed Digraphs for Chemical Pro-cesses. 2. Control Loops and Flowsheet Analysis. Industrial and EngineeringChemical Research. 2003, 42(20):4811–4827
    35 M. Ram Maurya, R. Rengaswamy, V. Venkatasubramanian. Application ofSigned Digraphs-based Analysis for Fault Diagnosis of Chemical Process Flow-sheets. Engineering Applications of Artificial Intelligence. 2004, 17(5):501–51836 S. A. McCoy, D. Zhou, P. W. H. Chung. State-based Modelling in HazardIdentification. Applied Intelligence. 2006, 24(3):263–279
    37李安峰,夏涛,张贝克,等.化工过程SDG建模方法.系统仿真学报. 2003,15(10):1364–1368
    38刘敏华,萧德云.基于趋势分析和SDG模型的故障诊断.控制理论与应用.2006, 23(2):306–310
    39杨帆,萧德云. SDG建模及其应用的进展.控制理论与应用. 2005,22(5):764–774
    40曹文亮,王兵树,马良玉,等.基于改进SDG的电站热力系统故障诊断方法研究.中国电机工程学报. 2005, 25(23):124–128
    41曹文亮,王兵树,马永光,等.基于SDG深层知识模型的电站热力系统故障诊断方法.华北电力大学学报. 2005, 32(5):79–83
    42曹文亮,王兵树,马进,等.基于符号有向图节点定量化模型的故障诊断方法.中国电机工程学报. 2006, 26(7):67–71
    43 J. E. Larsson. Diagnostic Reasoning Strategies for Means-end Models. Auto-matica. 1994, 30(5):775–787
    44 I. C. Chang, C. C. Yu, C. T. Liou. Model-based Approach for Fault Diagnosis.1. Principles of Deep Model Algorithm. Industrial and Engineering ChemistryResearch. 1994, 33(6):1542–1555
    45 I. C. Chang, C. C. Yu, C. T. Liou. Model-based Approach for Fault Diagnosis. 2.Extension to Interval Systems. Industrial and Engineering Chemistry Research.1995, 34(3):828–844
    46 S.-H. Liao. Expert System Methodologies and Applications: A Decade Reviewfrom 1995 to 2004. Expert Systems with Applications. 2005, 28(1):93–103
    47 R. H. Bannister, P. Moore. General Rotational Machinery Expert System. Pro-ceedings of Expert Systems’86, The 6Th Annual Technical Conference on Re-search and development in expert systems III table of contents. 1987:140–151
    48 B.-S. Yang, D.-S. Lim, A. C. C. Tan. VIBEX: An Expert System for Vibra-tion Fault Diagnosis of Rotating Machinery Using Decision Tree and DecisionTable. Expert Systems with Applications. 2005, 28(4):735–742
    49 H.-C. Wang, H.-S. Wang. A Hybrid Expert System for Equipment Failure Anal-ysis. Expert Systems with Applications. 2005, 28(4):615–622
    50 A. C. Yazici, E. Ogus, S. Ankarali, et al. Artificial Neural Networks: Review.Turkiye Klinikleri Tip Bilimleri Dergisi. 2007, 27(1):65–71
    51 M. De Beule, E. Maes, O. De Winter, et al. Artificial Neural Networks andRisk Stratification: A Promising Combination. Mathematical And ComputerModelling. 2007, 46(1-2):88–94
    52 T. V. Santosh, G. Vinod, R. K. Saraf, et al. Application of Artificial NeuralNetworks to Nuclear Power Plant Transient Diagnosis. Reliability Engineeringand System Safety. 2007, 92(10):1468–1472
    53 R. Isermann. Supervision, Fault-detection and Fault-diagnosis Methods: AnIntroduction. Control Engineering Practice. 1997, 5(5):639–652
    54黄孝彬.火电厂控制系统故障检测与诊断的研究.华北电力大学博士学位论文. 2004
    55 A. Brandt. Multiscale Scientific Computation: Review 2001. Proc. 10 thCopperMountain Conferences on Multigrid Methods, Copper Mountain, CO, USA.April. 2001:3–96
    56 G. Scovazzi. Multiscale Methods in Science and Engineering. doctor of philos-ophy, Stanford University. 2005
    57黑格尔.逻辑学.人民出版社, 2002
    58何国威,夏蒙棼,柯孚久,等.多尺度耦合现象:挑战和机遇.自然科学进展. 2004, 14(2):121–124
