用户名: 密码: 验证码:
动态自组装聚电解质及纳米杂化复合分离膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
致密复合膜具有超薄选择性分离层和多孔支撑层,在膜分离领域具有广阔的应用前景。在复合膜制备领域,选择性分离层的超薄化和运行过程中的稳定性是其中的主要难题。利用交替沉积的层层吸附自组装(LbL)是解决分离层超薄化最具前途的技术之一,而将有机/无机纳米杂化材料用于复合膜制备可以有效提高膜的机械强度和热稳定性,极大地丰富膜材料体系。本论文采用动态自组装技术分别在有机和无机基底上制备了聚电解质及纳米杂化多层膜,通过现代分析手段揭示了多层膜的微观结构、形貌与分离性能之间的构效关系,并将其用于渗透汽化和纳滤等分离领域,对复合膜的分离性能及其稳定性进行了研究。
     首先,将动态自组装技术和热交联技术相结合在中空纤维陶瓷基底的内表面制备了聚电解质多层膜,并将聚电解质间的静电力转化为共价键,制备出高稳定性的渗透汽化复合膜。采用EDX,SEM和Zeta电位等对复合过程中膜表面的形貌和结构变化进行了表征。所制备的有机/无机中空纤维复合膜对95wt.%乙醇/水体系显示出优异的渗透汽化分离性能。考察了组装层数,进料液温度和进料液水含量对复合膜渗透汽化性能的影响。当复合层数达到5层时,复合膜的渗透通量可达1050g/m2h,而透过液中的水含量仍可保持在97.5wt.%。相比于以有机聚合物为基底制备的复合膜,有机/无机中空纤维复合膜的渗透通量有了显著提高,并且提高了复合膜的机械强度。对复合膜的稳定性测试表明,有机/无机中空纤维复合膜在30h内可稳定运行。
     其次,采用超声破碎和静电分散技术制备了氧化石墨烯/聚电解质纳米杂化复合物,形成了稳定分散的纳米杂化物溶液。TEM结果表明同步超声破碎和静电分散作用可使氧化石墨烯的尺寸从微米级降低到纳米级尺度,从而与聚丙烯腈基膜孔径相匹配,有利于在基膜表面自组装形成纳米杂化复合物多层膜。进一步采用动态自组装技术组装氧化石墨烯/聚电解质纳米杂化复合物多层膜,通过SEM,FTIR,AFM和Zeta电位对组装过程进行了跟踪表征。采用纳米压痕仪和热重分析对组装后的氧化石墨烯/聚电解质纳米杂化多层膜表面进行了分析,研究结果表明,氧化石墨烯/聚电解质多层膜的杨氏模量和纳米硬度分别从1.3GPa和0.16GPa增加到1.9GPa和0.24GPa,分解温度升高,分解速率下降,表明杂化多层膜的机械强度和热稳定性均有较大程度的提高。将所制备的氧化石墨烯/聚电解质纳米杂化多层复合膜用于染料脱除,一价和二价离子的分离以及乙醇/水体系的渗透汽化分离,均取得较好的分离效果。纳米杂化多层膜对刚果红和甲基蓝的截留率均可达99%以上,对Mg2+和Na+的截留率分别为92.9%和44.1%,用于渗透汽化分离乙醇/水体系时透过液中的水含量可达98.1wt.%,渗透通量为156g/m2h。这表明纳米杂化多层膜可被用于不同体系的分离领域。
     最后,采用动态负压自组装技术制备了聚乙烯醇/氧化石墨烯纳米杂化复合物“孔填充”复合膜。研究结果表明,杂化氧化石墨烯后的聚乙烯醇复合膜的杨氏模量、纳米硬度和热稳定性均有较大程度的提高。将聚乙烯醇/氧化石墨烯纳米杂化复合物膜用于甲苯/正庚烷体系的渗透汽化分离,分别对组装过程中的聚乙烯醇浓度,氧化石墨烯含量,动态复合时间和动态复合压力进行了考察,结果表明复合膜对芳烃/烷烃混合体系具有较好的分离性能。当进料液为50wt.%的甲苯/正庚烷时,复合膜的分离因子可达12.9,渗透通量为27g/m2h。由于复合膜的“孔填充”结构,可以在保证复合膜分离性能的同时有效抑制有机溶剂对复合膜的过度溶胀,从而增强了复合膜的稳定性。将复合膜浸泡在50wt.%的甲苯/正庚烷溶液中480h后,复合膜的渗透汽化性能基本保持不变,有被用于分离芳烃/烷烃体系分离的潜在可能性。
Dense composite membrane has the ultrathin selective separation layer and a poroussupport layer. It can improve the separation performance and stability of the compositemembrane. Therefore, the dense composite membrane has board application prospects in thefield of membrane separation. The key factor for the industrial application of the compositemembrane was excellent performance and stable operation. One of the main approaches islayer-by-layer self-assembly technical. The organic-inorganic hybrid and compositemembrane can combine the advantages of both polymeric and ceramic membranes, whichposs great theoretical and practical sigificance. In this work, nanohybrid membrane wasdeposited onto the organic and inorganic substrate by dynamic self-assembly. Therelationship between the microstructure, morphology and separation performance of themultilayers was investigated by modern analytical tools. The composite membrane was usedon pervaporation and nanofiltration. The separation performance and stability of thecomposite membrane was investigated.
     Firstly, the organic-inorganic composite hollow fiber membrane was prepared bydynamic layer-by-layer self-assembly and heat cross-linking technology. Static electricitybetween the polyelectrolyte was converting to covalent bond. The composite membrane hasan excellent pervaporation performance with high stable. The formation of multilayers on thehollow fibers was characterized with an EDX, SEM and electrokinetic analyzer. Thecomposite membrane has an excellent separation performance on95wt.%ethanol/watermixtures. The effects of layer number, feed temperature and water content in the feed on thepervaporation performance have been investigated. The membrane obtained with fivebilayers had a permeate flux of1050g/m2h, while the water content in permeate was97.5wt.%. Compared with an organic polymer based membrane, the permeate flux wassignificantly improved while the selectivity still remained at a relatively high level whenusing the ceramic hollow fiber substrate. Furthermore, the mechanical, chemical and thermalstability of the composite membrane can be enhanced. The composite membrane wasoperated over30h for pervaporation separation of95wt.%ethanol/water mixtures and had arelatively good long-term stability.
