用户名: 密码: 验证码:
基于p-型硒化锌纳米结构的p-n结构筑及其光电子器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为II-VI族半导体中的重要一员,宽禁带的ZnSe具有优良的光电性能,并且已经成功的被应用于各类光电子器件。针对ZnSe纳米材料的研究应用近年来也在如火如荼的开展,主要包括各种ZnSe纳米结构的控制合成和在光电子器件方面的应用。然而,可控掺杂是实现ZnSe纳米材料在光电器件领域应用的前提,而ZnSe薄膜体系中p-型掺杂是个难点,纳米材料的掺杂性能有待研究。此外,p-n结是光电子器件的核心,构筑纳米p-n结也是ZnSe纳米结构应用所面临的重要问题,但此方面的研究仍是一个难点。针对上述问题,本论文首先发展了利用V族元素包括Bi、N、P等作为掺杂源实现ZnSe纳米结构有效p-型掺杂的方法,然后构筑了多种基于p-型ZnSe纳米结构的纳米p-n结,进而研究了ZnSe纳米p-n结在多种光电子器件如太阳能电池、光电探测器、场效应晶体管中的应用。本论文的主要内容如下:
     一、在传统VLS纳米结构生长中,催化剂和掺杂源通常为不同材料,金属催化剂的存在往往会引入深能级杂质,并增加合成复杂性。因此,我们发展了将Bi作为催化剂一步法合成p-型掺杂ZnSe纳米线的方法,并研究了Bi掺杂ZnSe纳米线的导电机制。Bi为V族低熔点金属,其作为催化剂在生长ZnSe纳米线的过程中可以自发扩散至纳米线内,实现纳米线的有效p-型掺杂。我们通过制备基于单根纳米线的场效应晶体管证实了Bi掺杂的ZnSe纳米线为p-型半导体,并通过变温电学性能测试,证明在150–300K范围内,Bi掺杂ZnSe纳米线的导电机制为杂质离子热激发,而在50-140K时为转变为莫特可变范围跳跃电导。此方法实现了半导体纳米结构的同步生长和掺杂,避免杂质原子的引入,简化了半导体纳米结构的生长和掺杂工艺,有利于其在光电子器件中的应用。
     二、传统硅基太阳能电池存在吸光性能较差,且透明导电氧化物电极成本较高等问题。我们构筑了p-型ZnSe纳米带和n-型Si纳米线的p-n结阵列,并采用石墨烯作为器件透明电极,增强了器件在短波长方向的吸光,所构筑纳米p-n结阵列具有良好的光伏性能。首先以P作为掺杂源实现了ZnSe纳米结构的有效的p-型掺杂,并采用在n-型Si纳米线阵列上直接生长或滴涂预先生长的p-型ZnSe纳米带的方法构筑异质pn结。进而采用多层石墨烯作为器件透明电极,增强器件吸光。ZnSe/Si复合纳米p-n结结合了ZnSe在短波长范围的吸光能力、石墨烯高透过率和高导电性等优点,在新一代光伏器件中具有广泛应用前景。
     三、一般纳米p-n结往往需要多步生长实现,过程复杂,可控性不高。我们开发了一种简便的方法构筑单根p-型ZnSe纳米线和n-型Si的异质结。通过将p-型ZnSe纳米线转移至开有SiO2窗口的n-型Si基底,使得p-型ZnSe纳米线和n-型Si衬底直接接触形成异质结。在此异质结的基础上,我们制备了以p-型ZnSe纳米线为导电沟道的结型场效应晶体管,并证实了该器件具有高电流开关比、小阈值电压和小亚阈值摆幅等特点。此外,我们还是先了p-型ZnSe纳米带和n-型Si纳米线的十字交叉p-n结,发现该十字交叉p-n结具有良好的光电响应,通过低温电学性能表征发现了在正向偏电压下的空间电荷限制电流效应。上述工作为进一步简化ZnSe纳米p-n结的构筑奠定了基础。
     四、构筑了高性能的基于宽禁带半导体的p-型ZnSe纳米线和n-型CdS薄膜的异质结光伏器件,发现其具有优良的光伏性能。光伏器件的大开路电压意味着高输出电压和大输出功率,因此提高开路电压对于提高太阳能电池的性能非常重要。通过构筑ZnSe纳米线与CdS薄膜的异质结,我们证明器件的开路电压可以达到1.3V以上,进一步通过氮化硅界面钝化和快速退火等手段优化器件性能,器件的转换效率达到5.27%。此外,我们还制备了基于此异质结的柔性光伏器件,并证明器件具有良好的弯曲稳定性。本工作构筑的大开路电压异质结太阳能电池证明了ZnSe纳米结构在制备高效光伏器件方面的巨大潜力。
As an important part of group II-VI materials, large band-gap semiconductor ZnSehas excellent optoelectronic properties and abundant applications in optoelectronicdevices. The first blue/green laser was successfully achieved by N-doped ZnSe fiveyears before the first GaN blue/green laser. ZnSe nanostructures have also caught manyinvestigators’ eyes because of their outstanding properties in recent years, for example,great progress in synthesis and study on their optoelectronic devices have been acquired.In spite of these progresses, the practical applications of the ZnSe nanostructures arestill hampered by the difficulty in controlling their transport properties, particularlyp-type conductivity. In ZnSe films and bulks, the efficient p-type doping is usuallyrestricted by the strong self-compersation effect. Therefore, to obtain efficient p-typedoping of ZnSe nanostructures is significant to their optoelectronic applications.
