用户名: 密码: 验证码:
石墨烯纳米孔DNA测序的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从人类基因组图谱完成以来,寻找快速而又廉价的DNA测序方法就一直是我们追求的目标。DNA测序指的是分析特定DNA片段的碱基序列,也就是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)的排列方式。快速的DNA测序方法极大地推动了生物学和医学领域的研究和发现,其在基础生物学以及众多的应用领域如诊断,生物技术,法医生物学,生物系统学等中均有涉及。其中,固态纳米孔(solid state nanopore)测序被认为是下一代比较有潜力的快速测序方法,在众多的固态纳米孔中,石墨烯(graphene)片层由于其特有的力学性质以及物理性质而特别引人注目。DNA经过纳米孔道或者管道的移位过程是一个集物理,化学,生物等学科于一身的课题,其非常重要却又异常复杂。如溶液的影响,孔厚度以及孔大小对于测序问题的影响等等。利用分子动力学模拟研究DNA分子在纳米孔道中的移位以及动力学过程已经展现出了强大的优势,成为了除实验手段外有力的研究工具。
     本论文利用分子动力学(molecular dynamics, MD)先研究单层石墨烯片层的纳米孔道对DNA分子测序的影响因素,这些影响因素包括纳米孔道的大小,溶液离子浓度,外界电场强度等等。在此基础上,我们研究了多层石墨烯片层的纳米孔道对DNA分子测序的影响,主要研究了层数对于DNA分子测序的影响。随后,我们用操控式分子动力学(steered molecular dynamics, SMD)模拟了将单链DNA (single strand DNA, ssDNA)从不同形状构型的石墨烯纳米孔道拉伸出去,研究不同碱基是否可以根据不同的力特征峰值来分辨。最后我们考察了是否可以用不同碱基在纳米孔中的移位时间不同而对DNA测序。本论文的主要研究结果如下:
     1.研究不同直径的单层石墨烯纳米孔,盐浓度以及偏压对于poly(A-T)45在纳米孔中移位过程的阻滞电流信号的影响,我们发现纳米孔的直径是影响纳米孔测序精度的关键因素。DNA分子的转移速度随着偏压的减小而减少,从而延长DNA分子在纳米孔道中的滞留时间,使得检测时间有所延长。离子浓度对于电流信号的影响主要包括DNA分子和离子两个方面,在低离子浓度时,DNA穿过纳米孔时的电流比不穿孔时高,然而在高浓度时情况正好相反。通过研究这些因素,我们构建了非占据纳米孔的面积与电流信号之间的关系模型,并且证明非占据纳米孔面积是影响检测DNA穿孔时的电流信号的最重要因素。
     2.通过对DNA分子在多层石墨烯纳米孔道中穿孔行为的研究,我们发现多层石墨烯对于DNA测序在精度方面优于单层石墨烯。首先石墨烯层数在一定范围内的增加(1-7层)使得DNA分子穿孔的时间增长。其次,DNA分子通过多层石墨烯时检测电流会有一个阶梯形的变化从而使得电流信号的丰富度增加。在这些研究的基础上,我们构建了检测信号电流与纳米孔体积之间的理论模型,发现检测信号电流与非占据纳米孔道体积息息相关,同时我们的研究还表明DNA分子穿孔的动力学行为与碱基和石墨烯片层之间的相互作用能息息相关。
     3.与那些较大的石墨烯纳米孔(>3nm)相比,DNA分子在较小的纳米孔(<2nm)中的穿孔行为显得尤为特殊。由于双链DNA分子的直径较大(~1.8nm),所以其很难自由的通过直径小于1.6nm的纳米孔。通过施加外力,包含有A,T,C,G四种碱基以及5-甲基化胞嘧啶的单链DNA分子片段在通过不同形状的直径都为lnm的石墨烯纳米孔时,不同的碱基在圆形纳米孔中展现出很好的单碱基精度的力的特征峰值;然而,在其他非对称性的纳米孔中(三角形,正方形,菱形)均不能实现。这个表明纳米孔的对称性对于实现石墨烯纳米孔在DNA测序上应用是极其重要以及关键的。
     4.在低电场强度下,由于尺度合适的石墨烯纳米孔对于不同碱基的识别性不同,不同碱基穿过石墨烯纳米孔的保留时间有明显的区别,因此我们通过不同碱基在石墨烯纳米孔中的保留时间不同而测序。
Cheap and fast method to sequence DNA needs to be developed due to the increasing need in DNA sequencing. DNA sequencing is to obtain the composition order of DNA which is composed by A (adenine), T (thymine), C (cytosine), and G (guanine). Fast development of DNA sequencing allows us to better understand the relationships among diseases, inheritance, and individuality. Solid state nanopore has been recommended as the next generation platform for DNA sequencing due to its low-cost and high-throughput. Nanopores fabricated from graphene sheets are shown to be extremely thin and structurally robust and have been extensively used in DNA detection in recent years. The translocation process of DNA through a nanopore, which is related to physics, chemistry, and biology, is very important but very complicated issue. Many factors including ion concentration, thickness of the nanopore, nanopore diameter et al could affect the resolution of DNA sequencing. Molecular dynamics (MD) simulation has been another useful tool to study the DNA translocation in nanopore besides experiments.
     In this thesis, the DNA translocation under different conditions including different ion concentration, applied voltage, and nanopore diameter through single layer graphene nanopore was studied. Based on this, DNA translocation through multilayer graphene nanopore varied from1to9layers was investigated, and the blockade current and translocation time were analyzed in detail. After that, the ssDNA molecules were pulled out from the smaller different geometry graphene nanopore. The characteristic peak value by different bases was evaluates in different geometry nanopore. In conclusion, the major contributions of this work are as follows:
     1. At first, the effects of the bias voltage on the DNA translocation time was investigated, and smaller applied voltage could extend the DNA translocation time in monolayer graphene nanopore. The salt concentration on the corresponding ionic current was studied. In lower ionic concentration (<0.3M), the current was increased as DNA translocation through nanopore; however, the current was decreased as DNA translocation through nanopore in higher ionic concentration (>0.5M). It depends on the contribution of DNA and ions to the current. In addition, a theoretical model was proposed to explore the relationship between the current and the occupied nanopore area. We demonstrated that the DNA translocation time can be prolonged by narrowing the diameter of a nanopore properly, and the reduction of the blockade current depends on the ratio of the unoccupied nanopore area to the total nanopore area.