    59 M. Satoh, H. Tomita, H. Miura, et al. Development of a Global Cloud ResolvingModel: A Multi-scale Structure of Tropical Convections. Journal of the EarthSimulator. 2005, 3:11–19
    60 V. Lakshmanan, R. Rabin, V. DeBrunner. Multiscale Storm Identification andForecast. Atmospheric Research. 2003, 67:367–380
    61 B. J. Spiesman, G. S. Cumming. Communities in Context: The In?uences ofMultiscale Environmental Variation on Local Ant Community Structure. Land-scape Ecology. 2008, 23(3):313–325
    62丁圣彦.生态学–面向人类生存环境的科学价值观.北京:科学出版社,2004
    63 J. Li, M. Kwauk. Exploring Complex Systems in Chemical Engineering- theMulti-scale Methodology. Chemical Engineering Science. 2003, 58(3):521–53564 P. Schravendijk, L. M. Ghiringhelli, L. Delle Site, et al. Interaction of HydratedAmino Acids with Metal Surfaces: A Multiscale Modeling Description. Journalof Physical Chemistry C. 2007, 111(6):2631–2642
    65 P. H. Gaskell, P. K. Jimack, Y. Y. Koh, et al. Development and Application ofa Parallel Multigrid Solver for the Simulation of Spreading Droplets. Interna-tional Journal for Numerical Methods in Fluids. 2008, 56(8):979–989
    66 P. Lazic, H. Stefancic, H. Abraham. The Robin Hood Method - a New View onDifferential Equations. Engineering Analysis with Boundary Elements. 2008,32(1):76–89
    67文成林,周东华.多尺度估计理论及其应用.北京:清华大学出版社, 2002
    68 Y. Y. Yao. Information Granulation and Rough Set Approximation. Interna-tional Journal of Intelligent Systems. 2001, 16(1):87–104
    69 L. Kaczmarczyk, C. J. Pearce, N. Bicanic. Scale Transition and Enforcementof Rve Boundary Conditions in Second-order Computational Homogenization.International Journal For Numerical Methods In Engineering. 2008, 74(3):506–522
    70 Z. S. Duan, J. Z. Wang, G. R. Chen, et al. Stability Analysis and Decentral-ized Control of a Class of Complex Dynamical Networks. Automatica. 2008,44(4):1028–1035
    71 C. Castellano, R. Pastor-Satorras. Routes to Thermodynamic Limit on Scale-free Networks. Physical Review Letters. 2008, 100(14)
    72 S. G. Mallat. A Theory for Multiresolution Signal Decomposition: The Wavele-trepresentation. IEEE Transactions on Pattern Analysis and Machine Intelli-gence. 1989, 11(7):674–693
    73 A. Benveniste, R. Nikoukhah, A. S. Willsky, et al. Multiscale System The-ory. Proceedings of the 29th IEEE Conference on Decision and Control, 1990.1990:2484–2489
    74 K. C. Chou, A. S. Willsky, A. Benveniste. Multiscale Recursive Estimation,Data Fusion, and Regularization. IEEE Transactions on Automatic Control.1994, 39(3):464–478
    75 A. Tsai, A. Yezzi Jr, A. S. Willsky. Curve Evolution Implementation of theMumford-shah Functional Forimage Segmentation, Denoising, Interpolation,and Magnification. IEEE Transactions on Image Processing. 2001, 10(8):1169–1186
    76郭达志,方涛,杜培军,等.论复杂系统研究的等级结构与尺度推绎.中国矿业大学学报. 2003, 32(3):213–217
    77 S. K. Oh, W. Pedrycz, K. J. Park. Structural Developments of Fuzzy Systemswith the Aid of Information Granulation. Simulation Modelling Practice andTheory. 2007, 15(10):1292–1309
    78 K. J. Park, W. Pedrycz, S. K. Oh. A Genetic Approach to Modeling Fuzzy Sys-tems Based on Information Granulation and Successive Generation-based Evo-lution Method. Simulation Modelling Practice and Theory. 2007, 15(9):1128–1145