     P-n junctions are fundamental elements for modern devices and play core roles inlight emitting, logic circuits, and energy conversion devices, etc. Recent advancement indesigning and fabricating1D nanostructures with axial, core-shell, and core-multishellp-n heterojunctions have excited a great deal of interest for their potential applications.These nano-heterostructures show the advantages in terms of atomic-sharp interface,less interface defects and higher carrier injection efficiency, thus providing an idealsystem for studying the carrier transport through nanoscale junction and promoting thedevice applications of the nanostructures as well. However, differing from theconventional film and bulk heterojunctions, which can be readily fabricated via themature layer-by-layer deposition or impurity diffusion/implantation techniques, itremains a great challenge to construct1D nanostructures based heterojunctions becauseof the complicated multi-step growth or precise positioning/alignment techniquesinvolved.
     In this dissertation, we first developed new methods to synthesize efficient p-type ZnSe nanostructures using group V elements as dopants, such as Bi, N, P. Second, weconstructed different kinds of nano p-n junction based on p-type ZnSe nanostructures,such as p-n junction array based on ZnSe nanoribbons and Si nanowires,nano-henterojunction based on single ZnSe nanoribbon/nanowire and Sisubstrate/nanowire, and heterojunction based on single ZnSe nanowire and CdS film orZnSe-CdS nanowire core-shell p-n junction. At last, we developed many optoelectronicapplications based on these nano p-n junctions, such as solar cells, photodetectors,junction field-effect transistors, and obtained very excellent properties. The main resultare as follows:
     1. Simutaneous ZnSe nanowires growth and p-type doping and theirtemperature-dependent charge transport properties. Au catalysts have been found todiffuse into semiconductor nanostructures and form non-radiative recombination centersduring the synthesis process. This adverse impact to p-type doping of ZnSenanostructures is even more together with its self-compensation effect. Herein, lowmelt-point Bi was used as catalysts for the synthesis of p-ZnSe nanowires via VLSmechanism while the incorporation of Bi catalyst atoms causes effective p-type dopingin the as-grown nanostructures. Top-gate MISFETs are fabricated to confirm the p-typenature of the Bi-catalyzed and doped ZnSeNWs. Furthermore, temperature-dependentelectrical measurement is significant to understand the charge transport mechanism anddoping effect of semiconductors. Thermal activation behavior of carrier is considered inthe range of150-300K while3D Mott VRH mechanism is considered to be suitable forlower temperature range of50-140K. Our results demonstrate a new method tosynthesize p-type ZnSe nanostructrures by using co-evaporation of catalysts/dopantsand source materials, which would be an important platform for the next-generationnano-optoelectronics.
     2. ZnSe nanoribbon/Si nanowire p-n heterojuncton arrays and their photovoltaicapplication with graphene transparent electrodes. The narrow indirect bandgap of Sihinders the full absorption and utilization of the solar light. Energy band engineering tothe Si based photovoltaic devices is essential to address this problem. Here we reportthe fabrication of ZnSe nanoribbon/Si nanowire p-n heterojunction arrays by directlygrowing or simply drop-casting the p-type ZnSeNRs on highly aligned n-type SiNWarrays. Thanks to the matched bandgap and the light trapping arising from theone-dimensional array structure, the heterojunction arrays exhibited improved light absorption, particularly in the blue/UV wavelength range. Moreover, by takingadvantage of the ohmic contact between graphene and p-ZnSeNR, heterojunction arraysolar cells with graphene transparent electrode were fabricated, and wonderfulphotovoltaic properties were obtained. Furthermore, it was found that the surfacepassivation to the SiNW array played an important role in determining the deviceperformance; an efficiency up to2.27%was obtained after surface modification withmethyl groups. Our results demonstrate the heterojunction arrays, together with thegraphene transparent electrodes, could be promising candidates for high-performanceand low-cost photovoltaic applications.