     2. Secondly, DNA translocation through multilayer graphene nanopore was studied to achieve single-base resolution by molecular dynamics simulation. We show that the DNA translocation time could be extended by increasing the graphene layers up to a moderate number (7) and that the current in DNA translocation undergoes a stepwise change upon DNA going through an MLG nanopore. A model was built to account for the relationship between the current change and the unoccupied volume of the MLG nanopore. We demonstrate that the blockade current is closely related to the unoccupied volume. The dynamics of DNA translocation depends specifically on the interaction of nucleotides with the graphene sheet. Thus, our study indicates that the resolution of DNA detection could be improved by increasing the number of graphene layers in a certain range and by modifying the surface of graphene nanopores.
     3. Thirdly, the effect of graphene nanopore geometry on the DNA sequence has been assessed by steered molecular dynamics. The DNA fragments including A, T, C, G and5-methylcytosine (MC) was pulled out in different geometry graphene nanopores with diameter down to~1nm by steered molecular dynamics simulation. We demonstrate the bases (A, T, C, G, and MC) could be indentified in single-base resolution by the force peak characteristic value in circle graphene nanopore but not in other geometry graphene nanopores. Axisymmetric nanopore is much better suited to DNA sequence detection via force curve than asymmetric nanopore. It implies that the graphene nanopore surface should be modified as asymmetric as possible to sequence DNA by an atomic force microscope or optical tweezers. It helps us to understand low-cost and time-efficient DNA sequence in narrow nanopore more.
     4. At last, the translocation time of different nucleotides to pass through graphene nanopore with a certain diameter was investigated. The translocation time is different for different bases under low electric field. The DNA could be sequenced by retain time to pass through graphene nanopore.
引文
[1]A. Lippman. Led (Astray) by Genetic Maps: The Cartography of the Human Genome and Health Care. Social Science & Medicine. 1992,35 (12):1469-1476
    [2]J. Marchini, B. Howie. Genotype Imputation for Genome-Wide Association Studies. Nature Reviews Genetics. 2010,11 (7): 499-511
    [3]F. Sanger, S. Nicklen, A.R. Coulson. DNA Sequencing with Chain-Terminating Inhibitors. Proceedings of the National Academy of Sciences. 1977,74 (12): 5463-5467
    [4]A.M. Maxam, W. Gilbert. A New Method for Sequencing DNA. Proceedings of the National Academy of Sciences. 1977,74 (2):560-564
    [5]R.D. Mitra, G.M. Church. In Situ Localized Amplification and Contact Replication of Many Individual DNA Molecules. Nucleic Acids Research. 1999, 27(24):e34-e39
    [6]R.D. Mitra, J. Shendure, J. Olejnik, G.M. Church. Fluorescent in Situ Sequencing on Polymerase Colonies. Analytical biochemistry. 2003,320 (1):55-65
    [7]J. Shendure, G.J. Porreca, N.B. Reppas, X. Lin, J.P. McCutcheon, A.M. Rosenbaum, M.D. Wang, K. Zhang, R.D. Mitra, G.M. Church. Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome. Science. 2005, 309 (5741):1728-1732
    [8]A. Ikai. Stm and Afm of Bio/Organic Molecules and Structures. Surface Science Reports. 1996,26 (8):261-332
    [9]H. Tanaka, T. Kawai. Partial Sequencing of a Single DNA Molecule with a Scanning Tunnelling Microscope. Nature nanotechnology. 2009,4 (8):518-522
    [10]C.A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M.D. Fischbein, K. Venta, Z.T. Luo, A.T.C. Johnson, M. Drndic. DNA Translocation through Graphene Nanopores. Nano Letters. 2010,10 (8):2915-2921
    [11]M.J. Kim, M. Wanunu, D.C. Bell, A. Meller. Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis. Advanced Materials. 2006,18(23):3149-3153
    [12]J. Clarke, H.-C. Wu, L. Jayasinghe, A. Patel, S. Reid, H. Bayley. Continuous Base Identification for Single-Molecule Nanopore DNA Sequencing. Nature nanotechnology. 2009,4 (4):265-270
    [13]A.J. Storm, J.H. Chen, X.S. Ling, H.W. Zandbergen, C. Dekker. Fabrication of Solid-State Nanopores with Single-Nanometre Precision. Nature Materials. 2003, 2 (8):537-540
    [14]B. Luan, G. Stolovitzky, G. Martyna. Slowing and Controlling the Translocation of DNA in a Solid-State Nanopore. Nanoscale. 2012,4 (4):1068-1077
    [15]A. Aksimentiev. Deciphering Ionic Current Signatures of DNA Transport through a Nanopore. Nanoscale. 2010,2 (4):468-483
    [16]B. Luan, A. Afzali, S. Harrer, H. Peng, P. Waggoner, S. Polonsky, G. Stolovitzky, G. Martyna. Tribological Effects on DNA Translocation in a Nanochannel Coated with a Self-Assembled Monolayer. The Journal of Physical Chemistry B. 2010,114(51):17172-17176
    [17]C. Sathe, X.Q. Zou, J.P. Leburton, K. Schulten. Computational Investigation of DNA Detection Using Graphene Nanopores. Acs Nano. 2011,5 (11):8842-8851
    [18]J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer. Characterization of Individual Polynucleotide Molecules Using a Membrane Channel. Proceedings of the National Academy of Sciences. 1996,93 (24):13770-13773
    [19]M.A. Young, B. Jayaram, D.L. Beveridge. Local Dielectric Environment of B-DNA in Solution: Results from a 14 Ns Molecular Dynamics Trajectory. The Journal of Physical Chemistry B. 1998,102 (39):7666-7669
    [20]J. Li, M. Gershow, D. Stein, E. Brandin, J.A. Golovchenko. DNA Molecules and Configurations in a Solid-State Nanopore Microscope. Nature Materials. 2003,2 (9):611-615