    79李道国,苗夺谦.粒度计算研究综述.计算机科学. 2005, 32(9):1–12
    80李静海,郭慕孙.过程工程量化的科学途径–多尺度法.自然科学进展.1999, 9(12):1073–1078
    81李静海,葛蔚.过程工业中的多尺度效应及离散化单元模拟.化工进展.1999, (5):11–21
    82 Y. H. Zhou, J. Zhou. A Modified Wavelet Approximation for Multi-resolutionAwcm in Simulating Nonlinear Vibration of Mdof Systems. Computer Methodsin Applied Mechanics and Engineering. 2008, 197(17-18):1466–1478
    83 B. R. Bakshi. Multiscale PCA with Application to Multivariate Statistical Pro-cess Monitoring. The American Institute of Chemical Engineering Journal.1998, 44(7):1596–1610
    84 R. Greiner, R. Hayward, M. Jankowska, et al. Finding Optimal SatisficingStrategies for And-or Trees. Artificial Intelligence. 2006, 170(1):19–58
    85 A. Chatterjee, D. G. Vlachos. An Overview of Spatial Microscopic and Accel-erated Kinetic Monte Carlo Methods. Journal Of Computer-Aided MaterialsDesign. 2007, 14(2):253–308
    86 K. R. Pattipati, M. G. Alexandridis. Application of Heuristic Search and Infor-mation Theory to Sequential Fault Diagnosis. IEEE Transactions on Systems,Man and Cybernetics. 1990, 20(4):872– 887
    87 O. E. Kundakcioglu, T. Unluyurt. Bottom-up Construction of Minimum-costAnd/or Trees for Sequential Fault Diagnosis. IEEE Transactions on Systems,Man, and Cybernetics Part A:Systems and Humans. 2007, 37(5):621–629
    88 R. Boumen, I. S. M. de Jong, J. W. H. Vermunt, et al. Test Sequencing inComplex Manufacturing Systems. IEEE Transactions on Systems Man andCybernetics Part A: Systems And Humans. 2008, 38(1):25–37
    89 B. R. Bakshi. Multiscale Analysis and Modeling Using Wavelets. Journal OfChemometrics. 1999, 13(3-4):415–434
    90 J. Park, W. Jung. A Study on the Systematic Framework to Develop EffectiveDiagnosis Procedures of Nuclear Power Plants. Reliability Engineering andSystem Safety. 2004, 84(3):319–335
    91王伟.基于数据挖掘的火电厂DCS传感器故障检测与诊断.哈尔滨工业大学硕士学位论文. 2002
    92 W. Bao, D.-R. Yu, W. Wang, et al. Sensor Fault Detection in Thermal PowerPlants Based on Association Rule. Chinese Society of Electrical Engineering.2003, 23(12):170–174
    93 J. Li, H. Shen, R. Topor. Mining the Optimal Class Association Rule Set.Knowledge-Based Systems. 2002, 15(7):399–405
    94 K. F. Jea, M. Y. Chang. Discovering Frequent Itemsets by Support Approxima-tion and Itemset Clustering. Data and Knowledge Engineering. 2008, 65(1):90–107
    95谢平,林洪彬,王霄,等.一种用于故障诊断的多信息熵监测方法研究.仪器仪表学报. 2004, 25(4):541–543
    96董玉亮,顾煜炯,杨昆.基于蒙特卡洛模拟的发电厂设备重要度分析.中国电机工程学报. 2003, 23(8):201–205
    97 M. R. Akbarzadeh-T, M. Moshtagh-Khorasani. A Hierarchical Fuzzy Rule-based Approach to Aphasia Diagnosis. Journal of Biomedical Informatics.2007, 40(5):465–475
    98 V. Sugumaran, K. I. Ramachandran. Automatic Rule Learning Using DecisionTree for Fuzzy Classifier in Fault Diagnosis of Roller Bearing. MechanicalSystems and Signal Processing. 2007, 21(5):2237–2247
    99 Y. J. Li, P. W. Tse, X. J. Wang. Recovery of Vibration Signal Based on a Super-exponential Algorithm. Journal of Sound and Vibration. 2008, 311(1-2):537–553
    100丁敏.可满足性问题算法研究以及在时序电路等价验证中的应用.复旦大学博士学位论文. 2005