     Secondly, a stable, well-dispersed graphene oxide/polyelectrolyte nanohybrid complexwas prepared by sonication and electrostatic dispersion. The size of graphene oxide sheetdecreased from micronmeters to nanometers, which could match the pore size of the substrate.The nanohybrid complex was assembled onto the surface of PAN membrane. The assemblyprocess was systemtically investigated by SEM, FTIR and an electrokinetic analyzer, anano-indenter and TGA. The nanoindentation and thermogravimetric experiments in particular indicated that the GO incorporation greatly improved the Young’s modulus,hardness and thermal stability of the membranes. The Young’s modulus and hardnessincreased from1.3GPa and0.16GPa to1.9GPa and0.24GPa, respectively. The nanohybridmembrane show comparable nanofiltration and pervaporation performances in the dyeremoval, separation of monovalent and divalent ions, and dehydration of solvent-watermixtures. The retention of nanohybrid membrane for congo red and methyl blue could reach99%. The retention for Mg2+and Na+was92.9%and44.1%, respectively. For separation ofethanol/water mixtures, the water content in permeate could reach98.1wt.%and thepermeate flux was156g/m2h. The results suggested that the nanohybrid multilayermembrane can be used on varies separation fields.
     Lastly, a poly(vinyl alchol)/graphene oxide nanohybrid complex was prepared bysonicated. The nanohybrid complex was assembled onto an asymmetric PAN ultrafiltrationmembrane to form “pore-filling” composite membrane by dynamic pressure-driven assembly.The nanoindentation and thermogravimetric experiments in particular indicated that the GOincorporation greatly improved the Young’s modulus, hardness and thermal stability of themembranes. The composite membrane was used on pervaporation of toluene/n-heptanemixtures. The effects of pressure, filtration time, polymer, and GO concentration onpervaporation performance were investigated. When the feed solution was50wt.%toluene/n-heptane mixtures, the separation factor of the composite membrane was12.9andthe permeate flux was27g/m2h。The composite membrane was immersed into50wt%toluene/n-heptane solution for480h. Results of the swelling experiment suggest thatassembly of the nanohybrid membrane by molecular-level dispersion of GO in PVA led toenhanced affinity of the membrane to aromatic compounds and thus improved thepervaporation performance. Meanwhile, the pore-filling structure could effectively reduceswelling of the nanohybrid membrane to make the composite stable.
引文
[1] P. W. Morgan. Condensation polymers: by interfacial and solution methods. Polym. Rev.1965,10:19~64.
    [2] S. K. Nataraj, K. M. Hosamani, T. M. Aminabhavi. Nanofiltration and reverse osmosis thin filmcomposite membrane module for the removal of dye and salts from the simulated mixtures.Desalination2009,249:12~17.
    [3] M. Liu, D. Wu, S. Yu, C. Gao. Influence of the polyacyl chloride structure on the reverse osmosisperformance, surface properties and chlorine stability of the thinfilm composite polyamidemembranes. J. Membr. Sci.2009,326:205~214.
    [4] A. Rahimpour, M. Jahanshahi, N. Mortazavian, S. S. Madaeni, Y. Mansourpanah. Preparation andcharacterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltrationmembranes for water softening. Appl. Surf. Sci.2010,256(6):1657~1663.
    [5] R. S. Harisha, K. M. Hosamani, R. S. Keri, S. K. Nataraj, T. M. Aminabhavi. Arsenic removal fromdrinking water using thin-film composite nanofiltration membrane. Desalination2010,252:75~80.
    [6] P. Shao, R. Y. M. Huang. Polymeric membrane pervaporation. J. Membr. Sci.2007,287:162~179.
    [7] O. Sae-Khow, S. Mitra. Pervaporation in chemical analysis. J. Chromatogr. A2010,1217:2736~2746.
    [8] J. G. Wijmans, R. W. Baker. The solution–diffusion model: a review. J. Membr. Sci.1995,107:1~21.
    [9] P. D. Chapman, T. Oliveira, A. G. Livingston, K. Li. Membranes for the dehydration of solvents bypervaporation. J. Membr. Sci.2008,318:5~37.
    [10] B. Bolto, M. Hoang, Z. L. Xie. A review of membrane selection for the dehydration of aqueousethanol by pervaporation. Chem. Eng. Process.2011,50:227~235.
    [11] L. M. Vane. A review of pervaporation for product recovery from biomass fermentation processes. J.Chem. Technol. Biotechnol.2005,80:603~629.
    [12] B. Smitha, D. Suhanya, S. Sridhar, M. Ramakrishna. Separation of organic–organic mixtures bypervaporation-a review. J. Membr. Sci.2004,241:1~21.
    [13] L. G. Lin, Y. Z. Zhang, Y. Kong. Recent advances in sulfur removal from gasoline by pervaporation.Fuel2009,88:1799~1809.
    [14] Y. Zhu, G. Minet, T. T. Tsotsis. A continuous pervaporation membrane reactor for the study ofesterification reactions using composite polymeric/ceramic membranes. Chem. Eng. Sci.1996,51:4103~4113.
    [15] U. Sander, P. Soukup. Design and operation of a pervaporation plant for ethanol dehydration. J.Membr. Sci.1988,36:463~475.
    [16] A. Shanley, G. Ondrey, S. Moore. Pervaporation finds its niche. Chem. Eng.1994,101(9):34~37.
    [17] H. E. A. Bruschke. Industrial applications of membrane separation processes. Pure Appl. Chem.1995,67:993~1002.
    [18] R. Y. M. Huang, N. R. Jarvis. Separation of liquid mixtures by using polymer membranes, II.permeation of aqueous alcohol solutions through cellophane and poly(vinyl alcohol). J. Appl. Polym.Sci.1970,14:2341~2356.
    [19] P. Aptel, N. Challard, J. Cuny, J. Neel. Applications of pervaporation to separate azeotropicmixtures. J. Membr. Sci.1976,1:271~287.
    [20] T. Q. Nguyen, K. Nobe. Extraction of organic contaminants in aqueous solutions by pervaporation.J. Membr. Sci.1987,30:11~22.
    [21] I. P. Blume, J. F. Schwering, M. H. V. Mulder, C. A. Smolders. Vapor sorption and permeationproperties of poly(dimethyl-siloxane) films. J. Membr. Sci.1991,61:85~97.
    [22] C. K. Yoem, H. K. Kim, J. W. Rhim. Removal of trace VOCs from water through PDMSmembranes and analysis of their permeation behaviors. J. Appl. Polym. Sci.1999,73:601~611.
    [23] W. Ji, S. T. Hwang. Modeling of multicomponent pervaporation for removal of volatile organiccompounds from water. J. Membr. Sci.1994,93:1~19.