    [21]D. Stoddart, A.J. Heron, E. Mikhailova, G. Maglia, H. Bayley. Single-Nucleotide Discrimination in Immobilized DNA Oligonucleotides with a Biological Nanopore. Proceedings of the National Academy of Sciences. 2009,106 (19): 7702-7707
    [22]R.F. Purnell, J.J. Schmidt. Discrimination of Single Base Substitutions in a DNA Strand Immobilized in a Biological Nanopore. Acs Nano. 2009,3 (9):2533-2538
    [23]L. Franceschini, E. Mikhailova, H. Bayley, G. Maglia. Nucleobase Recognition at Alkaline Ph and Apparent Pka of Single DNA Bases Immobilised within a Biological Nanopore. Chemical Communications. 2012,48 (10):1520-1522
    [24]B.M. Venkatesan, B. Dorvel, S. Yemenicioglu, N. Watkins, I. Petrov, R. Bashir. Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis. Advanced Materials. 2009,21 (27):2771-2776
    [25]Y. Liu, X. Gan, B. Zhou, B. Xiong, J. Li, C. Dong, J. Bai, W. Cai. Photoelectrocatalytic Degradation of Tetracycline by Highly Effective TiO2 Nanopore Arrays Electrode. Journal of hazardous materials. 2009,171 (1): 678-683
    [26]Z.S. Siwy, M. Davenport. Nanopores: Graphene Opens up to DNA. Nature nanotechnology. 2010,5 (10):697-698
    [27]A.R. Hall, A. Scott, D. Rotem, K.K. Mehta, H. Bayley, C. Dekker. Hybrid Pore Formation by Directed Insertion of [Alpha]-Haemolysin into Solid-State Nanopores. Nature nanotechnology. 2010,5 (12):874-877
    [28]L. Song, M.R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, J.E. Gouaux. Structure of Staphylococcal A-Hemolysin, a Heptameric Transmembrane Pore. Science. 1996,274 (5294): 1859-1865
    [29]M. Faller, M. Niederweis, G.E. Schulz. The Structure of a Mycobacterial Outer-Membrane Channel. Science. 2004,303 (5661): 1189-1192
    [30]D. Wendell, P. Jing, J. Geng, V. Subramaniam, T.J. Lee, C. Montemagno, P. Guo. Translocation of Double-Stranded DNA through Membrane-Adapted Phi29 Motor Protein Nanopores. Nature nanotechnology. 2009,4 (11): 765-772
    [31]A. Meller, L. Nivon, E. Brandin, J. Golovchenko, D. Branton. Rapid Nanopore Discrimination between Single Polynucleotide Molecules. Proceedings of the National Academy of Sciences. 2000,97 (3): 1079-1084
    [32]J. Mathe, A. Aksimentiev, D.R. Nelson, K. Schulten, A. Meller. Orientation Discrimination of Single-Stranded DNA inside the A-Hemolysin Membrane Channel. Proceedings of the National Academy of Sciences of the United States of America. 2005,102 (35): 12377-12382
    [33]M. Wanunu, W. Morrison, Y. Rabin, A.Y. Grosberg, A. Meller. Electrostatic Focusing of Unlabelled DNA into Nanoscale Pores Using a Salt Gradient. Nature nanotechnology. 2010,5 (2): 160-165
    [34]Q. Zhao, R.S.S. de Zoysa, D. Wang, D.A. Jayawardhana, X. Guan. Real-Time Monitoring of Peptide Cleavage Using a Nanopore Probe. Journal of the American Chemical Society. 2009,131 (18): 6324-6325
    [35]B. Hornblower, A. Coombs, R.D. Whitaker, A. Kolomeisky, S.J. Picone, A. Meller, M. Akeson. Single-Molecule Analysis of DNA-Protein Complexes Using Nanopores. Nature Methods. 2007,4 (4): 315-317
    [36]N. Hurt, H. Wang, M. Akeson, K.R. Lieberman. Specific Nucleotide Binding and Rebinding to Individual DNA Polymerase Complexes Captured on a Nanopore. Journal of the American Chemical Society. 2009,131 (10): 3772-3778
    [37]F. Olasagasti, K.R. Lieberman, S. Benner, G.M. Cherf, J.M. Dahl, D.W. Deamer, M. Akeson. Replication of Individual DNA Molecules under Electronic Control Using a Protein Nanopore. Nature nanotechnology. 2010,5(11): 798-806
    [38]I.M. Derrington, T.Z. Butler, M.D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, J.H. Gundlach. Nanopore DNA Sequencing with Mspa. Proceedings of the National Academy of Sciences. 2010,107 (37): 16060-16065
    [39]E.A. Manrao, I.M. Derrington, M. Pavlenok, M. Niederweis, J.H. Gundlach. Nucleotide Discrimination with DNA Immobilized in the Mspa Nanopore. PloS one.2011,6(10):e25723
    [40]S. Wu, F. Wildhaber, O. Vazquez-Mena, A. Bertsch, J. Brugger, P. Renaud. Facile Fabrication of Nanofluidic Diode Membranes Using Anodic Aluminium Oxide. Nanoscale. 2012,4 (18): 5718-5723
    [41]T. Deng, J. Chen, M. Li, Y. Wang, C. Zhao, Z. Zhang, Z. Liu. Controllable Shrinking of Inverted-Pyramid Silicon Nanopore Arrays by Dry-Oxygen Oxidation. Nanotechnology. 2013,24 (50): 505303
    [42]P. Chen, T. Mitsui, D.B. Farmer, J. Golovchenko, R.G. Gordon, D. Branton. Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. Nano Letters. 2004,4 (7): 1333-1337
    [43]B.M. Venkatesan, D. Estrada, S. Banerjee, X. Jin, V.E. Dorgan, M.-H. Bae, N.R. Aluru, E. Pop, R. Bashir. Stacked Graphene-A12o3 Nanopore Sensors for Sensitive Detection of DNA and DNA-Protein Complexes. Acs Nano. 2011,6 (1): 441-450
    [44]B.M. Venkatesan, J. Polans, J. Comer, S. Sridhar, D. Wendell, A. Aksimentiev, R. Bashir. Lipid Bilayer Coated A12o3 Nanopore Sensors:Towards a Hybrid Biological Solid-State Nanopore. Biomedical microdevices. 2011,13 (4): 671-682
    [45]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004,306 (5696): 666-669
    [46]A.K. Geim, K.S. Novoselov. The Rise of Graphene. Nature Materials. 2007,6 (3): 183-191
    [47]A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. The Electronic Properties of Graphene. Reviews of modern physics. 2009,81 (1): 109
    [48]C. Lee, X. Wei, J.W. Kysar, J. Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008,321 (5887): 385-388
    [49]S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits. Applied Physics Letters. 2008,92 (15):151911-151911
    [50]Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim. Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene. Nature. 2005,438 (7065): 201-204
