用户名: 密码: 验证码:
石墨烯分散液制备及其自组织现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是指由碳原子相互紧密连接在一起,形成二维蜂窝状晶格结构的单层平面,它是一种新型准二维平面材料,是石墨碳材料的基本构成单元,经剪裁包裹形成富勒烯,卷曲形成碳纳米管,重叠形成石墨。其特殊的单原子层结构赋予其丰富而新奇的物理性质。自2004年,A. Geim和K. Novoselov通过微机械剥离石墨制备出石墨烯后,石墨烯制备方法和新颖的物理性质受到广泛关注。石墨烯具有优异的电学、力学及热学性能,如:杨氏模量高达(1100Gpa)、断裂伸长率(125GPa)、比表面积(2630m2/g理论计算值)、导热性(5000w/(m K)、电子迁移率(200000m2/(V s)。由于石墨烯具有如此独特的物理性质以及多种领域的潜在应用价值,实现大规模、低成本、可控制备石墨烯具有重要意义。
     本论文从晶形石墨出发,通过对石墨进行溶剂化处理,然后液相超声剥离,成功制备出高浓度、稳定石墨烯分散液;并发现石墨烯自发、宏观、动态自组织现象,对石墨烯自组织现象进行了初步研究。在此基础上,通过设计自组装过程制备出Ag/还原氧化石墨烯双层复合膜(Janus film)。
     首先,以微晶石墨为原料,聚乙烯吡咯烷酮作为分散剂与稳定剂,通过液相超声剥离的方法,直接超声剥离石墨,在多种有机溶剂中制备出高浓度、稳定的石墨烯分散液。
     基于聚乙烯吡咯烷酮在有机溶剂中能有效的分散石墨烯,并使石墨烯分散液稳定存在。为进一步提高石墨烯分散液浓度,先将微晶石墨用N-甲基吡咯烷酮在较高温度下处理,然后再用聚乙烯吡咯烷酮作为分散剂与稳定剂,超声剥离处理后石墨,得到了更高浓度的石墨烯分散液,XRD结果表明:用N-甲基吡咯烷酮热处理石墨能增大石墨的层间距。石墨层间距的增大使有机溶剂分子更容易进入到石墨晶格中,有利于石墨的超声剥离。Raman光谱、XRD结果表明:经N-甲基吡咯烷酮处理后的石墨的质量没有下降,说明在溶剂化处理过程中,没有在石墨晶格内引入缺陷和杂质。石墨烯的Raman光谱结果表明:石墨烯晶格中存在一定的缺陷,说明超声对石墨的晶格具有一定破坏作用,但石墨烯的D峰与G峰强度比(I_D/I_G)较低,最高为0.52。最后用原子力显微镜、透射电子显微镜对石墨烯的形貌进行了表征,结果表明:石墨烯分散液主要以单层与双层石墨烯为主,同时还存在少量的多层石墨烯,TEM结果表明石墨烯具有完整的晶格结构。因此,用N-甲基吡咯烷酮热处理石墨,进行超声剥离制备石墨烯的方法有可能为石墨烯工业化生产提供一种新的思路与方法。
     在制备石墨烯分散液过程中,发现石墨烯分散液的液面形成自发、宏观、动态、时空有序的图案(我们把它叫做石墨烯涌),该体系在开放条件下,能自发的无限运动下去,形成的图案则不停的变化,运动不需额外动力,也不需其他任何外界条件,体系的运动随着环境温度升高而加快,甚至在较低温度下(0-5oC)也能进行。在开放条件下,石墨烯自组织体系能自发进行至溶剂完全蒸发。在介观层次上,石墨烯通过自组织形成自发、动态、具有螺旋结构的液晶流。更为重要的是,石墨烯分散液宏观自组织现象与石墨烯形成的介观液晶流对磁场具有灵敏的响应,石墨烯自组织现象使石墨烯分散液具有手性特征,可以将光转变成具有动态特征的偏振光,同时,石墨烯自组织现象具有丰富的光散射性质。根据初步的研究结果,提出了石墨烯自组织现象的自组织机理。石墨烯自组织现象是一种崭新的自组织现象,对其进一步研究有可能为自组织理论提供介观范围内的研究实例和理论模型,促进自组织理论的发展;而对其磁效应研究可以为物理、介观分散体系及其热力学与动态过程等形成新的理论。
     最后用氧化石墨烯分散液与银氨溶液,通过溶剂蒸发诱导自组装的方法制备了Ag/还原氧化石墨烯双层复合膜(Ag/RGO Janus film),扫描电子显微镜(SEM)与表面能谱(EDS)结果表明:Ag/RGO双层复合膜由完全分离的银纳米粒子与还原氧化石墨烯紧密粘结在一起的双层复合膜。循环伏安分析表明:银氨离子与氧化石墨烯之间发生了氧化还原反应,并由此提出了Ag/RGO双层复合膜的自组装机理。最后,把Ag/还原氧化石墨烯双层复合膜用于Raman表面增强发现:Ag/RGO双层复合膜能检测出微量三聚氰胺,其检测下限达到10-8mol/L。这一独一无二的自组装过程有可能制备出更多二维有序平面材料或膜材料,特别是金属膜材料。
Graphene is a flat monolayer of carbon atoms tightly packed into a two-dimensional(2D) honeycomb lattice, and is a basic building block for carbon materials,which canbe wrapped up into0D fullerenes, rolled into1D nanotubes or stacked into3Dgraphite. It is a new two-dimensional (2D) nanomaterials with novel physicalproperties for its structure in monolayers. It is a hot topic on the methods of producinggraphene in large-scale and novel properties, since the prepararion of graphene frombulk graphite via micromechanical cleavage by K. S. Novoselov and A. K. Geim in2004. Graphene possess remarkable properties, such as high values of Young’smodulus (~1,100GPa), fracture strength (125GPa), pecific surface area (calculatedvalue,2,630m2g-1), thermal conductivity (~5,000W m-1K-1), mobility of chargecarriers (200,000cm2V-1s-1). Owing to graphene’s unusual physicochemicalproperties and tremendous potential for applications, it is an important and urgent onthe preparation of graphene with mass production, low cost, and high yield.