    [24] J. P. Brun, C. Larchet, G. Bulvestre, B. Auclair. Sorption and pervaporation of dilute aqueoussolutions of organic compounds through polymer membranes. J. Membr. Sci.1985,25:55~100.
    [25] N. Tanihara, K. Tanaka, H. Kita, K. Okamoto. Pervaporation of organic liquid mixtures throughmembranes of polyimides containing methylsubstituted phenylenediamine moieties. J. Membr. Sci.1994,95:161~169.
    [26] N. Tanihara, N. Umeo, T. Kawabata, K. Tanaka, H. Kita, K. Okmoto. Pervaporation of organicliquid mixtures through poly(ether imide) segmented copolymer membranes. J. Membr. Sci.1995,104:181~192.
    [27] B. V. Bruggen, M. Manttari, M. Nystrom. Drawbacks of applying nanofiltration and how to avoidthem: a review. Sep. Purif. Technol.2008,63:251~263.
    [28] H. P. Dijkstra, G. P. M. Van Klink, G. Van Koten. The use of ultra-and nanofiltration techniques inhomogeneous catalyst recycling. Acc. Chem. Res.2002,35:798~810.
    [29] I. C. Kim, H. G. Yoon, K. H. Lee. Formation of integrally skinned asymmetric polyetherimidenanofiltration membranes by phase inversion process. J. Appl. Polym. Sci.2002,84:1300~1307.
    [30] N. Hilal, H. A1-ZoubP, N.A. Darwish, A.W. Mohammad, M. Abu Arabi. A comprehensive reviewof nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy.Desalination2004,170:281~308.
    [31] B. V. D. Bruggen, C. Vandecasteele. Removal of pollutants from surface water and groundwater bynanofiltration: overview of possible applications in the drinking water industry. Environ. Pollut.2003,122:435~445.
    [32] W. Zhang, G. H. He, P. Gao, G. H. Chen. Development and characterization of compositenanofiltration membranes and their application in concentration of antibiotics. Sep. Purif. Technol.2003,30:27~35.
    [33] A. F. Ismail, A. R. Hassana. Effect of additive contents on the performances and structuralproperties of asymmetric polyethersulfone (PES) nanofiltration membranes. Sep. Purif. Technol.2007,55:98~109.
    [34] T. Matsuura. Progress in membrane science and technology for seawater desalination: a review.Desalination2001,134:47~54.
    [35] A. Prakash Rao, S. V. Joshi, J. J. Trivedi, C. V. Devmurari, V. J. Shah. Structure–performancecorrelation of polyamide thin film composite membranes: effect of coating conditions on filmformation. J. Membr. Sci.2003,211:13~24.
    [36] S. Verissimo, K. V. Peinemann, J. Bordado. Influence of the diamine structure on the nanofiltrationperformance, surface morphology and surface charge of the composite polyamide membranes. J.Membr. Sci.2006,279:266~275.
    [37] F. J. Yang, S. H. Zhang, D. L. Yang, X. G. Jian. Preparation and characterization of polypiperazineamide PPESK hollow fiber composite nanofiltration membrane. J. Membr. Sci.2007,301:85~92.
    [38] K. J. Kim, G. Chowdhury, T. Matsuura. Low pressure reverse osmosis performances of sulfonatedpoly(2,6-dimethyl-1,4-phenylene oxide) thin film composite membranes: effect of coatingconditions and molecular weight of polymer. J. Membr. Sci.2000,179:43~52.
    [39] K. Kim, G. Chowdhury, T. Matsuura. Low pressure reverse osmosis performance of sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) thin film composite membranes: effect of coating conditions andmolecular weight of polymer. J. Membr. Sci.2004,179:43~52.
    [40] J. M. Gohil, P. Ray. Polyvinyl alcohol as the barrier layer in thin film composite nanofiltrationmembranes: preparation, characterization, and performance evaluation. J. Colloid Interface Sci.2009,338:121~127.
    [41] L. Krasemann, B. Tieke. Selective ion transport across self-assembled alternating multilayers ofcationic and anionic polyelectrolytes. Langmuir2000,16:287~290.
    [42] J. J. Harris, J. L. Stair, M. L. Bruening. Layered polyelectrolyte films as selective, ultrathin barriersfor anion transport. Chem. Mater.2000,12:1941~1946.
    [43] R. W. Baker. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res.2002,41:1393~1411.
    [44] W. J. Koros. Gas separation membranes: needs for combined materials science and processingapproaches. Macromol. Symp.2002,188:13~22.
    [45] G. Maier. Gas separation with polymer membranes. Angew. Chem. Int. Ed.1998,37:2960~2974.
    [46] S. A. Stern. Polymers for gas separations: the next decade. J. Membr.Sci.1994,94:1~65.
    [47] W. J. Koros, G. K. Fleming. Membrane-based gas separation. J. Membr.Sci.1993,83:1~80.
    [48] R. M. Barrer, G. Skirrow. Transport and equilibrium phenomena in gas–elastomer systems. I.Kinetic phenomena. J. Polym. Sci.1948,3:549~563.
    [49] A. S. Michaels, H. J. Bixler. Flow of gases through polyethylene. J. Polym. Sci.1961,50:413~439.
    [50] C. E. Rogers, V. Stannett, M. Szwarc. The sorption, diffusion, and permeation of organic vapors inpolyethylene. J. Polym. Sci.1960,45:61~82.
    [51] P. Meares. The diffusion of gases through polyvinyl acetate. J. Am. Chem. Soc.1954,76:3415~3422.
    [52] W. W. Brandt, G. A. Anysas. Diffusion of gases in fluorocarbon polymers. J. Appl. Polym. Sci.1963,7:1919~1931.
    [53] W. L. Robb. Thin silicone membranes-their permeation properties and some applications. Ann. N.Y.Acad. Sci.1968,146:119~137.
    [54] G. J. van Amerongen. Diffusion in elastomers. Rubber Chem. Technol.1964,37:1065~1152.
    [55] P. Y. Hsieh. Diffusibility and solubility of gases in ethylcellulose and nitrocellulose. J. Appl. Polym.Sci.1963,7:1743~1756.
    [56] K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima. Bactericidal and detoxification effects of TiO2thin film photocatalysts. Environ. Sci. Technol.1998,32:726~728.
    [57] S. H. Kim, S. Y. Kwak, B. H. Sohn, T. H. Park. Design of TiO2nanoparticle self assembledaromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofoulingproblem. J. Membr. Sci.2003,211:157~165.