    [51]X. Wang, L. Zhi, K. Mullen. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters. 2008,8 (1):323-327
    [52]J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, I.A. Aksay. Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. Acs Nano. 2010, 4 (10):6203-6211
    [53]X. Xu, D. Huang, K. Cao, M. Wang, S.M. Zakeeruddin, M. Gratzel. Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter Electrode for Dye-Sensitized Solar Cells. Scientific reports. 2013,3
    [54]W. Wu, Z. Liu, L.A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y.P. Chen, S.-S. Pei. Wafer-Scale Synthesis of Graphene by Chemical Vapor Deposition and Its Application in Hydrogen Sensing. Sensors and Actuators B: Chemical. 2010, 150 (1):296-300
    [55]Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.T.C. Johnson. Intrinsic Response of Graphene Vapor Sensors. Nano Letters. 2009,9 (4):1472-1475
    [56]C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Letters. 2010,10 (12): 4863-4868
    [57]L.L. Zhang, R. Zhou, X.S. Zhao. Graphene-Based Materials as Supercapacitor Electrodes. Journal of Materials Chemistry. 2010,20 (29): 5983-5992
    [58]S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff. Graphene-Based Composite Materials. Nature. 2006,442 (7100): 282-286
    [59]G. Eda, G. Fanchini, M. Chhowalla. Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material. Nature nanotechnology. 2008,3 (5):270-274
    [60]X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano research. 2008,1(3):203-212
    [61]M.D. Fischbein, M. Drndic. Electron Beam Nanosculpting of Suspended Graphene Sheets. Applied Physics Letters. 2008,93 (11):113107
    [62]S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J.A. Golovchenko. Graphene as a Subnanometre Trans-Electrode Membrane. Nature. 2010,467 (7312):190-U173
    [63]G.F. Schneider, S.W. Kowalczyk, V.E. Calado, G. Pandraud, H.W. Zandbergen, L.M.K. Vandersypen, C. Dekker. DNA Translocation through Graphene Nanopores. Nano Letters. 2010,10 (8):3163-3167
    [64]B.M. Venkatesan, R. Bashir. Nanopore Sensors for Nucleic Acid Analysis. Nature nanotechnology. 2011,6 (10):615-624
    [65]S.M. Avdoshenko, D. Nozaki, C. Gomes da Rocha, J.W. Gonzalez, M.H. Lee, R. Gutierrez, G. Cuniberti. Dynamic and Electronic Transport Properties of DNA Translocation through Graphene Nanopores. Nano Letters. 2013,13 (5): 1969-1976
    [66]S.M. Avdoshenko, D. Nozaki, C. Gomes da Rocha, J.W. Gonzalez, M.H. Lee, R. Gutierrez, G. Cuniberti. Dynamic and Electronic Transport Properties of DNA Translocation through Graphene Nanopores. Nano Letters. 2013,13 (5): 1969-1976
    [67]C.A. Merchant, M. Drndic. Graphene Nanopore Devices for DNA Sensing. Methods Mol Biol. 2012,870:211-226
    [68]M. Wanunu. Nanopores: A Journey Towards DNA Sequencing. Physics of life reviews. 2012,9 (2):125-158
    [69]G.F. Schneider, Q. Xu, S. Hage, S. Luik, J.N.H. Spoor, S. Malladi, H. Zandbergen, C. Dekker. Tailoring the Hydrophobicity of Graphene for Its Use as Nanopores for DNA Translocation. Nature communications. 2013,4
    [70]T. Premkumar, K.E. Geckeler. Graphene-DNA Hybrid Materials: Assembly, Applications, and Prospects. Progress in Polymer Science. 2012,37 (4):515-529
    [71]D. Fologea, J. Uplinger, B. Thomas, D.S. McNabb, J. Li. Slowing DNA Translocation in a Solid-State Nanopore. Nano Letters. 2005,5 (9):1734-1737
    [72]B. Luan, D. Wang, R. Zhou, S. Harrer, H. Peng, G. Stolovitzky. Dynamics of DNA Translocation in a Solid-State Nanopore Immersed in Aqueous Glycerol. Nanotechnology. 2012,23 (45):455102
    [73]S.W. Kowalczyk, D.B. Wells, A. Aksimentiev, C. Dekker. Slowing Down DNA Translocation through a Nanopore in Lithium Chloride. Nano Letters. 2012,12 (2):1038-1044
    [74]G.M. Cherf, K.R. Lieberman, H. Rashid, C.E. Lam, K. Karplus, M. Akeson. Automated Forward and Reverse Ratcheting of DNA in a Nanopore at 5-a Precision. Nature biotechnology. 2012,30 (4): 344-348
    [75]A.J. Storm, C. Storm, J. Chen, H. Zandbergen, J.-F. Joanny, C. Dekker. Fast DNA Translocation through a Solid-State Nanopore. Nano Letters. 2005,5 (7): 1193-1197
    [76]D. Fologea, M. Gershow, B. Ledden, D.S. McNabb, J.A. Golovchenko, J. Li. Detecting Single Stranded DNA with a Solid State Nanopore. Nano Letters. 2005,5 (10):1905-1909
    [77]N. Di Fiori, A. Squires, D. Bar, T. Gilboa, T.D. Moustakas, A. Meller. Optoelectronic Control of Surface Charge and Translocation Dynamics in Solid-State Nanopores. Nature nanotechnology. 2013,8 (12):946-951
    [78]J. Larkin, R. Henley, D.C. Bell, T. Cohen-Karni, J.K. Rosenstein, M. Wanunu. Slow DNA Transport through Nanopores in Hafnium Oxide Membranes. Acs Nano.2013,7 (11):10121-10128
    [79]J.M. Polson, A.C.M. McCaffrey. Polymer Translocation Dynamics in the Quasi-Static Limit. The Journal of chemical physics. 2013,138 (17):174902
    [80]D.B. Wells, M. Belkin, J. Comer, A. Aksimentiev. Assessing Graphene Nanopores for Sequencing DNA. Nano Letters. 2012,12 (8): 4117-4123
    [81]H. Qiu, W. Guo. Detecting Ssdna at Single-Nucleotide Resolution by Sub-2-Nanometer Pore in Monoatomic Graphene:A Molecular Dynamics Study. Applied Physics Letters. 2012,100 (8):083106
    [82]T. Nelson, B. Zhang, O.V. Prezhdo. Detection of Nucleic Acids with Graphene Nanopores: Ab Initio Characterization of a Novel Sequencing Device. Nano Letters. 2010,10 (9):3237-3242
    [1]孙祉伟.经典流体的计算机模拟试验一一蒙特卡洛法和分子动力学法.力学与实践.1983,8(6):59-62
    [2]李以圭,刘金晨.分子模拟与化学工程.现代化工.2001,21(7):10-13
    [3]欧阳芳平,徐慧,郭爱敏,李燕峰.分子模拟方法及其在分子生物学中的应用.生物信息学.2005,3(1):33-36
    [4]唐赞,李卫华,盛亚运.计算机分子模拟.2013
    [5]尹增谦,管景峰.蒙特卡罗方法及应用.物理与工程.2002,12(3):45-49