     3. Device construction of single ZnSe nanowire-Si p-n heterojunctions and theiroptoelectronic applications. Nano-heterojunctions play essential roles in futurenano-electronic and nano-optoelectronic devices. However, their extensive applicationsare impeded by the complicated multi-step growth method involved and therequirements for precise nanowire positioning/alignment. Herein, we constructed twokinds of nano-heterojunction based on single p-type ZnSe nanowire. First of all, wedeveloped a facile method to fabricate zinc selenide NW/silicon p-n heterojunctions bytransferring the p-type ZnSeNWs onto a SiO2/Si substrate with pre-defined Si windows;the physical contact of NW with Si substrate via van der Waals force leads to theformation of heterojunction. Electrical measurements on the heterojunction reveal theexcellent diode characteristics. Moreover, heterojucntion field-effect transistors areconstructed based on the p-ZnSeNWs and show remarkably performance enhancementcompared to the device counterparts with a metal-oxide-semiconductor FET structure.The enhanced gate coupling between the NW conduction channel and theheterojunction gate is believed to be responsible for the high device performance.Second, we constructed a kind of crossed nanowire heterojunction by―slide off‖method to transfer nanowire from the donor substrate to the acceptor substate. And thenits photodetection, electronic properties at low temperature, space charge limit currenteffect under positive bias were investigated. Our results demonstrate the great potentialof ZnSeNW/Si p-n heterojunctions in high-performance nano-device applications.
     4. Efficient Photovoltaic Devices based on p-ZnSe nanowire/n-CdS filmHeterojunctions with High Open-circuit Voltage. As an important parameter of solarcells, high open circuit voltage is desirable in the occasion that high driven voltage.Herein, large band-gap p-type ZnSe nanowires and n-type CdS film are used to construct p-n heterojunction to obtain high open circuit voltage. Furthermore, a4nmSi3N4layer is inserted between the ZnSe nanowires and CdS film in order to passivatethe interface defects and reduce recombination and the saturation current. Additionally,and a fast annealing process is employed to reduce the series resistance for improvedperformance. For a typical device, an optimum high open circuit voltage of~1.3V andan energy conversation efficiency of~5.27%were achieved for its photovoltaicoperation. Our results demonstrate the ZnSeNW/Si heterojunctions will have importantapplications in high-performance nano-optoelectronic devices.
引文
[1]蔡建岩.纳米科技发展现状及趋势[J].长春大学学报.2005.15(4):71-75.
    [2]顾新梅.纳米技术简介.技术物理教学.2005.13(2):47-48.
    [3]朱静等,纳米材料和器件.北京:清华大学出版社,2003
    [4] Fang, X. S., and Zhang, L. D.―One-Dimensional (1D) ZnS Nanomaterials andNanostructures‖. J. Mater. Sci. Technol.,2006,Vol.22No.6.721-736.
    [5] Smith, A. M., Shumingnie.―Semiconductor Nanocrystals: Structure, Properties,and Band Gap Engineering‖. ACCOUNTS OF CHEMICAL RESEARCH,2010,Vol.43, No.2:190-200.
    [6] Iijima, S.―Helical microtubules of graphitic carbon‖. Nature,1991,354,56.
    [7] Lieber, C. M., Zhong, L. W.,―Functional Nanowires‖. MRS BULLETIN,2007,32.99-108.
    [8] Wu, C. Y., Jie, J. S., et al.―Chlorine-doped n-type CdS nanowires with enhancedphotoconductivity‖. Nanotechnology,2010,21,505203.
    [9] Xia, Y. N., Yang, P. D., Sun, Y. G., Wu, Y. Y., Mayers, B., Gates, B., Yin, Y. D., Kim,F., and Yan, H. Q.,―One-Dimensional Nanostructures: Synthesis, Characterization,and Application‖. Adv. Marter.2003,15, No.5.
    [10] Lv, B. L., Xu, Y., Gao, Q.. Wu, D., and Sun Y. H."Controllable Synthesis andMagnetism of Iron Oxides Nanorings.". Journal of Nanoscience andNanotechnology,2010,10:2348-2359.
    [11] Gao, P. X., Ding, Y., Mai, W. J., Hughes, W. L., Lao, C. S., and Wang, Z. L.,()."Conversion of zinc oxide nanobelts into superlattice-structured nanohelices.".Science,2005,309:1700-1704.
    [12] Ko, S. H., Lee, D. H., Kang, H. W., Nam, K. H., Yeo, J. Y., Hong, S. J.,Grigoropoulos, C. P., and Sung, H. J.,―Nanoforest of Hydrothermally GrownHierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell‖.Nano Lett.,2011,11(2):666–671.
    [13] Wu, D., Jiang, Y.,*Wang, L., Li, S. Y., Wu, B., Yu, Y. Q., Wu, C. Y., Wang, Z. B.,Jie, J. S.,―High-performance CdS:P nanoribbon field-effect transistorsconstructed with high-κ dielectric and top-gate geometry‖. Applied PhysicsLetters,2010,96,123118.