    [58] S. Y. Kwak, S. H. Kim, S. S. Kim. Hybrid organic/inorganic reverse osmosis (RO) membrane forbactericidal anti-fouling.1. Preparation and characterization of TiO2nanoparticle self-assembledaromatic polyamide thin-film-composite (TFC) membrane. Environ. Sci. Technol.2001,35:2388~2394.
    [59] B. H. Jeong, E. M. V. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A. K. Ghosh, A. Jawor.Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosismembranes. J. Membr. Sci.2007,294:1~7.
    [60] A. Noy, H. G. Park, F. Fornasiero, J. K. Holt, C. P. Grigoropoulos, O. Bakajin. Nanofluidics incarbon nanotubes. Nano Today2007,2:22~29.
    [61] B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L. G. Bachas. Aligned multiwalledcarbon nanotube membranes. Science2004,303:62~65.
    [62] M. Majumder, N. Chopra, R. Andrews, B. J. Hinds. Nanoscale hydrodynamics: enhanced flow incarbon nanotubes. Nature2005,438:44.
    [63] J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, O.Bakajin. Fast mass transport through Sub-2-nanometer carbon nanotubes. Science2006,312:1034~1037.
    [64] M. Whitby, L. Cagnon, M. Thanou, N. Quirke. Enhanced fluid flow through nanoscale carbon pipes.Nano Lett.2008,8:2632~2637.
    [65] W. H. Yuan,H. R. Chen,R. R. Chang,L. Li. Synthesis and characterization of high performanceNaA zeolite-polyimide composite membranes on a ceramic hollow fiber by dip-coating deposition.Desliantion,2011,273:343~351.
    [66]李冰冰,许振良,郑忠生,孙德,李然. PDMS/PES中空纤维渗透汽化复合膜的制备.膜科学与技术.2009,29:29~33.
    [67] B. K. Nandi, R. Uppaluri, M. K. Purkait. Effects of dip coating parameters on the morphology andtransport properties of cellulose acetate-ceramic composite membranes. J. Membr. Sci.2009,330:246~258.
    [68] R. J. R. U, M. H. B. J. H’, K. K, A. J. B. Smembranes. Part I: Synthesis of non-supported and supported y-alumina membranes without defects.J. Mater. Sci.1992,27:527~537.
    [69] J. Zhu, Y. Q. Fan, N. P. Xu. Modified dip-coating method for preparation of pinhole-free ceramicmembranes. J. Membr. Sci.2011,367:14~20.
    [70] T. Kai, T. Tsuru, S. Nakao, S. Kimura. Preparation of hollow-fiber membranes by plasma-graftfilling polymerization for organic-liquid separation. J. Membr. Sci.2000,170:61~70.
    [71] H. A. Tsai, Y. L. Ye, K. R. Lee, S. H. Huang, M. C. Suen, J. Y. Lai. Characterization andpervaporation dehydration of heat-treatment PAN hollow fiber membranes. J. Membr. Sci.2011,368:254~263.
    [72] Y. Liu, B. Q. He, J. X. Li, R. D. Sanderson, L. Lei, S. B. Zhang. Formation and structural evolutionof biphenyl polyamide thin film on hollow fiber membrane during interfacial polymerization. J.Membr. Sci.2011,373:98~106.
    [73] S. P. Sun, T. A. Hatton, S. Y. Chan, T. S. Chung. Novel thin-film composite nanofiltration hollowfiber membranes with double repulsion for effective removal of emerging organic matters fromwater. J. Membr. Sci.2012,401-402:152~162.
    [74] K. Pan, P. Fang, B. Cao. Novel composite membranes prepared by interfacial polymerization onpolypropylene fiber supports pretreated by ozone-induced polymerization. Deslination2012,294:36~43.
    [75] J. Zuo, Y. Wang, S. P. Sun, T. S. Chung. Molecular design of thin film composite (TFC) hollow fibermembranes for isopropanol dehydration via pervaporation. J. Membr. Sci.2012,405-406:123~133.
    [76] Q. F. An, W. S. Hung, S. C. Lo, Y. H. Li, M. D. Guzman, C. C. Hu, K. R. Lee, Y. C. Jean, J. Y. Lai.Comparison between free volume characteristics of composite membranes fabricated through staticand dynamic interfacial polymerization processes. Macromolecules2012,45:3428~3435.
    [77] P. Sukitpaneenit, T. S. Chung. PVDF/Nanosilica dual-Layer hollow fibers with enhanced selectivityand flux as novel membranes for ethanol recovery. Ind. Eng. Chem. Res.2012,51:978~993.
    [78] G. Decher, J. D. Hong, J. Schmidt. Development of self-assembly LbL technology. Thin Solid Films1992,210:831~837.
    [79] F. V. Ackern, L. Krasemann, B. Tieke. Ultrathin membranes for gas separation and pervaporationprepared upon electrostatic self-assembly of polyelectrolytes. Thin Solid Films1998,327:762~766.
    [80] G. J. Zhang, X. Song, S. L. Ji, N. X. Wang, Z. Z. Liu. Self-assembly of inner skin hollow fiberpolyelectrolyte multilayer membranes by a dynamic negative pressure layer-by-layer technique. J.Membr. Sci.2008,325:109~116.
    [81] H. Q. Tang, G. J. Zhang, S. L. Ji. Rapid assembly of polyelectrolyte multilayer membranes using anautomatic spray system. AIChE Journal2013,59:250~257.
    [82] H. K. Yuan, J. Ren, X. H. Ma,Z. L. Xu. Dehydration of ethyl acetate aqueous solution bypervaporation using PVA/PAN hollow fiber composite membrane. Desalination2011,280:252~258.
    [83] G. J. Zhang, X. Song, J. Li, S. L. Ji, Z. Z. Liu. Single-side hydrolysis of hollow fiberpolyacrylonitrile membrane by an interfacial hydrolysis of a solvent-impregnated membrane. J.Membr. Sci.2010,350:211~216.
    [84] Y. L. Liu, C. H. Yu, L. C. Ma, G. C. Lin, H. A. Tsai, J. Y. Lai. The effects of surface modifications onpreparation and pervaporation dehydration performance of chitosan/polysulfone compositehollow-fiber membranes. J. Membr. Sci.2008,311:243~250.
    [85] L. Y. Jiang, T. S. Chung, R. Rajagopalan. Dehydration of alcohols by pervaporation throughpolyimide Matrimid asymmetric hollow fibers with various modifications. Chem. Eng. Sci.2008,63:204~216.