    [6]R.N. Barnett, U. Landman. Born-Oppenheimer Molecular-Dynamics Simulations of Finite Systems: Structure and Dynamics of (H2O)2. Physical review B. 1993, 48 (4): 2081
    [7]W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson. A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters. J. Chem. Phys. 1982,76: 637
    [8]D. Fincham. Parallel Computers and Molecular Simulation. Mol. Simulat.1987,1 (1-2):1-45
    [9]S.L. Mayo, B.D. Olafson, W.A. Goddard. Dreiding:A Generic Force Field for Molecular Simulations. J. Phys. Chem. 1990,94 (26): 8897-8909
    [10]B. Roux. The Calculation of the Potential of Mean Force Using Computer Simulations. Comput. Phys. Commun. 1995,91 (1): 275-282
    [11]W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am.Chem. Soc. 1995,117 (19): 5179-5197
    [12]T. Schlick. The 2013 Nobel Prize in Chemistry Celebrates Computations in Chemistry and Biology. SIAM News. 2013,46 (10)
    [13]A.D. MacKerell, D. Bashford, M. Bellott, R. Dunbrack, J. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S.a. Ha. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B. 1998,102 (18): 3586-3616
    [14]W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives. Development and Testing of the Opls All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am.Chem. Soc. 1996,118 (45): 11225-11236
    [15]N.L. Allinger. Conformational Analysis. 130. Mm2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms. J. Am.Chem. Soc. 1977,99 (25): 8127-8134
    [16]W.F. van Gunsteren, X. Daura, A.E. Mark. Gromos Force Field. Encyclopedia of computational chemistry. 1998
    [17]N.L. Allinger, Y.H. Yuh, J.H. Lii. Molecular Mechanics. The Mm3 Force Field for Hydrocarbons.1. J. Am.Chem. Soc.1989,111 (23):8551-8566
    [18]J.H. Lii, N.L. Allinger. Molecular Mechanics. The Mm3 Force Field for Hydrocarbons. 2. Vibrational Frequencies and Thermodynamics. J. Am.Chem. Soc. 1989,111 (23):8566-8575
    [19]J.H. Lii, N.L. Allinger. Molecular Mechanics. The Mm3 Force Field for Hydrocarbons. 3. The Van Der Waals' Potentials and Crystal Data for Aliphatic and Aromatic Hydrocarbons. J. Am.Chem. Soc. 1989,111 (23):8576-8582
    [20]A.K. Rappe, C.J. Casewit, K. Colwell, W. Goddard Iii, W. Skiff. Uff, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am.Chem. Soc. 1992,114 (25):10024-10035
    [21]H.J. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J. Haak. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81:3684
    [22]W.G. Hoover. Computational Statistical Mechanics. Access Online via Elsevier, 1991
    [23]S. Nose. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984,81:511
    [24]S. Melchionna, G. Ciccotti, B. Lee Holian. Hoover Npt Dynamics for Systems Varying in Shape and Size. Molecular Physics. 1993,78 (3):533-544
    [25]H.C. Andersen. Molecular Dynamics Simulations at Constant Pressure and/or Temperature. J. Chem. Phys. 2008,72 (4):2384-2393
    [26]M. Parrinello, A. Rahman. Polymorphic Transitions in Single Crystals:A New Molecular Dynamics Method. Journal of Applied physics. 1981,52 (12): 7182-7190
    [27]R. Martonak, A. Laio, M. Parrinello. Predicting Crystal Structures: The Parrinello-Rahman Method Revisited. Physical review letters. 2003,90 (7): 075503
    [28]M.J. Uline, D.S. Corti. Molecular Dynamics in the Isothermal-Isobaric Ensemble:The Requirement of a "Shell" Molecule. I. Theory and Phase-Space Analysis. J. Chem. Phys. 2005,123 (16): 164101
    [29]M. Muller, K. Binder. An Algorithm for the Semi-Grand-Canonical Simulation of Asymmetric Polymer Mixtures. Computer Physics Communications. 1994,84 (1):173-185
    [30]L. Verlet. Computer" Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967,159 (1):98
    [31]J.A. Snyman. An Improved Version of the Original Leap-Frog Dynamic Method for Unconstrained Minimization: Lfopl (B). Applied mathematical modelling. 1983,7 (3):216-218
    [32]W.F. Van Gunsteren, H.J.C. Berendsen. A Leap-Frog Algorithm for Stochastic Dynamics. Molecular Simulation. 1988,1 (3):173-185
    [33]A. Rahman, F.H. Stillinger. Molecular Dynamics Study of Liquid Water. J. Chem. Phys. 1971,55:3336
    [34]G.M. Torrie, J.P. Valleau. Nonphysical Sampling Distributions in Monte Carlo Free-Energy Estimation: Umbrella Sampling. J. Comput. Phys. 1977,23 (2): 187-199
    [35]M. Souaille, B.t. Roux. Extension to the Weighted Histogram Analysis Method: Combining Umbrella Sampling with Free Energy Calculations. Comput. Phys. Commun. 2001,135 (1):40-57
    [36]I. Kosztin, B. Barz, L. Janosi. Calculating Potentials of Mean Force and Diffusion Coefficients from Nonequilibrium Processes without Jarzynski's Equality. J. Chem. Phys. 2006,124 (6):064106
    [37]S. Park, F. Khalili-Araghi, E. Tajkhorshid, K. Schulten. Free Energy Calculation from Steered Molecular Dynamics Simulations Using Jarzynski's Equality. J. Chem. Phys. 2003,119 (6):3559
    [38]S. Park, K. Schulten. Calculating Potentials of Mean Force from Steered Molecular Dynamics Simulations. J. Chem. Phys. 2004,120 (13): 5946-5961
    [39]S. Izrailev, S. Stepaniants, B. Isralewitz, D. Kosztin, H. Lu, F. Molnar, W. Wriggers, K. Schulten. Steered Molecular Dynamics. In: Computational Molecular Dynamics:Challenges, Methods, Ideas: Springer, 1999: 39-65
    [40]B. Isralewitz, M. Gao, K. Schulten. Steered Molecular Dynamics and Mechanical Functions of Proteins. Current opinion in structural biology. 2001,11 (2): 224-230
    [41]C. Jarzynski. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett. 1997,78:2690
    [1]Luan BQ, Peng HB, Polonsky S, Rossnagel S, Stolovitzky G, Martyna G. Base-By-Base Ratcheting of Single Stranded DNA through a Solid-State Nanopore. Phys Rev Lett. 2010; 104.