    [14] Ramgir, N., S., Yang, Y., and Zacharias, M.*,―Nanowire-Based Sensors‖. small,2010,6(16):1705–1722.
    [15] Soci, C., Zhang, A., Bao, X. Y., Kim, H. K., Lo,Y., and Wang, D. L.,―NanowirePhotodetectors‖.2010,10,1-20.
    [16] Law, M., Goldberger, J., and Yang. P. D.,―SEMICONDUCTOR NANOWIRESAND NANOTUBES‖.Annu. Rev. Mater. Res.2004.34:83–122.
    [17] Huang, Z. P., Geyer, N., Werner, P., Johannes de Boor, and G sele, U.,―Metal-Assisted Chemical Etching of Silicon: A Review‖. Adv. Mater.2011,23,285–308.
    [18] Du, D., Wang, M. H., Cai, J., Qin, Y. H. and Zhang, A. D.,"One-step synthesis ofmultiwalled carbon nanotubes-gold nanocomposites for fabricating amperometricacetylcholinesterase biosensor" Sensors and Actuators B-Chemical,2010,143(2):524-529.
    [19] Liu, H. Q., J. Kameoka, D. A. Czaplewski and H. G. Craighead."Polymericnanowire chemical sensor." Nano Letters20044(4):671-675.
    [20] Wu, P., Y. Ye, T. Sun, R. Peng, X. Wen, W. Xu, C. Liu and L. Dai."Ultrahigh-performance inverters based on CdS nanobelts." ACS Nano20093(10):3138-42.
    [21] De Boor, J., Geyer, N., Wittemann, J. Gosele V. U., and Schmidt, V.,―Sub-100nmsilicon nanowires by laser interference lithography and metal-assisted etching."Nanotechnology201021(9),095302
    [22] Bao, J. M., Zimmler, M. A., Capasso, F., Wang, X. W., and Ren, Z. F.,"BroadbandZnO single-nanowire light-emitting diode." Nano Letters20066(8):1719-1722.
    [23] Kuang, D., Brillet, J., Chen, P., Takata, M., Uchida, S., Miura, H., Sumioka, K.,Zakeeruddin, S. M., and Gratzel, M.,"Application of highly ordered TiO2nanotube arrays in flexible dye-sensitized solar cells." ACS Nano20082(6):1113-1116.
    [24] Wang, Z. L. and Song J. H.,"Piezoelectric nanogenerators based on zinc oxidenanowire arrays." Science,2006,312(5771):242-246.
    [25] Jie, J. S., Zhang. W. J., Bello, I., Lee, C. S., Lee. S. T.,―One-dimensional II—VInanostructures: Synthesis, roperties and optoelectronic applications‖. doi:10.1016/j. nantod.2010.06.009.
    [26] Shen, G. Z., and Chen. D.,―One-Dimensional Nanostructures for Photodetectors‖Recent Patents on Nanotechnology,2010, Vol.4, No.1.
    [27] Soci, C., Zhang, A., Bao, X.Y., Kim, H. K., Lo,Y., and Wang, D. L.,―Nanowire Photodetectors‖J. Nanosci. Nanotechnol.,2010, Vol.10,1–20.
    [28] Yu, Y. Q., Jie, J. S., Jiang, P., Wang, L., Wu, C. Y., Peng, Q., Zhang, X. W.,Wang, Z., Xie, C., Wu D.and Jiang Y.,―High-gain visible-blind UVphotodetectors based on chlorine-doped n-type ZnS nanoribbons with tunableoptoelectronic properties‖J. Mater. Chem.,2011,21,12632
    [29] Jie, J. S., Zhang, W. J.,*, Jiang, Y., Meng, X. M., Li, Y. Q., and Lee, S. T.,―Photoconductive Characteristics of Single-Crystal CdS Nanoribbons‖. NanoLett.,2006, Vol.6, No.9.
    [30]康华光,陈大钦,电子技术基础.北京:高等教育出版社,1999
    [31] Cui, Y., Zhong, Z. H., Wang, D. L., Wang, W. U., and Lieber, C. M.*,―HighPerformance Silicon Nanowire Field Effect Transistors‖. Nano Lett.,2003, Vol.3,No.2.
    [32] He, Z. B., Zhang, W. J., Zhang, W. F., et al.―High-Performance CdSe:InNanowire Field-Effect Transistors Based on Top-Gate Confguration with High-κNon-Oxide Dielectrics‖. J. Phys. Chem. C,2010, Vol.114, No.10.
    [33] Wu, P. C., Ma, R. M., Liu, C., Sun, T., Ye, Y., and Dai, L.*,―High-performanceCdS nanobelt feld-effect transistors with high-k HfO2top-gate dielectrics‖. J.Mater. Chem.,2009,19:2125–2130.