    [86] Q. Q. Ge, Z. B. Wang, Y. S. Yan. High-Performance zeolite NaA membranes on polymer-zeolitecomposite hollow fiber supports. J. Am. Chem. Soc.2009,131:17056~17057.
    [87] X. J. Shu, X. R. Wang, Q. Q. Kong, X. H. Gu, N. P. Xu. High-flux MFI zeolite membrane supportedon YSZ hollow fiber for separation of ethanol/water. Ind. Eng. Chem. Res.2012,51:12073~12080.
    [88] T. A. Peters, J. Fontalvo, M. A. G. Vorstman, N.E. Benes, R.A. van Dam, Z.A.E.P. Vroon, E.L.J. vanSoest-Vercammen, J.T.F. Keurentjes. Hollow fibre microporous silica membranes for gas separationand pervaporation: Synthesis, performance and stability. J. Membr. Sci.2005,248:73~80.
    [89] G. J. Zhang, J. Li, S. L. Ji. Self-assembly of novel architectural nanohybrid multilayers and theirselective separation of solvent-water mixtures. AIChE Journal2012,58:1456~1464.
    [90] W. Yoshida, Y. Cohen. Ceramic-supported polymer membranes for pervaporation of binaryorganic/organic mixtures. J. Membr. Sci.2003,213:145~157.
    [91] F. Xiangli, Y. Chen, W. Jin, N. Xu. Polydimethylsiloxane (PDMS)/ceramic composite membranewith high flux for pervaporation of ethanol-water mixtures. Ind. Eng. Chem. Res.2007,46:2224~2230.
    [92] Y. Chen, F. Xiangli, W. Jin, N. Xu. Organic-inorganic composite pervaporation membranes preparedby self-assembly of polyelectrolyte multilayers on macroporous ceramic supports. J. Membr. Sci.2007,302:78~86.
    [93] S. H. Kim, S. Y. Kwak, B. H. Sohn, T. H. Park. Design of TiO2nanoparticle self-assembled aromaticpolyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J.Membr. Sci.2003,211:157~165.
    [94] J. S. Taurozzi, H. Arul, V. Z. Bosak, A. F. Burban, T. C. Voice, M. L. Bruening, V. V. Tarabara.Effect of filler incorporation route on the properties of polysulfone-silver nanocomposite membranesof different porosities. J. Membr. Sci.2008,325:58~68.
    [95] A. Bottino, G. Capannelli, A. Comite. Preparation and characterization of novel porous PVDF/ZrO2composite membranes. Desalination2002,146:35~40.
    [96] J. H. Li, Y. Y. Xu, L. P. Zhu, J. H. Wang, C. H. Du. Fabrication and characterization of a novel TiO2nanoparticle self-assembly membrane with improved fouling resistance. J. Membr. Sci.2009,326:659~666.
    [97] M. M. Cortalezzi, J. Rose, A. R. Barron, M. R. Wiesner. Characteristics of ultrafiltration ceramicmembranes derived from alumoxane nanoparticles. J. Membr. Sci.2002,205:33~43.
    [98] M. M. Cortalezzi, J. Rose, G. F. Wells, J. Y. Bottero, A. R. Barron, M. R. Wiesner. Ceramicmembranes derived from ferroxane nanoparticles; a new route for the fabrication of iron oxideultrafiltration membranes. J. Membr. Sci.2003,227:207~217.
    [99] S. Chae, S. Wang, Z. D. Hendren, M. R. Wiesner, Y. Watanabe, C. K. Gunsch. Effects of fullerenenanoparticles on Escherichiacoli K-12respiratory activity in aqueous suspension and potential usefor membrane biofouling control. J. Membr. Sci.2009,329:68~74.
    [100] H. Verweji, M. C. Schillo, J. Li. Fast mass transport through carbon nanotube membranes. Small2007,12:1996~2004.
    [101] J. F. Li, Z. L. Xu, H. Yang, L. Y. Yu, M. Liu. Effect of TiO2nanoparticles on the surfacemorphology and performance of microporous PES membrane. Appl. Surf. Sci.2009,255:4725~4732.
    [102] G. Wu, S. Gan, L. Cui, Y. Xu. Preparation and characterization of PES/TiO2composite membranes.Appl. Surf. Sci.2008,254:7080~7086.
    [103] Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li. The influence of nano-sized TiO2fillers on themorphologies and properties of PSF UF membrane. J. Membr. Sci.2007,288:231~238.
    [104] T. H. Bae, T. M. Tak. Effect of TiO2nanoparticles on fouling mitigation of ultrafiltrationmembranes for activated sludge filtration. J. Membr. Sci.2005,249:1~8.
    [105] M. J. Luo, J. Q. Zhao, W. Tang, C. S. Pu. Hydrophilic modification of poly(ether sulfone)ultrafiltration membrane surface by self-assembly of TiO2nanoparticles. Appl. Surf. Sci.2005,249:76~84.
    [106] L. Yan, Y. S. Li, C. B. Xiang. Preparation of poly(vinylidene fluoride)(PVDF) ultrafiltrationmembrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer2005,46:7701~7706.
    [107] L. Yan, Y. S. Li, C. B. Xiang, S. Xianda. Effect of nano-sized Al2O3-particle addition on PVDFultrafiltration membrane performance. J. Membr. Sci.2006,276:162~167.
    [108] L. Yan, S. Hong, M. L. Li, Y. S. Li. Application of the Al2O3/PVDF nano-composite tubularultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Separ.Purif. Technol.2009,66:347~352.
    [109] J. S. Taurozzi, H. Arul, V. Z. Bosak, A. F. Burban, T. C. Voice, M. L. Bruening, V. V. Tarabara.Effect of filler incorporation route on the properties of polysulfone/silver nanocompositemembranes of different porosities. J. Membr. Sci.2008,325:58~68.
    [110] K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li, P. J. J. Alvarez. Polysulfoneultrafiltration membranes impregnated with silver nanoparticles show improved biofoulingresistance and virus removal. Water Res.2009,43:715~723.
    [111] S. Y. Lee, H. J. Kim, R. Patel, S. J. Im, J. H. Kim, B. R. Min. Silver nanoparticles immobilized onthin film composite polyamide membrane: characterization, nanofiltration, antifouling properties.Polym. Adv. Technol.2007,18:562~568.
    [112] W. L. Chou, D. G. Yu, M. C. Yang. The preparation and characterization of silver-loading celluloseacetate hollow fiber membrane for water treatment. Polym. Adv. Technol.2005,16:600~607.