    [2]Luan BQ, Martyna G, Stolovitzky G. Characterizing and Controlling the Motion of ssDNA in a Solid-State Nanopore. Biophys J.2011;101:2214-22.
    [3]Li JL, Stein D, Qun C, Brandin E, Huang A, Wang H, et al. Solid state nanopore as a single DNA molecule detector. Biophys J.2003;84:134a-5a.
    [4]Mussi V, Fanzio P, Repetto L, Firpo G, Scaruffi P, Stigliani S, et al. DNA-functionalized solid state nanopore for biosensing. Nanotechnology. 2010;21.
    [5]Luan BQ, Stolovitzky G, Martyna G. Slowing and controlling the translocation of DNA in a solid-state nanopore. Nanoscale.2012;4:1068-77.
    [6]Li JL, Gershow M, Stein D, Brandin E, Golovchenko JA. DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater.2003;2:611-5.
    [7]Butler TZ, Gundlach JH, Troll MA. Determination of RNA orientation during translocation through a biological nanopore. Biophys J.2006;90:190-9.
    [8]Purnell RF, Schmidt JJ. Discrimination of Single Base Substitutions in a DNA Strand Immobilized in a Biological Nanopore. Acs Nano.2009;3:2533-8.
    [9]Stoddart D, Maglia G, Mikhailova E, Heron AJ, Bayley H. Multiple Base-Recognition Sites in a Biological Nanopore: Two Heads are Better than One. Angew Chem Int Edit.2010;49:556-9.
    [10]Franceschini L, Mikhailova E, Bayley H, Maglia G. Nucleobase recognition at alkaline pH and apparent pK(a) of single DNA bases immobilised within a biological nanopore.Chem Commun.2012;48:1520-2.
    [11]Stoddart D, Heron AJ, Mikhailova E, Maglia G, Bayley H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. P Natl Acad Sci USA.2009;106:7702-7.
    [12]Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences. 1996;93:13770-3.
    [13]Japrung D, Henricus M, Li QH, Maglia G, Bayley H. Urea Facilitates the Translocation of Single-Stranded DNA and RNA Through the alpha-Hemolysin Nanopore. Biophys J.2010;98:1856-63.
    [14]Deamer D. Nanopore Analysis of Nucleic Acids Bound to Exonucleases and Polymerases. Annu Rev Biophys.2010;39:79-90.
    [15]Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M, Niederweis M, et al. Nanopore DNA sequencing with MspA. P Natl Acad Sci USA. 2010;107:16060-5.
    [16]Dekker C. Solid-state nanopores. Nat Nanotechnol.2007;2:209-15.
    [17]Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA. Ion-beam sculpting at nanometre length scales. Nature.2001;412:166-9.
    [18]Venkatesan BM, Shah AB, Zuo JM, Bashir R. DNA Sensing Using Nanocrystalline Surface-Enhanced A12O3 Nanopore Sensors. Adv Funct Mater. 2010;20:1266-75.
    [19]Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C. Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater. 2003;2:537-40.
    [20]Storm AJ, Storm C, Chen JH, Zandbergen H, Joanny JF, Dekker C. Fast DNA translocation through a solid-state nanopore. Nano Lett.2005;5:1193-7.
    [21]Fologea D, Uplinger J, Thomas B, McNabb DS, Li JL. Slowing DNA translocation in a solid-state nanopore. Nano Lett.2005;5:1734-7.
    [22]Wei RS, Gatterdam V, Wieneke R, Tampe R, Rant U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat Nanotechnol. 2012;7:257-63.
    [23]Fischbein MD, Drndic M. Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett.2008;93.
    [24]Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA. Graphene as a subnanometre trans-electrode membrane. Nature.2010;467:190-U73.
    [25]Nelson T, Zhang B, Prezhdo OV. Detection of Nucleic Acids with Graphene Nanopores:Ab Initio Characterization of a Novel Sequencing Device. Nano Lett. 2010;10:3237-42.
    [26]Lu DY, Aksimentiev A, Shih AY, Cruz-Chu E, Freddolino PL, Arkhipov A, et al. The role of molecular modeling in bionanotechnology. Phys Biol. 2006;3:S40-S53.
    [27]Gao HJ, Kong Y. Simulation of DNA-nanotube interactions. Annu Rev Mater Res.2004;34:123-50.
    [28]Gao HJ, Kong Y, Cui DX, Ozkan CS. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett.2003;3:471-3.
    [29]Mirsaidov U, Timp W, Zou X, Dimitrov V, Schulten K, Feinberg AP, et al. Nanoelectromechanics of Methylated DNA in a Synthetic Nanopore. Biophys J. 2009;96:L32-L4.
    [30]Mathe J, Aksimentiev A, Nelson DR, Schulten K, Meller A. Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. P Natl Acad Sci USA.2005;102:12377-82.
    [31]Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, et al. DNA Translocation through Graphene Nanopores. Nano Lett.2010;10:2915-21.
    [32]Sathe C, Zou XQ, Leburton JP, Schulten K. Computational Investigation of DNA Detection Using Graphene Nanopores. Acs Nano.2011;5:8842-51.
    [33]Smeets RMM, Keyser UF, Krapf D, Wu MY, Dekker NH, Dekker C. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett.2006;6:89-95.
    [34]Kim YR, Min J, Lee IH, Kim S, Kim AG, Kim K, et al. Nanopore sensor for fast label-free detection of short double-stranded DNAs. Biosens Bioelectron. 2007;22:2926-31.
    [35]Chen Z, Jiang YB, Dunphy DR, Adams DP, Hodges C, Liu NG, et al. DNA translocation through an array of kinked nanopores. Nat Mater.2010;9:667-75.
    [36]Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LMK, et al. DNA Translocation through Graphene Nanopores. Nano Lett.2010;10:3163-7.