    [34] Yeom, D. H., Keem, K., Kang, J., Jeong, D. Y., Yoon, C. J., Kimand, D.S., Kim,S.,―NOT and NAND logic circuits composed of top-gate ZnO nanowirefeld-effect transistors with high-k Al2O3gate layers‖. Nanotechnology,2008,19,265202.
    [35] Yang, P. D., Yan, R. X., and Fardy, M.,―Semiconductor Nanowire: What is thenext?‖. Nano Lett.,2010,10(5),1529–1536
    [36] Hasse, M. Qui, J. De Puydt, J. Cheng, H.―Blue‐green laser diodes”Appl. Phys.Lett.59(1991)1272.
    [37] Nakamura, S. Senoh, M. Nagahama, S. Iwasa, N. Yamada, T. Matsushita, T.Kiyoku, H. Sugimoto, Y., J. Appl. Phys.199635L174.
    [38] Schlesinger, T.E. Toney, J.E. Yoon, H. Lee, E.Y. Brunett, B.A. Franks, L. James,R.B. Mater. Sci. Eng.(2001)32103.
    [39] Schlesinger, T.E. James, R.B., Semiconductors for Room Temperature NuclearApplications, vol.43, Academic Press, New York,1995, Chapter9, p.335
    [40] Jiang, Y. Zhang, W.J. Jie, J.S. Meng, X.M. Fan, X. Lee, S.T.,―PhotoresponseProperties of CdSe Single-Nanoribbon Photodetectors‖Adv. Funct. Mater.(2007)171795.
    [41] Meng, Q.F. Jiang, C.B. Mao, S.X.,―Ohmic contacts and photoconductivity ofindividual ZnTe nanowires‖Appl. Phys. Lett.(2009)94043111.
    [42] Fang, X. Xiong, S. Zhai, T. Bando, Y. Liao, M. Gautam, U.K. Koide, Y. Zhang, X.Qian, Y. Golberg, D.,―High-Performance Blue/Ultraviolet-Light-SensitiveZnSe-Nanobelt Photodetectors‖Adv. Mater.21(2009)5016.
    [43] Fang, X. Bando, Y. Liao, M. Cautam, U.K. Zhi, C. Dierre, B. Liu, B. Zhai, T.Sekiguchi, T. Koide, Y. Golberg, D.―Single-Crystalline ZnS Nanobelts asUltraviolet-Light Sensors‖Adv. Mater.21(2009)2034.
    [44] Wu, D. Jiang, Y. Wang, L.S.Y. Li, B. Wu, Y.Q. Yu, C.Y.Wu, Z.B. Wang, Jie, J.S.―High-performance CdS:P nanoribbon field-effect transistors constructed withhigh-κ dielectric and top-gate geometry‖Appl. Phys. Lett.(2010)96123118.
    [45] Wu, D. Jiang, Y.. Zhang, Y. G Y. Q. Yu, Z. F. Zhu, X. Z. Lan, Li, F. Z. Wu, C. Y.Wang L.and Luo, L. B.―Self-powered and fast-speed photodetectors based onCdS:Ga nanoribbon/Au Schottky diodes‖J. Mater. Chem.,2012,22,23272–23276
    [46] Wei, T.Y. Huang, C.T. Hansen, B.J. Lin, Y.F. Chen L.J.,―Large enhancement inphoton detection sensitivity via Schottky-gated CdS nanowire nanosensors‖Appl.Phys. Lett.(2010)96013508.
    [47] Hayden, O. Agarwal, R. Lieber, C.M.―Nanoscale avalanche photodiodes forhighly sensitive and spatially resolved photon detection‖Nat. Mater.5(2006)352.
    [48] Duan, X.F. Huang, Y. Cui, Y. Wang, J. Lieber, C.M. Indium phosphidenanowires as building blocks for nanoscale electronic and optoelectronic devices,Nature409(2001)66.
    [49] Huang, Y Duan, X.F. Lieber, C.M.“Nanowires for Integrated MulticolorNanophotonic”Small1(2005)142.
    [50] Qian, F. Gradecak, S. Y. Li, C. Y. Wen, Lieber, C. M. Nano Lett.2005,5,2287
    [51] Hayden, O. Greytak, A. B. Bell, D. C. Core–Shell Nanowire Light-EmittingDiodes, Adv. Mater.2005,17,701.
    [52] Liu, C. Dai, L. Sun, T. Peng, R. G. Wen, X. Wu, P. Qin, G. High-efficiency colortunable n-CdSxSe1x/p+-Si parallel-nanobelts heterojunction light-emittingdiodes, J. Mater. Chem.2010,20,5011.