    [113] D. G. Yu, M. Y. Teng, W. L. Chou, M. C. ang. Characterization and inhibitory effect of antibacterialPAN-based hollow fiber loaded with silver nitrate. J. Membr. Sci.2003,225:115~123.
    [114] H. H. Funke, A. M. Argo, C. D. Baertsch, J. L. Falconer, R. D. Noble. Separation of close-boilinghydrocarbons with silicate zeolite membranes. J. Chem. Soc. Faraday Trans.1996,92:2499~2502.
    [115] B. Liu, Y. Cao, T. Wang, Q. Yuan. Preparation of novel ZSM-5zeolite-filled chitosan membranesfor pervaporation separation of dimethyl carbonate/methanol mixtures. J. Appl. Poly. Sci.2007,106:2117~2125.
    [116] K. J. Kim, S. H. Park, W. W. So, S. J. Moon. Pervaporation separation of aqueous organic mixturesthrough sulfated zirconia–poly(vinyl alcohol) membrane. J. Appl. Poly. Sci.2001,79:1450~1455.
    [117] E. Okumus, T. Gurkan, L. Yilmaz. Development of a mixed-matrix membrane for pervaporation.Sep. Sci. Technol.1994,29:2451~2473.
    [118] L. M. Vane, V. V. Namboodiri, T. C. Bowen. Hydrophobic zeolite–silicone rubber mixed matrixmembranes for ethanol–water separation: effect of zeolite and silicone components onpervaporation performance. J. Membr. Sci.2008,308:230~241.
    [119] S. B. Teli, G. S. Gokavi, M. Sairam, T. M. Aminabhavi. Highly water selective silicotungustic acid(H4Si12O40) incorporated novel sodium alginate hybrid composite membranes for pervaporationdehydration of acetic acid. Sep. Purif. Technol.2007,54:178~186..
    [120] M. Khayet, J. P. G. Villaluenga, J. L. Valentin, M. A. Lopez-Manchado, J. I. Mengual, B. Seoane.Poly(2,6-dimethyl-1,4-phenylene oxide) mixed matrix pervaporation membranes. Desalination2006,200:376~378.
    [121] R. Qi, Y. Wang, J. Chen, J. Li, S. Zhu. Removing thiophenes from n-octane usingPDMS–AgY-zeolite mixed matrix membranes. J. Membr. Sci.2007,295:114~120.
    [122] J. Ahn, W. J. Chung, I. Pinnau, M.D. Guiver. Polysulfone/silica nanoparticle mixed-matrixmembranes for gas separation. J. Membr. Sci.2008,314:123~133.
    [123] D. Sen, H. Kalipcilar, L. Yilmaz. Development of zeolite filled polycarbonate mixed matrix gasseparation membranes. Desalination2006,200:222~224.
    [124] A. Jonquieres, A. Fane. Filled and unfilled composite GFT–PDMS membranes for the recovery ofbutanols from dilute aqueous solutions: influence of alcohol polarity. J. Membr. Sci.1997,125:245~255.
    [125] W. Kujawski, R. Roszak. Pervaporative removal of volatile organic compounds frommulticomponent aqueous mixtures. Sep. Sci. Technol.2002,37:3559~3575.
    [126] Z. Gao, Y. Yue, W. Li. Application of zeolite-filled pervaporation membrane. Zeolites1996,16:70~74.
    [127] H. J. C. te Hennepe, D. Bargeman, M. H. V. Mulder, C. A. Smolders. Zeolite-filled silicone rubbermembranes. Part1. Membrane preparation and pervaporation results. J. Membr. Sci.1987,35:39~55.
    [128] H. J. C. te Hennepe, W. B. F. Boswerger, D. Bargeman, M. H. V. Mulder, C. A. Smolders.Zeolite-filled silicone rubber membranes: experimental determination of concentration profiles. J.Membr. Sci.1994,89:185~196.
    [129] H. J. C. te Hennepe, D. Bargeman, M. H. V. Mulder, C. A. Smolders, K. K. Unger, J. Rouquerol, K.S. W. Sing, H. Kral. Permeation through zeolite filled silicone rubber membranes. Stud. Surf. Sci.Catal.1988,39:411~420.
    [130] M. D. Jia, K. V. Pleinemann, R. D. Behling. Preparation and characterization of thin-filmzeolite–PDMS composite membranes. J. Membr. Sci.1992,73:119~128.
    [131] M. Jia, K. V. Peinemann, R. D. Behling. Molecular sieving effect of the zeolite-filled siliconerubber membranes in gas permeation. J. Membr. Sci.1991,57:289~292.
    [132] I. F. J. Vankelecom, E. Scheppers, R. Heus, J. B. Uytterhoeven. Parameters influencing zeoliteincorporation in PDMS membranes. J. Phys. Chem.1994,98:12390~12396.
    [133] I. F. J. Vankelecom, D. Depre, S. De Beukelaer, J. B. Uytterhoeven. Influence of zeolites in PDMSmembranes: pervaporation of water/alcohol mixtures. J. Phys.Chem.1995,99:13193~13197.
    [134] B. Moermans, W. Beuckelaer, I. Vankelecom, R. Ravishankar, J. Martens, P. Jacobs. Incorporationof nano-sized zeolites in membranes. Chem. Commun.2000,24:2467~2468.
    [135] X. Chen, Z. H. Ping, Y. C. Long. Separation properties of alcohol–water mixture throughsilicalite-I-filled silicone rubber membranes by pervaporation. J. Appl. Polym. Sci.1998,67:629~636.
    [136] L. M. Vane, V. V. Namboodiri, T. C. Bowen. Hydrophobic zeolite–silicone rubber mixed matrixmembranes for ethanol–water separation: effect of zeolite and silicone component selection onpervaporation performance. J. Membr. Sci.2008,308:230~241.
    [137] S. Y. Lu, H. Y. Huang, K. H. Wu. Silicalite/poly(dimethylsiloxane) nanocomposite pervaporationmembranes for acetic acid/water separation. J. Mater. Res.2001,16:3053~3059.
    [138] H. H. Yong, N. C. Park, Y. S. Kang, J. Won, W. N. Kim. Zeolite-filled polyimide membranecontaining2,4,6-triaminopyrimidine. J. Membr. Sci.2001,188:151~163.
    [139] M. Khayet, J. P. G. Villaluenga, J. L. Valentin, M. A. Lopez-Manchado, J. I. Mengual, B. Seoane.Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modifiedsilica nanoparticles: characterization and application in pervaporation. Polymer2005,46:9881~9891.