     In this dissertation, the stable graphene dispersion with high concentration wasprepared by the exfoliation of pretreated microcrystalline graphite. A spontaneous,macroscopic and dynamic self-organization phenomenon was discovered in thesurface of graphene dispersion, and preliminary research in grapheneself-organization phenomenon was performed. Moreover, macroscopic, free-standingAg-reduced graphene oxide Janus films prepared by evaporation-inducedself-assembly (EISA) is also fabricated.
     Firstly, the stable graphene dispersion with high concentration was fabricated byusing polyvinyl pyrrolidone (PVP) as dispersants and stabilizer by the directexfoliation of microcrystalline graphite in different organic solvents.
     Based on the fact that the graphene is dispersed effectively and exist steadily indifferent organic solvents, the microcrystalline graphite was pretreated by proper heattreatment in N-methyl-2-pyrrolidone (NMP). Graphene dispersion with higherconcentration was obtained by the exfoliation of pretreated graphite using polyvinylpyrrolidone (PVP) as dispersants and stabilizer. The results acquired by X-raydiffraction (XRD) indicated that the interlayer spacing of graphite increased after theheat treatment. The enlargement of the interlayer spacing of graphite is favourable tothe organic moleculors entering into the lattice of graphite, and is helpful to the exfoliation of graphite for the produce of graphene. It was found that the qualities ofgraphite were equivalent to that of the pristine graphite via detected by Ramanspectrum and X-ray diffraction (XRD). It suggested that no defects and impuritieswere introduced into graphite lattice in the process of the heat treatment. However,the results of graphene by Raman demonstrated that a few defects were introducedinto the two-dimensional (2D) honeycomb lattice of graphene, and implied that thehoneycomb lattice was destroyed in the process of ultrasonication. Fortunately, theintensity rate of D peak and G peak (ID/IG) is keep with in0.52. Therefore, it mayprovides a method for the mass production of graphene
     A spontaneous, dynamic, and macroscopic self-organizing phenomenon withspatiotemporal patterns is observed on the surface of the graphene dispersion, whichwe named as graphene gush. The self-organizing patterns in graphene dispersion canoccur spontaneously, move continuously, bubble furiously and float out like a springfrom the interior of graphene dispersion. Neither extra power provided from outsideambient nor any external conditions is required to drive the operation of the graphenegush. The motion rate of graphene gush was greatly changed with environmentaltemperature, accelerated with the increasing of environmental temperature, andmaintained to move even at the environmental temperature of0-5oC. The graphenegush would continue to travel without end until the solvents in the systems wasevaporated thoroughly. Moreover, a spontaneous and dynamic liquid crystal flow(LCF) with helical structure was observed in mesoscopic scale. It is important thatboth the macroscopic self-organization and the liquid crystal flow are sensitive to anapplied magnetic. Meanwhile, self-organization in graphene dispersion ischaracterized by chiral properties, dynamic polarized light and light scattering. Aself-organizing mechanism of graphene was proposed according to the results ofpreliminary researches. Self-organizing phenomenon in graphene dispersion is a newphenomenon in graphene dispersion, which was not reported as yet. A sample andtheoretical models will be provided for the investigation of self-organization theory,which will be promoted to the development of the self-organization theory. It is alsowould be promoted to the development of a new theories in physics, mesoscopicdispersion system, thermodynamic and dynamic process by the study of the magneticeffect of the self-organization system of graphene dispersion.
     Finally, macroscopic, free-standing Ag-reduced graphene oxide Janus films wasprepared by evaporation-induced self-assembly (EISA). The resullts, characterized byscanning electron microscope (SEM) and energy dispersive spectrometer (EDS), implied that Ag-reduced graphene oxide Janus films composed of Ag layer andgraphene layer, which were banded together closely. The results analysed via cyclicvoltammetry (CV) suggested that the reaction between graphene oxide (GO) andTollens-reagent took place. A mechanism was proposed for the explanation of theEISA process. The potential application of the Janus films as substrates forsurface-enhanced Raman scattering (SERS) was also studied. It was found that theAg-reduced graphene oxide Janus films could be used for the detection of melamine,the Raman signals of the molecules are detected even though the concentration is aslow as10-8mol/L. The methods could be used for the other materials and to developednew design parameters of novel nanostructures for potential applications.
引文
[1] Kroto H W, Heath J R, O'Brien S C, et al. C60: Buckminsterfullerene. Nature,1985,318(6042):162163.
    [2] Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348):5658.
    [3] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspendedgraphene sheets. Nature,2007,446(7131):60–63.
    [4] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect inatomically thin carbon films. Science,2004,306(5696):666-669.
    [5] Zhang Y, Tan Y, Stormer H L, et al. Experimental observation of the quantumHall effect and Berry's phase in graphene, Nature,2005,438(7065):201-204.
    [6] Novoselov K S, McCann E, Morozov S V, et al. Unconventional quantum Halleffect and Berry's phase of2π in bilayer graphene. Nature Physics,2006,2(3):177–180.
    [7] Kohlschütter Haenni P. Zur Kenntnis des Graphitischen Kohlenstoffs und derGraphits ure. Zeitschrift für anorganische und allgemeine Chemie,1918,105(1):121–144.