    101堵丁柱,葛可一,王浩.计算复杂性导论.高等教育出版社, 2002
    102任若恩,王惠文.多元统计数据分析—理论、方法、实例.北京:国防工业出版社, 1997
    103 Q. Chen, R. J. Wynne, P. Goulding, et al. The Application of Principal Compo-nent Analysis and Kernel Density Estimation to Enhance Process Monitoring.Control Engineering Practice. 2000, 8(5):531–543
    104 D. Antory, G. W. Irwin, U. Kruger, et al. Improved Process Monitoring UsingNonlinear Principal Component Models. International Journal of IntelligentSystems. 2008, 23(5):520–544
    105 S. Yoon, J. F. MacGregor. Principal-component Analysis of Multiscale Data forProcess Monitoring and Fault Diagnosis. AIChE Journal. 2004, 50(11):2891–2903
    106 J. M. Lee, C. Yoo, S. W. Choi, et al. Nonlinear Process Monitoring UsingKernel Principal Component Analysis. Chemical Engineering Science. 2004,59(1):223–234
    107 J. liang, J. qian. Multivariate Statistical Process Monitoring and Control: Re-cent Developments and Applications to Chemical Industry. Chinese Journal ofChemical Engineering. 2003, 11(002):191–203
    108 W. H. Yang, D. Q. Dai, H. Yan. Feature Extraction and Uncorrelated Discrim-inant Analysis for High-dimensional Data. IEEE Transactions on Knowledgeand Data Engineering. 2008, 20(5):601–614
    109 P. L. Cui, J. H. Li, G. Z. Wang. Improved Kernel Principal Component Analysisfor Fault Detection. Expert Systems With Applications. 2008, 34(2):1210–1219
    110 P. Liberatore. Complexity and Compilability of Diagnosis and Recovery ofGraph-based Systems. International Journal of Intelligent Systems. 2005,20(10):1053–1076
    111 H. Vedam, V. Venkatasubramanian. Signed Digraph Based Multiple Fault Di-agnosis. Computers and Chemical Engineering. 1997, 21(suppl):655–660
    112 G. Lee, B. Lee, E. S. Yoon, et al. Multiple-fault Diagnosis under UncertainConditions by the Quantification of Qualitative Relations. Industrial and Engi-neering Chemistry Research. 1999, 38(3):988–998
    113 J. M. Henson, S. P. Reise, K. H. Kim. Detecting Mixtures from Structural ModelDifferences Using Latent Variable Mixture Modeling: A Comparison of Rela-tive Model Fit Statistics. A Multidisciplinary Journal on Structural EquationModeling. 2007, 14(2):202–226
    114王勉宇.基于图论的过程故障诊断研究.浙江大学博士学位论文. 2002
    115 N. S. V. Rao. Computational Complexity Issues in Operative Diagnosis ofGraph-based Systems. IEEE Transactions on Computers. 1993, 42(4):447–457
    116 J. Chen, J. Howell. A Self-validating Control System Based Approach to PlantFault Detection and Diagnosis. Computers and Chemical Engineering. 2001,25(2):337–358
    117牛征,刘吉臻,牛玉广.动态多主元模型故障检测方法在变工况过程中的应用.动力工程. 2005, 25(4):554–598
    118 R. Dorr, F. Kratz, J. Ragot, et al. Detection, Isolation, and Identification ofSensor Faults in Nuclear Power Plants. IEEE Transactions on Control SystemsTechnology. 1996, 5(1):42–60
    119 F. Tu, K. R. Pattipati, S. Deb, et al. Computationally Efficient Algorithms forMultiple Fault Diagnosis in Large Graph-based Systems. IEEE Transactions onSystems, Man, and Cybernetics Part A: Systems and Humans. 2003, 33(1):73–85120 R. W. Yeung. On Noiseless Diagnosis. IEEE Transactions on Systems, Man,and Cybernetics. 1994, 24(7):1074–1082

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700