    [53] Duan, X. Huang, Y. Agarwal, R. Lieber, C. M. Large-scale hierarchicalorganization of nanowire arrays for integrated nanosystems, Nature2003,421,241
    [54] Pan, A. Liu, R. Yang, Q. Zhu, Y. Yang, G. Zou, B. Chen, K.―Stimulatedemissions in aligned CdS nanowires at room temperature‖J. Phys. Chem. B.2005,109,24268.
    [55] Liu, B. Chen, R.. Xu, X. L Li, D. H. Zhao, Y. Y.. Shen, Z. X Xiong, Q. H. Sun,H. D―Exciton-Related Photoluminescence and Lasing in CdS Nanobelts‖J. Phys.Chem. C,2011,115,12826.
    [56] Liu, Y. Zapien, J. A. Shan, Y. Y. Geng C. Y., Lee, C. S. Lee, S. T.―Wavelength‐Controlled Lasing in ZnxCd1–xS Single‐Crystal Nanoribbons‖Adv. Mater.2005,17,1372.
    [57] Pan, A. Zhou, W. Leong, E. S. P. Liu, R. Chin, A. H. Zou, B. Ning, C. Z.―Listorage properties of disordered graphene nanosheets‖Nano Lett.2009,9,784.
    [58] Fan, Z. Razavi, H. Do, J. W. Moriwaki, A. Ergen, O. Chueh, Y. L. Leu P. W. Ho,J. C. Takahashi, T. Reichertz, L. A. Neale, S. Yu, K. Wu, M. Ager, J. W. Javey,A. Three-dimensional nanopillar-array photovoltaics on low-cost and flexiblesubstrates, Nat. Mater.2009,8,648.
    [59] Kwak, W. C. Han, S. H. Kim, T. G. Sung, Y. M. Electrodeposition of Cu (In, Ga)Se2crystals on high-density CdS nanowire arrays for photovoltaic applications,Cryst. Growth Des.2010,10,5297.
    [60] Lee, J. C. Kim, T. G. Lee, W. Han, S. H. Sung, Y. M. Growth of CdSnanorod-coated TiO2nanowires on conductive glass for photovoltaic applications,Cryst. Growth Des.2009,9,4519.
    [61] Zheng, G. F., Liu, W., Jin, S., Lieber, C. M.,―Systhesis and Fabrication ofHigh-Performance n-Type Silicon Nanowire Transisors‖. Adv. Marter.2004,16,No.21, November4.
    [62] Jie, J. S., Zhang, W. J., Peng, K. Q., Yuan, G. D., Lee, C. S., and Lee, S. T.,―Surface-Dominated Transport Properties of Silicon Nanowires‖. Adv. Funct.Mater,2008,18,3251–3257.
    [63] Cai, J. J. Jie, J. S. Jiang, P. Wu, D. Xie, C. Wu, C. Y. Wang, Y. Z.Yu, Q. Wang, L.Zhang, X. W. Peng Q. and Jiang, Y.―Device structure-dependent field-effect andphotoresponse performances of p-type ZnTe: Sb nanoribbons‖Phys. Chem. Chem.Phys.,2011,13,14663
    [64] He, Z. B., Jie, J. S., Zhang, W. J., Zhang, W. F., Luo, L. B., Fan, X., Yuan, G. D.,Bello, I., and Lee, S. T.*,―Tuning Electrical and Photo electrical Properties ofCdSe Nanowires via Indium Doping‖[J]. Small,2009,5, No.3,345–350.
    [65] Peng, Q. Jie, J. S. Xie, C. Wang, L. Zhang, X. Wu D., Y. Q. Yu, C. Y. Wu, Z.Wang and Jiang P.,―Aluminium-doped n-type ZnS nanowires ashigh-performance UV and humidity sensors‖Appl. Phys. Lett.,2011,98,123117
    [66] Li, S.Y., Jiang,Y., Wu, D., Wang, L., Zhong,H. H., Wu, B., Lan, X. Z., Yu, Y. Q.,Wang, Z. B., and Jie, J. S.,―Enhanced p-Type Conductivity o ZnTe Nanoribbonsby Nitrogen Doping‖[J]. J. Phys. Chem. C,2010, Vol.114, No.17.
    [67] Faschinger, W.,―Doping and contacting of wide gap II-VI compounds‖. Journalof Crystal Growth,1999,197:557-564.
    [68] Desnica, U. V.,―DOPING LIMITS IN II-Vl COMPOUNDS, CHALLENGES,PROBLEMS AND SOLUTIONS‖[J]. Prog. Crystal Growth and Charact.1998,Vol.36, No.4:291-357.