    [8] Ruess G and Vogt F. H chstlamellarer Kohlenstoff aus Graphitoxyhydroxyd.Monatshefte für Chemie,1948,78(3-4):222–242.
    [9] Peierls R E. Quelques proprietes typiques des corpses solides. Annales del'institut Henri Poincaré,1935,5,177–222.
    [10] Mermin N D, Crystalline order in two dimensions. Physics Review,1968,176(1):250–254.
    [11] Venables J A, Spiller G D T, Hanbucken M. Nucleation and growth of thinfilms. Reports on Progress in Physics,1984,47,399–459.
    [12] Evans J W, Thiel P A, Bartelt M C. Morphological evolution during epitaxialthin film growth Formation of2D islands and3D mounds. Surface ScienceReports,2006,61(1-2):1–128.
    [13] Wallace P R. The band theory of graphite. Physics Review1947,719(9):622-634.
    [14] McClure J W. Diamagnetism of graphite. Physics Revieew,1956,104(3):666-671.
    [15] Lu X K, Yu M, Huang F H, et al. Tailoring graphite with the goal of achievingsingle sheets. Nanotechnology,1999,10(3):269-272.
    [16] Ed Gerstner Nobel Prize2010: Andre Geim&Konstantin Novoselov Nature.Physics,2010,6(11):836.
    [17] Lu X K, Huang H, Ruoff R S. Patterning of highly oriented pyrolytic graphiteby oxygen plasma etching. Applied Physics Letters,1999,75(2):193-195.
    [18] Hiura H F. Tailoring graphite layers by scanning tunneling microscopy.Applied Surface Science,2004,222(1-4):374-378.
    [19] Meyer J C, Geim A K, Katsnelson M I, et al. On the roughness of single-andbi-layer graphene membranes. Solid State Communication,2007,143,(122):101–109.
    [20] Geim A K, Novoselov K S. The rise of graphene. Nature materials,2007,6(3):183-191.
    [21] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties andintrinsic strength of monolayer graphene. Science,2008,321(5887):385–388.
    [22] Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Letter,2008,8(10):3498–3502.
    [23] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity ofsingle-layer graphene. Nano Letter,2008,8(3):902–907.
    [24] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspendedgraphene. Solid State Communication,2008,146(9-10):351–355.
    [25] Starodubov A G, Medvetskii M A, Shikin A M, et al. Intercalation of SilverAtoms under a Graphite Monolayer on Ni(111). Phys. Solid State,2004,46(7):1340–1348.
    [26] de Parga A L V, Calleja F, Borca B, et al. Periodically rippled graphene:growth and spatially resolved electronic structure. Physics Review Letters,2008,100(5):056807-4.
    [27] Coraux J, N’Diaye A T, Engler M, et al. Growth of graphene on Ir(111). NewJournal Physics,2009,11(2):023006.
    [28] Coraux J, N’Diaye A T, Busse C, et al. Structural coherency of graphene onIr(111). Nano Letter,2008,8(2):565–570.
    [29] Rollings E, Gweon G H, Zhou S Y, et al. Synthesis and characterization ofatomically-thin graphite films on a silicon carbide substrate. Journal ofPhysics Chemistry Solids2006,67(9-10):2172-2177.
    [30] Hass J, Feng R, Li T, et al. Highly ordered graphene for two dimensionalelectronics. Applied Physics Letters2006,89(14):143106-3.
    [31] Virojanadara C, Syv jarvi M, Yakimova R, et al. Homogeneous large-areagraphene layer growth on6H-SiC(0001). Physics Review B,2008,78(24):245403-6.
    [32] Emtsev K V, Bostwick A, Horn K, et al. Towards wafer-size graphene layersby atmospheric pressure graphitization of silicon carbide. Nature Mater ials,2009,8(3),203-207.
    [33] Grüneis A, Vyalikh D V, Tunable hybridization between electronic states ofgraphene and a metal surface. Physics Review B,2008,77(19):193401-4.
    [34] N′Diaye A T, Bleikamp S, Feibelman P J, et al. Two-dimensional Ir clusterlattice on a graphene moiréon Ir(111) Physics Review Letters,2006,97(21):215501-4.
    [35] Gabasch H, Hayek K, Kl tzer B, et al. Carbon incorporation in Pd(111) byadsorption and dehydrogenation of ethene. Journal of Physical Chemistry B,2006,110(10):4947-4952.
    [36] Dikin D A, Dommett G H B, Kohlhaas K M, et al. Graphene-based compositematerials. Nature,2006,442(7100):282-286.
    [37] Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphenenanosheets. Nature. Nanotechnology,2008,3(2):101–105.
    [38] Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration ofwater-soluble noncovalent functionalized graphene sheets. Journal ofAmerican Chemistry Society,2008,130(18):5856–5857.
    [39] Becerril H A, Mao J, Liu Z, et al. Evaluation of solution-processed reducedgraphene oxide films as transparent conductors. ACS Nano,2008,2(3):463–470.
    [40] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of grapheneby liquid-phase exfoliation of graphite. Nature Nanotechnology,2008,3(9):563–568.
    [41] Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets andLangmuir–Blodgett films. Nature Nanotechnology,2008,3(9):538–542.
    [42] Lotya M, Hernandez Y, King P J, et al. Liquid phase production of grapheneby exfoliation of graphite in surfactant/water solutions. Journal of AmericanChemistry Society,2009,131(10):3611–3620.
    [43] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene filmsfor stretchable transparent electrodes, Nature,2009,457(7230):706-710.
    [44]刘云圻,魏大程,狄重安等.化学气相沉积法制备石墨烯的方法,中国专利:200810113596,2008-05-29.