    [140] Y. J. Fu, C. C. Hu, K. R. Lee, J. Y. Lai. Separation of ethanol/water mixtures by pervaporationthrough zeolite-filled polysulfone membrane containing3-aminopropyltrimethoxysilane.Desalination2006,193:119~128.
    [141] C. C. Hu, T. C. Liu, K. R. Lee, R. C. Ruaan, J. Y. Lai. Zeolite-filled PMMA composite membranes:influence of coupling agent addition on gas separation properties. Desalination2006,193:14~24.
    [142] Y. Li, H. M. Guan, T. S. Chung, S. Kulprathipanja. Effects of novel silane modification of zeolitesurface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeoliteA mixed matrix membranes. J. Membr. Sci.2006,275:17~28.
    [143] J. C. Huang. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol.2002,21:299~313.
    [144] M. Moniruzzaman, K. I. Winey. Polymer nanocomposites containing carbon nanotubes.Macromolecules2006,39:5194~5205.
    [145] A. K. Geim, K. S. Novoselov. The rise of graphene. Nature Mater.2007,6:183~191.
    [146] S. Iijima. Helical microtubules of graphitic carbon. Nature1991,354:56~58.
    [147] H.. K, J. R. H, S. C.’B, R. F. C, R. E. S. C60: B e.Nature1985,318:162~163.
    [148] M. Eizenberg, J. M. Blakely. Carbon monolayer phase condensation on Ni(111). Surf. Sci.1970,82:228~236.
    [149] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,A. A. Firsov. Electric field effect in atomically thin carbon films. Science2004,306:666~669.
    [150] C. Wei, D. Srivastave. Theory of transport of long polymer molecules through carbon nanotubechannels. Phys. Rev. Lett.2003,91:235901/1-4.
    [151] J. H. Choi, J. Jegal, W. N. Kim. Modification of performances of various membranes usingMWNTs as a modifier. Mocromol. Symp.2007,249-250:610~617.
    [152] F. Peng, C. Hu, Z. Jiang. Novel ploy(vinyl alcohol)/carbon nanotube hybrid membranes forpervaporation separation of benzene/cyclehexane mixtures. J. Membr. Sci.2007,297:236~242.
    [153] S. J. Lue, S. H. Peng. Polyurethane (PU) membrane preparation with and withouthydroxypropyle-beta-cyclodextrin and their pervaporation characteristics. J. Membr. Sci.2003,222:203~217.
    [154] J. Shen, Y. Hu, C. Li, C. Qin, M. Ye. Synthesis of amphiphilic graphene nanoplatelets. Small2009,5:82~85.
    [155] J. Shen, Y. Hu, C. Li, C. Qin, M. Shi, M. Ye. Layer-by-layer self-assembly of graphenenanoplatelets. Langmuir2009,25:6122~6128.
    [156] X. Zhao, Q. Zhang, Y. Hao, Y. Li, Y. Fang, D. Chen. Alternate multilayer films of Poly(vinylalcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly.Macromolecules2010,43:9411~9416.
    [157] H. L, S., S.,. F, K. M llen, C. Bubeck. Layer-by-Layer assembly and UVphotoreduction of graphene-polyoxometalate composite films for electronics. J. Am.Chem. Soc.2011,133:9423~9429.
    [158] X. Yang, Y. Tu, L. Li, S. Shang, X. Tao. Well-dispersed chitosan/graphene oxide nanocomposites.Appl. Mater. Interfaces2010,6:1707~1713.
    [159] J. Park, S. Cho, W. Kim, J. Park, P.J. Yoo. Fabrication of graphene thin films based onlayer-by-layer self-assembly of functionalized graphene nanosheets. Appl. Mater. Interfaces2011,3:360~368.
    [160] D. Chen, X. Wang, T. Liu, X. Wang, J. Li. Electrically conductive poly(vinyl alcohol) hybrid filmscontaining graphene and layered double hydroxide fabricated via layer-by-layer self-assembly.Appl. Mater. Interfaces2010,7:2005~2011.
    [161] J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen. Molecular-level dispersion ofgraphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct.Mater.2009,19:2297~2302.
    [162] L. Lu, H. Sun, F. Peng, Z. Jiang. Novel graphite-filled PVA/CS hybrid membrane forpervaporation of benzene/cyclohexane mixtures. J. Membr. Sci.2006,281:245~252.
    [163] T. Yamaguchi, S. Nakao, S. Kimura. Plasma-graft filling polymerization: preparation of a new typeof pervaporation membrane for organic liquid mixtures. Macromolecules1991,24:5522~5527.
    [164] Z. S. Li, B. Zhang, L. X. Qu, J. Z. Ren, Y. Li. A novel atmospheric dielectric barrier discharge(DBD) plasma graft-filling technique to fabricate the composite membranes for pervaporation ofaromatic/aliphatic hydrocarbons. J. Membr. Sci.2011,371:163~170.
    [165] J. Frahn, G. Malsch, H. Matuschewski, U. Schedler, H.-H. Schwarz. Separation ofaromatic/aliphatic hydrocarbons by photo-modified poly(acrylonitrile) membranes. J. Membr. Sci.2004,234:55~65.
    [166] T. Desmet, R. Morent, N.D. Geyter, C. Leys, E. Schacht, P. Dubruel. Nonthermal plasmatechnology as a versatile strategy for polymeric biomaterials surface modification: a review.Biomacromolecules2009,10:2351~2378.
    [167] N. X. Wang, G. J. Zhang, S. L. Ji, Z. P. Qin, Z. Z. Liu. The salt-, pH-and oxidant-responsivepervaporation behaviors of weak polyelectrolyte multilayer membranes. J. Membr. Sci.2010,354:14~22.
    [168] G. J. Zhang, Z. G. Ruan, S. L. Ji, Z. Z. Liu. Construction of metal-ligand-coordinated multilayersand their selective separation behavior. Langmuir,2010,26:4782~4789.
    [169] G. J. Zhang, L. M. Dai, S. L. Ji. Dynamic pressure-driven covalent assembly of inner skin hollowfiber multilayer membrane. AIChE Journal2011,57:2746~2754.
    [170] H. Wu, X. F. Zhang, D. Xu, B. Li, Z. Y. Jiang. Enhancing the interfacial stability andsolvent-resistant property of PDMS/PES composite membrane by introducing a bifunctionalaminosilane. J. Membr. Sci.2009,337:61~69.