    [1]Min SK, Kim WY, Cho Y, Kim KS. Fast DNA sequencing with a graphene-based nanochannel device. Nat Nano.2011;6:162-5.
    [2]Postma HWC. Rapid Sequencing of Individual DNA Molecules in Graphene Nanogaps. Nano Letters.2010;10:420-5.
    [3]Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nature Biotechnology.2012;30:349-53.
    [4]Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C. Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials. 2003;2:537-40.
    [5]Fologea D, Uplinger J, Thomas B, McNabb DS, Li JL. Slowing DNA translocation in a solid-state nanopore. Nano Letters.2005;5:1734-7.
    [6]Venkatesan BM, Polans J, Comer J, Sridhar S, Wendell D, Aksimentiev A, et al. Lipid bilayer coated Al(2)O(3) nanopore sensors: towards a hybrid biological solid-state nanopore. Biomedical Microdevices.2011;13:671-82.
    [7]Liu Q, Wu H, Wu L, Xie X, Kong J, Ye X, et al. Voltage-driven translocation of DNA through a high throughput conical solid-state nanopore. Plos One. 2012;7:e46014.
    [8]Bayley H. Nanotechnology:Holes with an edge. Nature.2010;467:164-5.
    [9]Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA. Graphene as a subnanometre trans-electrode membrane. Nature.2010;467:190-U73.
    [10]Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, et al. DNA Translocation through Graphene Nanopores. Nano Letters.2010;10:2915-21.
    [11]Liu S, Zhao Q, Xu J, Yan K, Peng H, Yang F, et al. Fast and controllable fabrication of suspended graphene nanopore devices. Nanotechnology. 2012;23:085301.
    [12]Merchant CA, Drndic M. Graphene nanopore devices for DNA sensing. Methods Mol Biol.2012;870:211-26.
    [13]Venkatesan BM, Estrada D, Banerjee S, Jin X, Dorgan VE, Bae MH, et al. Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes. Acs Nano.2012;6:441-50.
    [14]Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LMK, et al. DNA Translocation through Graphene Nanopores. Nano Letters.2010;10:3163-7.
    [15]Sathe C, Zou XQ, Leburton JP, Schulten K. Computational Investigation of DNA Detection Using Graphene Nanopores. Acs Nano.2011;5:8842-51.
    [16]Wells DB, Belkin M, Comer J, Aksimentiev A. Assessing graphene nanopores for sequencing DNA. Nano Letters.2012; 12:4117-23.
    [17]Freedman KJ, Ahn CW, Kim MJ. Detection of Long and Short DNA Using Nanopores with Graphitic Polyhedral Edges. Acs Nano.2013;7:5008-16.
    [18]Jo G, Choe M, Cho CY, Kim JH, Park W, Lee S, et al. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology.2010;21:175201.
    [19]Kumar A, Park K-B, Kim H-M, Kim K-B. Noise and its reduction in graphene based nanopore devices. Nanotechnology.2013;24:495503.
    [20]Lv W, Chen M, Wu Ra. The impact of the number of layers of a graphene nanopore on DNA translocation. Soft Matter.2013;9:960-6.
    [21]Luan BQ, Martyna G, Stolovitzky G. Characterizing and Controlling the Motion of ssDNA in a Solid-State Nanopore. Biophys J.2011;101:2214-22.
    [22]Lu DY, Aksimentiev A, Shih AY, Cruz-Chu E, Freddolino PL, Arkhipov A, et al. The role of molecular modeling in bionanotechnology. Phys Biol. 2006;3:S40-S53.
    [23]Liang L, Cui P, Wang Q, Wu T, Agren H, Tu Y. Theoretical study on key factors in DNA sequencing with graphene nanopores. RSC Advances.2013;3:2445-53.
    [24]Fologea D, Gershow M, Ledden B, McNabb DS, Golovchenko JA, Li JL. Detecting single stranded DNA with a solid state nanopore. Nano Letters. 2005;5:1905-9.
    [25]Schneider GF, Xu Q, Hage S, Luik S, Spoor JNH, Malladi S, et al. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation. Nat Commun.2013;4.
    [26]Venkatesan BM, Bashir R. Nanopore sensors for nucleic acid analysis. Nat Nanotechnol.2011;6:615-24.
    [27]Partoens B, Peeters FM. From graphene to graphite:Electronic structure around the K point. Physical Review B.2006;74:075404.
    [28]Kang Y, Liu YC, Wang Q, Shen JW, Wu T, Guan WJ. On the spontaneous encapsulation of proteins in carbon nanotubes. Biomaterials.2009;30:2807-15.
    [29]Qiu H, Guo W. Detecting ssDNA at single-nucleotide resolution by sub-2-nanometer pore in monoatomic graphene:A molecular dynamics study. Applied Physics Letters.2012;100:083106-4.
    [30]Cheng C-L, Zhao G-J. Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene. Nanoscale.2012;4:2301-5.
    [1]Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Characterization of individual polynucleotide molecules using a membrane channel. P Natl Acad Sci USA.1996;93:13770-3.
    [2]Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, et al. The potential and challenges of nanopore sequencing. Nature Biotechnology. 2008;26:1146-53.
    [3]Venkatesan BM, Bashir R. Nanopore sensors for nucleic acid analysis. Nat Nanotechnol.2011;6:615-24.
    [4]Dekker C. Solid-state nanopores. Nat Nanotechnol.2007;2:209-15.
    [5]Hozumi A, Cheng DF, Yagihashi M. Lamination of Alumina Membranes to Polymer Surfaces: Thick, Hard, Transparent, Crack-Free Alumina Films on Polymers with Excellent Adhesion. Acs Appl Mater Inter.2011;3:2224-7.
    [6]Kim MJ, Wanunu M, Bell DC, Meller A. Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis. Advanced Materials.2006;18:3149-53.
    [7]Hong J, Lee Y, Chansin GA, Edel JB, Demello AJ. Design of a solid-state nanopore-based platform for single-molecule spectroscopy. Nanotechnology. 2008;19:165205.
    [8]Chen Z, Jiang YB, Dunphy DR, Adams DP, Hodges C, Liu NG, et al. DNA translocation through an array of kinked nanopores. Nat Mater.2010;9:667-75.
    [9]Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric Field Effect in Atomically Thin Carbon Films. Science.2004;306:666-9.
    [10]Wells DB, Belkin M, Comer J, Aksimentiev A. Assessing graphene nanopores for sequencing DNA. Nano Letters.2012;12:4117-23.