    [45] Eizenberg M, Blakely J M. Carbon monolayer phase condensation on Ni(111).Surface Science,1979,82(1):228–236.
    [46] Bommel A J V, Crombeen J E, Tooren A V. LEED and Auger electronobservations of the SiC(0001) surface. Surface Science,1975,48(2):463–472.
    [47] Geim A K. Graphene: Status and Prospect. Science,2009,324(5934):1530–1534.
    [48]刘忠良.碳化硅薄膜的外延生长、结构表征及石墨烯的制备:[中国科技大学博士学位论文].合肥:中国科学技术大学国家同步辐射实验室,2009,84.
    [49] Pan Y, Zhang H, Shi D, et al. Highly ordered, millimeter-scale, continuous,single-crystalline graphene monolayer formed on Ru (0001). AdvancedMaterials,2009,219(27):2777–2780.
    [50] Pan Y, Shi D, and Gao H. Formation of graphene on Ru(0001) surface.Chinese Physics.2007,169(11):3151-3153.
    [51] Nakajima T, Mabuchi A. Hagiwara R. A new structure model of graphite oxide.Carbon,1988,26(3):357–361.
    [52] Nakajima T, Matsuo Y. Formation process and structure of graphite oxide.Carbon,1994,32(3):469–475.
    [53] He H Y, Riedl T, Lerf A, et al. Solid-state NMR studies of the structure ofgraphite oxide. Journal of Physical Chemistry,1996,100(51):19954–19958.
    [54] Lerf A, He H Y, Forster M, et al. Structure of Graphite Oxide Revisited.Journal of Physical Chemistry B,1998,102(23),4477–4482.
    [55] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide.Chemical Society Review,2010,39(1):228–240.
    [56] Chen G H, Wu D J, Weng W G, et al. Exfoliation of graphite flake and i tsnanocomposites. Carbon,2003,41(3):619–621.
    [57] Chen G H, Wu D J, Weng W G, et al. Preparation and characterization ofgraphite nanosheets from ultrasonic powdering technique. Carbon,2004,42(4):753–759.
    [58] Viculis L M, Mack J J, Mayer O M, et al. Intercalation and exfoliation routesto graphite nanoplatelets. Journal of Materials Chemistry,2005,15(9):974–978.
    [59] Shioyama H. Cleavage of graphite to graphene. Journal of Materials ScienceLetters,2001,20(6):499–500.
    [60] Rubinov D B, Rubinova I L, and Akhrem A A. Chemistry of2-acylcycloalkane-1,3-diones. Chemistry Review,1999,99(4):1047-1066
    [61] Watson M D, Fechtenk tter A, and Klaus Müllen. Big is beautiful-―aromaticity‖revisited from the viewpoint of macromolecular andsupramolecular benzene chemistry. Chemistry Review,2001,101(5),1267-1300
    [62] Yang X Y, Dou X, Rouhanipour A, et al. Two-dimensional graphenenanoribbons. Journal of American Chemistry Society,2008,130(13):4216-4217.
    [63] Sun Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources.Nature,2010,468(7323):549–552.
    [64] Choucair M, Thordarson P, Stride J A. Gram-scale production of graphenebased on solvothermal synthesis and sonication. Nature Nanotechnology,2008,4(1):30–33
    [65] Jiao L Y, Zhang L, Wang X R, et al. Narrow graphene nanoribbons fromcarbon nanotubes. Nature,2009,458(7240):877-880.
    [66] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinalunzippingof carbon nanotubes to form graphene nanoribbons. Nature,2009,458(7240):872-876.
    [67] Janowska I, Ersen O, Jacob T, et al. Catalytic unzipping of carbon nanotubesto few-layer graphene sheets under microwaves irradiation. Applied CatalysisA,2009,371(1-2):22-30.
    [68] Kyotani T, Sonobe N, Tomita A. Formation of highly orientated graphite frompolyacrylonitrile by using a two-dimensional space between montnorillonitelamellae. Nature,1988,331(6154):312-333
    [69] Zhang W, Cui J, Tao C. A strategy for producing pure single-layer graphenesheets based on a confined self-assembly approach. Angewandte ChemieInternational Edition,2009,48(32):5864–5868
    [70] Williams J R, DicarloL C, and Marcus C M. Quantum hall effect in agate-controlled p-n junction of graphene, Science,2007,317(5838):638-641.
    [71] Abanin D A, Levitov L S. Quantized transport in graphene p-n junctions in amagnetic field. Science,2007,317(5838):641-643.
    [72] zyilmaz B, Jarillo-Herrero1P, Efetov D, et al. Electronic transport andquantum Hall effect in bipolar graphene p-n-p junctions. Physics ReviewLetters,2007,99(19):166804-4.
    [73] Du X, Skachko I, Duerr F, et al. Fractional quantum Hall effect and insulatingphase of Dirac electrons in graphene, Nature,2009,462(7270):192-195.
    [74] Bolotin K I, Ghahari F, Michael D, et al. Observation of the fractionalquantum Hall effect in graphene. Nature,2009,462(7270):196-199.
    [75] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant definesvisual transparency of graphene. Science,2008,320(5881):1308.
    [76] Zhang Y, Tang T, Girit C, et al. Direct observation of a widely tunablebandgap in bilayer graphene. Nature,2009,459(7248):820–823
    [77] Liu J, Wright A R, Zhang C, et al. Strong terahertz conductance of graphenenanoribbons under a magnetic field. Applied Physics Letters,2008,93(4):041106–4.
    [78] Bao Q, Zhang H, Wang Y, et al. Atomic layer graphene as saturable absorberfor ultrafast pulsed lasers. Advanced Functional Materials,2009,19(19):3077-3083.