    [69] Song, H. S., Zhang, W. J., Yuan, G. D., He, Z. B., Zhang, W. F., Tang, Y. B., Luo,L. B., Lee, C. S., Bello, I., and Lee, S. T.,―p-type conduction in arsenic-dopedZnSe nanowires‖[J]. Appl. Phys.2009, Lett.95,033117.
    [70] Qian, F. S. Gradecak, Y. Li, C. Wen, C. M. Lieber,―Core/Multishell NanowireHeterostructures as Multicolor, High-Efficiency Light-Emitting Diodes‖, NanoLett.5,2287(2005)
    [71] Hayden, O.R. Agarwal, C. M. Lieber,―Nanoscale avalanche photodiodes forhighly sensitive and spatially resolved photon detection‖, Nature Mater.(2006)5,352.
    [72] Tian, B. X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber,―Coaxial silicon nanowires as solar cells and nanoelectronic power sources‖,Nature449,885(2007).
    [73Li, Y. J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D.A. Blom, C. M. Lieber,―Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as HighElectron Mobility Transistors‖, Nano Lett.6,1468(2006).
    [74] Tang, J.Z. Huo, S. Brittman, H. Gao and P. Yang, Nat. Nanotechnol.,2011,6,568–572Solution-processed core–shell nanowires for efficient photovoltaic cells
    [75] Tang X, Li, G and Zhou, S,―Ultraviolet Electroluminescence ofLight-Emitting Diodes Based on Single n-ZnO/p-AlGaN HeterojunctionNanowires‖Nano Lett.,2013,13(11), pp5046–5050
    [76] Yoon J, Min K H, Kim J, Kim G T and Ha J S―P–n hetro-junction diode arrays ofp-type single walled carbonnanotubes and aligned n-type SnO2nanowires―Nanotechnology201223265301
    [77] Shi, E. Z.J. Q. Nie, X. J. Qin, Z. J. Li, L. H. Zhang, Z. Li, P. X. Li, Y. Jia, C. Y. Ji,J. Q. Wei, K. L. Wang, H. W. Zhu, D. H. Wu, Y. Li, Y. Fang, W. Z. Qian, F. Weiand A. Y. Cao, Nanobelt–carbon nanotube cross-junction solar cells, EnergyEnviron. Sci.,2012,5,6119–6125Nanobelt–carbon nanotube cross-junction solarcells
    [78] Ye, Y. L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo andQing, G. G. Multicolor graphene nanoribbon/semiconductor nanowireheterojunction light-emitting diodes, J. Mater. Chem.,2011,21,11760–11763
    [79] Min, K. W.Y. K. Kim, G. Shin, S. Jang, M. Han, J. Huh, G. T. Kim and J. S. Ha,White‐Light Emitting Diode Array of p+‐Si/Aligned n‐SnO2NanowiresHeterojunction, Adv. Funct. Mater.,2011,21,119–124s
    [80] Kelzenberg, M. D. S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M C.Putnam, E. L.Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater,―Enhanced absorption and carrier collection in Si wire arrays for photovoltaicapplications‖, Nature Mater.9,239(2010).
    [81] Hochbaum, A. I. P. D. Yang,―Semiconductor Nanowires for Energy Conversion‖,Chem. Rev.110,527(2010).
    [82] Xu, S.; Xu, C.; Liu, Y.; Hu, Y.; Yang, R.; Yang, Q.; Ryou, J. H.; Kim, H.J.;Lochner, Z.; Choi, S.; Dupuis, R.; Wang, Z. L.;―Ordered nanowire arrayblue/near-UV light emitting diodes‖, Adv. Mater.2010,22,4749.
    [1] Ren, J. Bowers, K. A. Sneed, B. Dreifus, D. L. Cook J. W. and Schetzina, J. F. ZnSelightemitting diodes Appl. Phys. Lett.,1990,57,1901.
    [2] Haase, M. A. Qiu, J. DePuydt J.M. and Cheng, H. Blue‐green laser diodesAppl. Phys. Lett.,1991,59,1272.
    [3] Mahawela, P. Sivaraman, G. Jeedigunta, S. Gaduputi, J. Ramalingam M.andSubramanian, S. II–VI compounds as the top absorbers in tandem solar cellstructures Mater. Sci. Eng.B,2005,116,283.
    [4] Saxena, A. Yang, S. Philipose, U. and Ruda, H. E. Excitonic and pair-relatedphotoluminescence in ZnSe nanowires J. Appl. Phys.,2008,103,053109.
    [5] Wang, Z. Jie, Li, F. Z. Wang, L. Yan, T. X. Luo, L. B. Nie, B. Xie, C. Jiang, P.Zhang, X. W. Yu, C. Y. Q. Wu, Y. Chlorine-Doped ZnSe Nanoribbons withTunable n-Type Conductivity as High-Gain and Flexible Blue/UV PhotodetectorsChemPlusChem,2012,77,470-475.