    [11]Nelson T, Zhang B, Prezhdo OV. Detection of Nucleic Acids with Graphene Nanopores: Ab Initio Characterization of a Novel Sequencing Device. Nano Letters.2010;10:3237-42.
    [12]Lv W, Chen M, Wu Ra. The impact of the number of layers of a graphene nanopore on DNA translocation. Soft Matter.2013;9:960-6.
    [13]Sathe C, Zou XQ, Leburton JP, Schulten K. Computational Investigation of DNA Detection Using Graphene Nanopores. Acs Nano.2011;5:8842-51.
    [14]Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA. Graphene as a subnanometre trans-electrode membrane. Nature.2010;467:190-U73.
    [15]Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LMK, et al. DNA Translocation through Graphene Nanopores. Nano Letters.2010;10:3163-7.
    [16]Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, et al. DNA Translocation through Graphene Nanopores. Nano Letters.2010;10:2915-21.
    [17]Qiu H, Guo W. Detecting ssDNA at single-nucleotide resolution by sub-2-nanometer pore in monoatomic graphene: A molecular dynamics study. Appl Phys Lett.2012;100:083106-4.
    [18]Luan B, Afzali A, Harrer S, Peng H, Waggoner P, Polonsky S, et al. Tribological effects on DNA translocation in a nanochannel coated with a self-assembled monolayer. Journal of Physical Chemistry B.2010;114:17172-6.
    [19]Liang L, Cui P, Wang Q, Wu T, Agren H, Tu Y. Theoretical study on key factors in DNA sequencing with graphene nanopores. RSC Advances.2013;3:2445-53.
    [20]Luan BQ, Peng HB, Polonsky S, Rossnagel S, Stolovitzky G, Martyna G. Base-By-Base Ratcheting of Single Stranded DNA through a Solid-State Nanopore. Phys Rev Lett.2010;104.
    [21]Avdoshenko SM, Nozaki D, Gomes da Rocha C, Gonzalez JW, Lee MH, Gutierrez R, et al. Dynamic and Electronic Transport Properties of DNA Translocation through Graphene Nanopores. Nano Letters.2013;13:1969-76.
    [1]J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer. Characterization of Individual Polynucleotide Molecules Using a Membrane Channel. Proceedings of the National Academy of Sciences of the United States of America.1996,93 (24):13770-13773
    [2]A. Meller, L. Nivon, E. Brandin, J. Golovchenko, D. Branton. Rapid Nanopore Discrimination between Single Polynucleotide Molecules. Proceedings of the National Academy of Sciences.2000,97 (3):1079-1084
    [3]J.L. Li, D. Stein, C. Qun, E. Brandin, A. Huang, H. Wang, D. Branton, J. Golovchenko. Solid State Nanopore as a Single DNA Molecule Detector. Biophysical Journal.2003,84 (2):134a-135a
    [4]A.J. Storm, J.H. Chen, X.S. Ling, H.W. Zandbergen, C. Dekker. Fabrication of Solid-State Nanopores with Single-Nanometre Precision. Nature Materials.2003, 2 (8):537-540
    [5]D. Fologea, J. Uplinger, B. Thomas, D.S. McNabb, J.L. Li. Slowing DNA Translocation in a Solid-State Nanopore. Nano Letters.2005,5(9):1734-1737
    [6]E.A. Manrao, I.M. Derrington, M. Pavlenok, M. Niederweis, J.H. Gundlach. Nucleotide Discrimination with DNA Immobilized in the Mspa Nanopore. PloS one.2011,6(10):e25723
    [7]T. Ahmed, J.T. Haraldsen, J.J. Rehr, M. Di Ventra, I. Schuller, A.V. Balatsky. Correlation Dynamics and Enhanced Signals for the Identification of Serial Biomolecules and DNA Bases. Nanotechnology.2014,25 (12):125705
    [8]A. Chitteth Rajan, M.R. Rezapour, J. Yun, Y. Cho, W.J. Cho, S.K. Min, G. Lee, K.S. Kim. Two Dimensional Molecular Electronics Spectroscopy for Molecular Fingerprinting, DNA Sequencing and Cancerous DNA Recognition. Acs Nano. 2014,8(2):1827-1833.
    [9]C. Sathe, X. Q. Zou, J. P. Leburton and K. Schulten, Computational investigation of DNA detection using graphene nanopores. Acs Nano,2011,5(11):8842-8851.
    [10]J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan and B. Bettman, Real-time DNA sequencing from single polymerase molecules, Science,2009,323(5910):133-138.
    [11]D. B. Wells, M. Belkin, J. Comer and A. Aksimentiev, Assessing graphene nanopores for sequencing DNA, Nano Letters,2012,12(8):4117-4123.
    [12]S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton and J. A. Golovchenko, Graphene as a subnanometre trans-electrode membrane, Nature,2010, 467:190-U173.
    [13]C. A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M. D. Fischbein, K. Venta, Z. T. Luo, A. T. C. Johnson and M. Drndic, DNA Translocation through Graphene Nanopores, Nano Lett,2010,10(8):2915-2921.
    [14]G. F. Schneider, S. W. Kowalczyk, V. E. Calado, G. Pandraud, H. W. Zandbergen, L. M. K. Vandersypen and C. Dekker, DNA translocation through graphene nanopores, Nano Lett,2010,10(8):3163-3167.
    [15]B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and Computation,2008,4(3):435-447.
    [16]A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin and M. Karplus, All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, Journal of Physical Chemistry B,1998,102(18):3586-3616.
    [17]W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, Comparison of simple potential functions for simulating liquid water, Journal of Chemical Physics,1983,79:926-935.
    [18]L. J. Liang, Q. Wang, T. Wu, T. Y. Sun and Y. Kang, Contribution of Water Molecules in the Spontaneous Release of Protein by Graphene Sheets, ChemPhysChem,2013,14(13):2902-2909.
    [19]F. Haque, J. Li, H.-C. Wu, X.-J. Liang, P. Guo. Solid-State and Biological Nanopore for Real-Time Sensing of Single Chemical and Sequencing of DNA. Nano today.2013,8 (1):56-74
    [20]L. Liang, P. Cui, Q. Wang, T. Wu, H. Agren, Y. Tu. Theoretical Study on Key Factors in DNA Sequencing with Graphene Nanopores. RSC Advances.2013,3 (7):2445-2453

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700