    [79] Zhang H, Tang D, Knize R J, et al. Graphene mode locked,wavelength-tunable, dissipative soliton fiber laser. Applied Physics Letters,96(11):111112-4.
    [80] Van Lier G, Van Alsenoy C, Van Doren V, et al. Ab initio study of the elasticproperties of single-walled carbon nanotubes and graphene. Chemical PhysicsLetters,2000,326(1-2):181-185.
    [81] Reddy C D, Rajendran S, Liew K M, Equilibrium configura tion andconti nuu m el as ti c pr opert i es of f i ni te s i zed gr aphe ne. Nanotechnology2006,17(3):864-870.
    [82] Kudin K N, Scuseria G E, Yakobson B I, C2F, BN, and C nanoshell elasticityfrom ab initio computations. Physics Review B,2001,64(23):235406.
    [83] Li u F, Ming P, Li J. Ab initio calculation of i deal st rengt h andphonon i nstabilit y of graphene under tension. Physics Review B,2007,76(6):064120-7
    [84] Lin Y M, Dimitrakopoulos C, Jenkins K A, et al.100-GHz transistors fromwafer-scale epitaxial graphene. Science,2010,327(5966):662.
    [85] Sutter P. Epitaxial graphene: How silicon leaves the scene. Nature Materials,2009,8(3):171-172
    [86] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gasmolecules adsorbed on graphene. Nature Materials,2007,6(9):652-655.
    [87] Mohanty N and Berry V. Graphene-based single-bacterium resolutionbiodevice and DNA transistor: Interfacing graphene derivatives withnanoscale and microscale biocomponents. Nano Letter,2008,8(12):4469-4476
    [88] Ohno Y, Maehashi K, Yamashiro Y. Electrolyte-gated graphene field-effecttransistors for detecting pH and protein adsorption. Nano Letter,2009,9(9):3318-3322.
    [89] Novoselov K S. Graphene: Materials in the flatland (Nobel Lecture).Angewandte Chemie International Edition,2011,50(31),2–19
    [90] Novoselov K S. Graphene: Materials in the flatland (Nobel Lecture).http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/novoselov-lecture.html
    [91] Pan D Y, Wang S, Zhao B, et al. Li storage properties of disordered graphenenanosheets. Chemistry of Materials,2009,21(14):3136-3142.
    [92] Stoller M D, Park S, Zhu Y,et al. Synthesis of graphene-like nanosheets andtheir hydrogen adsorption capacity. Carbon2010,48(3):630-635.
    [93] Park S, Ruoff R S, Chemical methods for the production of graphenes. NatureNanotechology,2009,4(4),1-8
    [94] Khan U, O’Neill A, Lotya M, et al. High-concentration solvent exfoliation ofgraphene. Small,2010,6(7):864–871.
    [95] Lotya M, King P J, Khan U, et al. High-concentration, surfactant-stabilizedgraphene dispersions. ACS Nano,2010,4(6):3155–3162.
    [96] Tour J M, Pasquali M. Spontaneous high-concentration dispersions and liquidcrystals of graphene. Nature Nanotechnology,2010,5(6):406–411.
    [97] Liang Y, Hersam M C. Highly concentrated graphene solutions via polymerenhanced solvent exfoliation and iterative solvent exchange. Journal ofAmerican Chemistry Society,2010,132(50):17661–17663.
    [98] Khan U, Porwal H, O’Neill A, et al. Solvent-exfoliated graphene at extremelyhigh concentration. Langmuir,2011,27(17):9077–9082.
    [99]李旭,赵卫峰,陈国华.石墨烯的制备与表征研究.材料导报,2008,22(8):48-52
    [100] Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: the newtwo-dimensional nanomaterial. Angewandte Chemie International Edition,2009,48(42):7752–7778
    [101] Ferrari A C, Meyer J C, Scardaci V, et al. Raman Spectrum of graphene andgraphene layers. Physics Review Letters,2006,97(18):187401.
    [102] Das A, Chakraborty B, Sood A K, et al. Raman spectroscopy of graphene ondifferent substrates and influence of defects. Bulletin of Materials Science,2008,31(3):579-584.
    [103] Shih C, Lin S, Strano M S, et al. Understanding the stabilization ofliquid-phase-exfoliated graphene in polar solvents: molecular dynamicssimulations and kinetic theory of colloid aggregation, Journal of AmericanChemistry Society,2010,132(41):14638–14648.
    [104]李如生.非平衡态热力学和耗散结构.北京:清华大学出版社.1986,286.
    [105] Imbihl R, Ertl G, Oscillatory kinetics in heterogeneous catalysis. ChemicalReview,1995,95:697-733
    [106] Hasty J, Dolnik M, Rottsch fer V, et al. Synthetic gene network for entrainingand amplifying cellular oscillations, Physics Review Letters,2002,88(14):148101.
    [107] Falcke M, Reading the patterns in living cells–the physics of Ca2+signaling.Advanced Physics,2004,53(3):255-440
    [108]沈小峰,胡刚,姜璐.耗散结构论.上海:上海人民出版社,1987,36-45.
    [109]徐玖平,罗久里.拓展非平衡系统自组织理论的研究进展.世界科技研究与发展,1999,21(4):52-57.
    [110]柴立和,彭晓峰.来自化学前沿的挑战—动态自组装.化学前沿,2004,16(2):169-173.
    [111]苗东升.复杂性研究的成就与困惑.系统科学学报,2009,17(1):1-6.
    [112]欧阳欣.反应扩散系统的斑图动力学.上海:上海科技术出版社,2000,4
    [113] Clever R M, Busse F H. Hexagonal convection cells under conditions ofvertical symmetry. Physics Rewiew E,1996,53(3): R2037-2040.