    [171] A. Jonquieres, R. Clement, P. Lochon, J. Neel, M. Dresch, B. Chretien. Industrial state-of-the-art ofpervaporation and vapour permeation in the western countries. J. Membr. Sci.2002,206:87~117.
    [172] R. Kreiter, C. W. R. Engelen, D. P. Wolfs, H. M. van Veen, J. F. Vente. High temperaturepervaporation performance of ceramic-supported polyimide membranes in the dehydration ofalcohols. J. Membr. Sci.2008,319:126~132.
    [173] G. L. Jadav, P. S. Singh. Synthesis of novel silica–polyamide nanocomposite membrane withenhanced properties. J. Membr. Sci.2009,328:257~267.
    [174] S. B. Teli, M. Calle, N. W. Li. Poly(vinyl alcohol)-H-ZSM-5zeolite mixed matrix membranes forpervaporation separation of methanol–benzene mixture. J. Membr. Sci.2011,371:171~178.
    [175] Y. X. Xu, W. J. Hong, H. Bai, C. Li, G. Q. Shi. Strong and ductile poly(vinyl alcohol)/grapheneoxide composite films with a layered structure. Carbon2009,47:3538~3543.
    [176] F. B. Peng, C. L. Hu, Z. Y. Jiang. Novel ploy(vinyl alcohol)/carbon nanotube hybrid membranesfor pervaporation separation of benzene/cyclohexane mixtures. J. Membr. Sci.2007,297:236~242.
    [177] R. Y. M. Huang, C. K. Yeom. Pervaporation separation of aqueous mixtures using crosslinkedpoly(vinyl alcohol).2. Permeation of ethanol-water mixtures. J. Membr. Sci.1990,51:273~278.
    [178] C. K. Yeom, K.H. Lee. Vapor permeation of ethanol-water mixtures using sodium alginatemembrane with crosslinking gradient structure. J. Membr. Sci.1997,135:225~235.
    [179] C. K. Yeom, J. G. Jegal, K. H. Lee. Characterization of relaxation phenomena and permeatingbehavior in sodium alginate membrane during pervaporation separation of ethanol-water mixtures.J. Appl. Polym. Sci.1996,62:1561~1576.
    [180] G. L,. B, B. M, D. S. Adistillation for ethanol recovery during fuel ethanol production. J. Membr. Sci.2011,375:212~219.
    [181] S. Schlosser, R. Kerte′sz, J. Marta′k. Recovery and separation of organic acids bymembrane-based solvent extraction and pertraction: An overview with a case study on recovery ofMPCA. Sep. Purif.Technol.2005,41:237~266.
    [182] Y. Lu, J. Chen. Optimal design of multistage membrane distillation systems for water purification.Ind. Eng. Chem. Res.2011,50:7345~7354.
    [183] A. F. Julianna, E. K. Sandra, M. P. Jilska, W. S. Geoff. Poly(tetrafluoroethylene) sputteredpolypropylene membranes for carbon dioxide separation in membrane gas absorption. Ind. Eng.Chem. Res.2011,50:4011~4020.
    [184] P. Bernardo, E. Drioli, G. Golemme. Membrane gas separation: A review/state of the art. Ind. Eng.Chem. Res.2009,48:4638~4663.
    [185] E. Jannatduost, A. A. Babaluo, F. Abbasi, M. Ardestani, M. Peyravi. Surface modification ofnanocomposite ceramic membranes by PDMS for condensable hydrocarbons separation.Desalination.2010,250:1136~1139.
    [186] S. I. Semenova. Polymer membranes for hydrocarbon separation and removal. J. Membr. Sci.2004,231:189~207.
    [187] A. Ahmad, B. Ooi, A. Mohammad, J. Choudhury. Development of a highly hydrophilicnanofiltration membrane for desalination and water treatment. Desalination2004.168:215~221.
    [188] L. Ouyang, R. Malaisamy, M. Bruening. Multilayer polyelectrolyte films as nanofiltrationmembranes for separating monovalent and divalent cations. J. Membr. Sci.2008,310:76~84.
    [189] S. Sun, T. Hatton, T. Chung. Hyperbranched polyethyleneimine induced crosslinking ofpolyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin.Environ. Sci. Technol.2011,45:4003~4009.
    [190] M. Padaki, A. Isloor, G. Belavadi, K. Prabhu. Preparation, characterization and performance studyof poly(isobutylene-alt-maleic anhydride)[PIAM] and polysulfone [PSf] composite membranesbefore and after alkali treatment. Ind. Eng. Chem. Res.2011,50:6528~6534.
    [191] W. Jin, A. Toutianoush, B. Tieke. Use of polyelectrolyte layer-by-layer assemblies asnanofiltration and reverse osmosis membranes. Langmuir2003,19:2550~2553.
    [192] A. AlTaee, A. Sharif. Alternative design to dual stage NF seawater desalination using highrejection brackish water membranes. Desalination2011,273:391~397.
    [193] D. Yang, J. Li, Z. Jiang, L. Lu, X. Chen. Chitosan/TiO2nanocomposite pervaporation membranesfor ethanol dehydration. Chem. Eng. Sci.2009,64:3130~3137.
    [194] H. Sun, L. Lu, X. Chen, Z. Jiang. Surface-modified zeolite-filled chitosan membranes forpervaporation dehydration of ethanol. Appl. Surf. Sci.2008,254:5367~5374.
    [195] S. Mosleh, T. Khosravi, O. Bakhtiari, T. Mohammadi. Zeolite filled polyimide membranes fordehydration of isopropanol through pervaporation process. Chem. Eng. Res. Des.2012,90:433~441.
    [196] Z. Huang, Y. Shi, R. Wen, Y. Guo, J. Su, T. Matsuura. Multilayer poly(vinyl alcohol)-zeolite4Acomposite membranes for ethanol dehydration by means of pervaporation. Sep. Purif. Technol.2006,51:126~136.
    [197] P. Rolling, M. Lamers, C. Staudt, Cross-linked membranes based on acrylated cyclodextrins andpolyethylene glycol dimethacrylates for aromatic/aliphatic separation. J. Membr. Sci.2010,362:154~163.
    [198] C. Ribeiro, B. Freeman, D. Kalika, S. Kalakkunnath. Aromatic polyimide and polybenzoxazolemembranes for the fractionation of aromatic/aliphatic hydrocarbons by pervaporation. J. Membr.Sci.2012,390-391:182~193.
    [199] H. Schwarz, G. Malsch. Polyelectrolyte membranes for aromatic-aliphatic hydrocarbon separationby pervaporation. J. Membr. Sci.2005,247:143~152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700