    [114] Getling A V. Cellular flow patterns and their evolutionary scenarios in three-dimensional Rayleigh-Bénard convection. Physics Rewew E,2003,67(4):0463131-4
    [115] Watanabe T. Flow pattern and heat transfer rate in Rayleigh–Bénardconvection. Physics Fluids2004,16(4):972-979.
    [116] Assenheimer M, Steinberg V. Observation of coexisting upflow and downflowhexagons in boussinesq Rayleigh-Bénard convection. Physics Review Letters,1996,76(5):756–759.
    [117] Busse F H, Clever R M. Asymmetric squares as an attracting set inRayleigh-Bénard convection. Physics Review Letters,1998,81(2):341–344.
    [118] Hu H, Larson R G. Analysis of the effects of marangoni stresses on themicroflow in an evaporating sessile droplet. Langmuir,2005,21(9):3972-3980.
    [119] Schatz M F, VanHook S J, McCormick W D, et al. Time-independent squarepatterns in surface-tension-driven Bénard convection. Physics Fluids,1999,11(9):2577-2582.
    [120] Grzybowski B A, Stone H A, Whitesides G M. Dynamics of self-assembly ofmagnetized disks rotating at the liquid–air interface. Proceedings of theNational Academy of Sciences of the United States of America,2002,99(7):4147–4151.
    [121] Sapozhnikov M V, Tolmachev Y V, Aranson I S, et al. Dynamic self-assemblyand patterns in electrostatically driven granular media. Physics Review Letters,2003,90(11):114301-4.
    [122] Claret J, Reigada R, Albalat R, et al. Collective reorientation in isolatedsmectic-C Langmuir monolayer droplets induced by line tension anisotropy.Journal of Physical Chemistry B,2004,108(45):17274-17277.
    [123] Sagués F, Albalat R, Reigada R J, et al. Photoswitchable orientational patternsof confined domains in monolayers. Journal of American Chemistry Society,2005,127(15):5296-5297.
    [124] Mikhailov A S, Showalter K. Introduction to focus issue: design and controlof self-organization in distributed active systems. Chaos,2008,18(2):026101-4.
    [125] Xu Y, Wu Q, Sun Y, et al. Three-dimensional self-assembly of graphene oxideand DNA into multifunctional hydrogels. ACS Nano,2010,4(10):7358–7362
    [126] Kim T Y, Kwon S W, Park S J, et al. Self-organized graphene patterns.Advanced Materials,2011,23,2734–2738.
    [127] Li Y, Wu Y. Coassembly of graphene oxide and nanowires for large-areananowire alignment. Journal of American Chemistry Society,2009,131(16):5851-5857.
    [128] Xu Z, Gao C. Aqueous liquid crystals of graphene oxide. ACS Nano,2011,5(4):2908–2915.
    [129] Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembledfibres. Nature Communication2011,2,1-9.
    [130] Kim J E, Han T H, Lee S H, et al. Graphene oxide liquid crystals. AngewandteChemie International Edition,2011,50(13):3043-3047.
    [131] Guo F, Kim F, Han T H, et al. Aqueous liquid crystals of graphene oxide.ACS Nano,2011,5(4):8019-8025.
    [132]于秀彬,复杂系统的自组织性分析.白城师范高等专科学校学报,1999,4:46-50.
    [133] Xiao D, Yang W, Yao J, et al. Size-dependent exciton chirality in(R)-(+)-1,1'-Bi-2-naphthyl-dimethyl ether nanoparticles. Journal of AmericanChemistry Society,2004,126(47):15439-15444.
    [134] Li C, Deng K, Tang Z, et al. Twisted metal amino acid nanobelts: chiralitytranscription from molecules to frameworks. Journal of American ChemistrySociety,2010,132(23):8202–8209.
    [135] MacQuarrie S, Thompson M P, Blanc A, et al. Chiral periodic mesoporousorganosilicates based on axially chiral Monomers: transmission of chirality inthe solid state. Journal of American Chemistry Society,2008,130(43):14099–14101,
    [136] Ozawa H, Fujigaya T, Niidome Y, et al. Rational concept to recognize/extractsingle-walled carbon nanotubes with a specific chirality. Journal of AmericanChemistry Society,2011,133(8):2651–2657.
    [137] Duan P, Li Y, Li L, et al. Multiresponsive chiroptical switch of anazobenzene-containing lipid: solvent, temperature, and photoregulatedsupramolecular chirality. Journal of Physical Chemistry B,2011,115(13):3322–3329.
    [138] Yuan J, Liu M. Chiral molecular assemblies from a novel achiral amphip hilic2-(heptadecyl)naphtha[2,3]imidazole through interfacial coordination,Journal of American Chemistry Society,2003,125(17):5051-5056
    [139] Gennes P G, Prost J. The physics of liquid crystals; Clarendon, Oxford,1993.
    [140] Parsons J D, Hayes C F. Fluctuations of a cholesteric liquid crystal in a staticmagnetic field. Physics Review A,1974,9(6):2652-2656
    [141] Goto H, Ohkawa S, Ohta R. Structural chirality of cholesteric liquid crystalproduces atropisomerism: Chiroptical polyisocyanides from achiral monomerin cholesteric liquid crystal matrix. Polymer,2011,52(9):1932-1937
    [142] Brodie B C. On the atomic weight of graphite. Proceedings of the RoyalSociety of London1859,149:249–259.
    [143] Brodie B C. Sur le poids atomique du graphite. Annales de Chimie et dePhysique,1860,59:466–472.
    [144] Staudenmaier L. Verfahren zur Darstellung der graphitsaure. BerDtsch ChemGes1898,31(2):1481-1499.
    [145] Hummers W S and Offeman R E, Preparation of graphitic oxide. Journal ofAmerican Chemistry Society,1958,80(6):1339.
    [146] Boehm H P, Clauss A, Fischer G O, et al. Das Adsorptionsverhalten sehrdünner Kohlenstoffolien. Zeitschrift für anorganische und allgemeine Chemie1962316(3-4):119–127
    [147] Hofmann U, Holst R. über die S urenatur und die Methylierung vonGraphitoxyd. Ber. dtsch. Chem. Ges. B,1939,72(4):754–771.
    [148] Ruess G. über das Graphitoxyhydroxyd (Graphitoxyd). Monatsh. Chem.,1946,76(3-5):381–417.
    [149] Scholz W, Boehm H P. Untersuchungen am Graphitoxyd. Zeitschrift füranorganische und allgemeine Chemie,1969,369(7-8):327–340.
    [150] Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation ofisocyanat-treated graphene oxide nanoplatelets. Carbon,2006,44(15):3342—3347.
    [151] Niyogi S, Bekyarova E, Itkis M E, et al. Solution properties of graphite andgraphene. Journal of American Chemistry Society,2006,128(24):7720—7721
    [152] Lomeda J R, Dosy C D, Kosynkin D V, et al. Diazonium functionalization ofsurfactant-wrapped chemically converted graphene sheets, Journal ofAmerican Chemistry Society,2008,130(48),16201-16206.
    [153] Xu Y F, Liu Z B, Zhang X L, et al. A graphene hybrid material covalentlyfunctionalized with porphyrin: Synthesis and optical limiting property.Advanced Materials,2009,21(12):1275—1279.
    [154] Zhang X, Huang Y, Wang Y, et al. Synthesis and characterization of agraphene-C60hybrid material. Carbon,2008,47(1):334—337.
    [155] Yang H, Shan C, Li F, et al. Covalent functionalization of polydispersechemically-converted graphene sheets with amine-terminated ionic liquid.Chemical Communication,2009,(26):3880–3882.
    [156] Stankovich S, Piner R D, Chen X, et al. Stable aqueous dispersions ofgraphitic nanoplatelets via the reduction of exfoliated graphite oxide in thepresence of poly(sodium4-styrenesulfonate). Journal of Materials Chemistry,2006,16(2):155–158.
    [157] Lu C, Yang H, Zhu C, et al. A graphene platform for sensing biomolecules.Angewandte Chemie International Edition,2009,48(26):4785–4787.
    [158] Yang X, Zhang X, Liu Z, et al. High-efficiency loading and controlled releaseof doxorubicin hydrochloride on graphene oxide. Journal of PhysicalChemistry C,2008,112(45):17554–17558.
    [159] Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis,properties, and applications. Advanced Materials,2010,22(35):3906–3924.
    [160] Biswas S, Drzal L T. Multilayered nanoarchitecture of graphene nanosheetsand polypyrrole nanowires for high performance supercapacitor electrodes.Chemistry of Materials,2010,22(20):5667–5671.
    [161] Jones R A L. Soft Condensed Matter, Oxford: Oxford University Press,2002,Chapter4,1st ed.
    [162] Hamley I W. Introduction to soft matter: Polymers, colloids, cmphiphiles andliquid crystals, New York: Wiley press,2007,340,2nd ed.
    [163] Cote L J, Kim F, Huang J. Langmuir blodgett assembly of graphite oxidesingle layers. Journal of American Chemistry Society,2009,131(3):1043–1049.
    [164] Park S, A Dikin D, Nguyen S T. et al. Graphene Oxide Sheets ChemicallyCross-Linked by Polyallylamine. Journal of Physical Chemistry C,2009,113(36):15801–15804.
    [165] Chen H, Müller M B, Gilmore K J, et al. Mechanically strong, electricallyconductive, and biocompatible graphene paper. Advanced Materials,2008,20(18):3557–3561.
    [166] Compton O C, Dikin D A, Putz K W. et al. Electrically conductive―alkylated‖graphene paper via chemical reduction of amine-functionalized grapheneoxide paper. Advanced Materials,2010,22(8):892–896.
    [167] Wang C, Li D, Too C O, et al. Electrochemical properties of graphene paperelectrodes used in lithium batteries. Chemistry of Materials,2009,21(13):2604–2606.
    [168] Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reducedgraphene oxide as a transparent and flexible electronic material. NatureNanotechnology,2008,3(5):270–274.
    [169] Lee D H, Kim J E, Han T H, et al. Versatile carbon hybrid films composed ofvertical carbon nanotubes grown on mechanically compliant graphene films.Advanced Materials,2010,22(11):1247–1252.
    [170] Kim B H, Kim J Y, Jeong S J, et al. Surface energy modification by spin-cast,large-area graphene film for block copolymer lithography. ACS Nano,2010,4(9):5464–5470.
    [171] Perro A, Reculus S, Ravaine S, et al. Design and synthesis of Janus micro-and nanoparticles. Journal of Materials Chemistry2005,15(35-36):3745–3760.
    [172] Anderson K D, Luo M, Jakubiak R, et al. Robust plasma polymerized-titania/silica Janus microparticles. Chemistry of Materials2010,22(10):3259–3264.
    [173] McConnell M D, Kraeutler M J, Yang S, et al. Exploiting nano-roughness onJanus particles with tunable optical properties. Nano Letter2010,10(2):603–609.
    [174] Kulkarni M M, Bandyopadhyaya R, Sharma A. Janus silica film withhydrophobic and hydrophilic surfaces grown at an oil–water interface. Journalof Materials Chemistry,2008,18(9):1021–1028.
    [175] Biswas K, Rao C N R, Nanocrystalline Janus films of inorganic materialsprepared at the liquid–liquid interface. Journal Colloid and Interface Science,2009,333(1):404–410.
    [176] Cao Y W C, Jin R C and Mirkin C A. Nanoparticles with Raman spectroscopicfingerprints for DNA and RNA detection. Science,2002,279(5586):1536–1540.
    [177] Tian Z Q, Ren B, Li J F, et al. Expanding generality of surface-enhancedRaman spectroscopy with borrowing SERS activity strategy. ChemicalCommunnication,2007,34,3514–3534.
    [178] Graham D, Thompson D G, Smith W E, et al. Control of enhanced Ramanscattering using a DNA-based assembly process of dye-coded nanoparticles.Nature Nanotechnology,2008,3(9):548–551.
    [179] Lu L H, Zhang H J, Sun G Y, et al. Aggregation-based fabrication andassembly of roughened composite metallic nanoshells: Application insurface-enhanced Raman scattering. Langmuir,2003,19(22):9490-9493.
    [180] Jain P K, Huang X, El-Sayed, et al. Noble metals on the nanoscale: opticaland photothermal properties and some applications in imaging, sensing,biology, and medicine. Accounts of Chemical Research,2008,41(12):1578–1586.
    [181] Li J, Huang Y, Ding Y. Shell-isolated nanoparticle-enhanced Ramanspectroscopy. Nature,2010,464(7287):392-395
    [182] Tian Z Q, Ren B, and Wu D Y. Surface-enhanced Raman scattering: fromnoble to transition metals and from rough surfaces to ordered nanostructures.Journal of Physical Chemistry B,2002,106(37):9463-9483.
    [183] Yao J L, Ren B, Huang Z F, et al. Extending surface Raman spectroscopy totransition metals for practical applications IV: A study on corrosion inhibitionof benzotriazole on bare Fe electrodes. Electrochimica Acta,2003,48(9):1263-1271.
    [184] Weaver M J, Zou S Z, Chan H Y H. the new interfacial ubiquity ofsurface-enhanced Raman spectroscopy. Analytical Chemistry,2000,72(1):38-47
    [185] Lu L H, Sun G Y, Zhang H J, et al. Fabrication of core-shell Au-Ptnanoparticle film and its potential application as catalysis and SERS substrate.Journal of Materials Chemistry,2004,14(6):1005-1009.
    [186] Gomez R, Perez J M, Solla Gullon J, et al. In situ surface enhanced Ramanspectroscopy on electrodes with platinum and palladium nanoparticleensembles. Journal of Physical Chemistry B,2004,108(28):9943–9949
    [187] She C X, Xiang J, Ren B, et al. The investigation of electro-oxidation ofmethanol on Pt–Ru electrode surfaces by in-situ Raman spectroscopy, Journalof the Korean Electrochemical Society,2002,5(4):221-225
    [188] Ren B, Lin X F, Yan J W, et al. Electrochemically roughened rhodiumelectrode as asubstrate for surface-enhanced Raman spectroscopy. Journal ofPhysical Chemistry B,2003,107(4):899-902
    [189] Gilje S, Han S, Wang M, et al. A chemical route to graphene for deviceapplications. Nano Letter,2007,7(11):3394–3398.
    [190] Pasricha R, Gupta S, Srivastava A K. A facile and novel synthesis ofAg–graphene-based nanocomposites. Small,2009,5(20):2253–2259.
    [191] Si Y, Samulski E T. Exfoliated graphene separated by platinum nanoparticles.chemistry of materials,2008,20(21):6792–6797
    [192] Sun X, Hagner M, Novel preparation of snowflake-like dendriticnanostructures of Ag or Au at room temperature via a wet-chemical route.Langmuir,2007,23(18):9147–9150.
    [193] Wang L, Li H, Tian J, et al. ACS Applied Materials Interfaces,2010,2(11):2987-2991.
    [194] Wang G, Yang J, Park J, et al. Facile synthesis and characterization ofgraphene nanosheets, Journal of Physical Chemistry C,2008,112(22):8192–8195.
    [195] Lee S H, Kim H W, Hwang J O, et al. Three-dimensional self-assembly ofgraphene oxide platelets into mechanically flexible macroporous carbon films.Angewandte Chemie International Edition,2010,49(52):10084–10088
    [196] Park S, An J, Jung I, et al. Colloidal suspensions of highly reduced grapheneoxide in a wide variety of organic solvents, Nano Letter,2009,9(4):1593-1597.
    [197] Selvakannan P R, Swami A, Srisathiyanarayanan D, et al. Synthesis ofaqueous Au core Ag shell nanoparticles using tyrosine as a pH-dependentreducingagent and assembling phase-transferred silver nanoparticles at theair water interface. Langmuir,2004,20(18):7825–7836.
    [198] Myers D, Surfaces, Interfaces, and Colloids: Principles and Applications,2nd.New York: Willey press,1999,162.
    [199] Subrahmanyam K S, Manna A K, Pati S K, et al. A study of graphenedecorated with metal nanoparticles. Chemical Physics Letter,2010,497(1-3):70–75.
    [200] Ling X, Xie L M, Fang Y, et al. Can graphene be used as a substrate forRaman enhancement? Nano Letter,2010,10(2):553-561.
    [201] Xie L M, Ling X, Fang Y, et al. Graphene as a substrate to suppressfluorescence in resonance Raman spectroscopy. Journal of AmericanChemistry Society,2009,131(29):9890–9891.
    [202] Zhang X, Zou M, Qi X, Detection of melamine in liquidmilk usingsurface-enhanced Raman scattering spectroscopy. Journal of RamanSpectroscopy,2010,41(12):1655–1660

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700