    [6] Zhang, X. T. Liu, Z. Leung, Y. P. Li Q.and Hark, S. K. Growth and luminescence ofternary semiconductor ZnCdSe nanowires by metalorganic chemical vapordeposition Appl. Phys. Lett.,2003,83,5533.
    [7] Xiong, S. L. Xi, B. J. Wang, C. M. Xi, G. C. Liu X. Y.and Qian, Y. T.Solution‐Phase Synthesis and High Photocatalytic Activity of Wurtzite ZnSeUltrathin Nanobelts: A General Route to1D Semiconductor NanostructuredMaterials Chem. Eur. J.,2007,13,7926.
    [8] Leung, Y. P. Choy, W. C. H. Markov, I. Pang, G. K. H. Ong H. C. and Yuk, T. I.Linearly resistive humidity sensor based on quasi one-dimensional ZnSenanostructures Appl. Phys. Lett.,2006,88,183110.
    [9] Laks D. B. and Van de Walle, C. G. Phys. B,1993,185,118.
    [10] Zhang, X. W. Zhang, X. J. Zhang, X. Z. Zhang, Y. P. Bian, L. Wu, Y. M. Xie, C.Han, Y. Y. Wang, Y. Gao, P. Wang, L. Jie, J. S. ZnSe nanoribbon/Si nanowire p–nheterojunction arrays and their photovoltaic application with graphene transparentelectrodes J. Mater. Chem.,2012,22,22873-22880.
    [11Zhang, X. W. Jie, J. S. Wang, Z. Wu, C. Y. Wang, L. Peng, Q. Yu, Y. Q. Jiang P.and Xie, C. surface induced negative photoconductivity in p-type ZnSe:Binanowires and their nano-optoelectronic applications J. Mater. Chem.,2011,21,12632.
    [12] Song, H. S. Zhang, W. J. Yuan, G. D. He, Z. B. Zhang, W. F. Tang, Y. B. Luo, L. B.Lee, C. S. Bello I. and Lee, S. T. p-type conduction in arsenic-doped ZnSenanowires Appl. Phys. Lett.,2009,95,033117.
    [13] Jie, J. S. Zhang, W. J. Bello, I. Lee C. S. and Lee, S. T. One-dimensional II–VInanostructures: synthesis, properties and optoelectronic applications Nano Today,2010,5,313.
    [14] Nguyen, P. Ng, H. T. Meyyappan, M. Catalyst metal selection for synthesis ofinorganic nanowires Adv. Mater.,2005,17,1773.
    [15] Schmidt, V. Wittermann, J. V. Senz, S. Gosele, U., Silicon nanowires: a reviewon aspects of their growth and their electrical properties Adv. Mater.,2009,21,2681.
    [16] Allen, J. E. Hemesath, E. R. Perea, D. E. Lensch-Falk, J. L. Li, Z. Y. Yin, F.Gass, M. H. Wang, P. Bleloch, A. L. Palmer, R. E. Lauhon, L. J. High-resolutiondetection of Au catalyst atoms in Si nanowires Nat. Nanotechnol.,2008,3,168.
    [17] Wang Z. W.and Li, Z. Y. Structures and energetics of indium-catalyzed siliconnanowires Nano Lett.,2009,9,1467-1471.
    [18] Mi, G. Li, L. K. Zhang Y. B.and Zheng, G. F. Sn-doped bismuth telluridenanowires with high conductivity Nanoscale,2012,4,6276-6278.
    [19] Zardo, I. Yu, L. Conesa-Boj, S. Estrade, S. Alet, P. J. Rossler, J. Frimmer, M. Rocai Cabarrocas P., Peiro, F. Arbiol, J. Morante, J. R. Fontcuberta i Morral, A.Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowiresNanotechnology,2009,20,155602.
    [20] Yan C. Y.and Lee, P. S. J. Phys. Chem. C,2009,113,2209.
    [21] Moon, S. R. Kim, J. H. and Kim, Y. ZnTe Nanowires with Oxygen IntermediateBand Grown by Bismuth-Catalyzed Physical Vapor Transport J. Phys. Chem.C,2012,116,10368–10374.
    [22] Yu, L. W. Fortuna, F.O’Donnell, B. Jeon, T. Foldyna, M.Picardi, G.Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabricationof radial junction solar cells Nano Lett.,2012,12,4153–4158.
    [23] Mott, N. F. David, E. A. Electronic Processes in Noncrystalline Materials,Oxford University Press, Oxford,1979.
    [24] Shklovskii, B. I. Efros, A. L. Electronic Properties of Doped Semiconductors,Springer, Berlin,1979.
    [25] Ma, Y. J. Zhang, Z. Zhou, F. Lu, L. Jin A. Z. a nd Gu, C. Z. Hopping conductionin single ZnO nanowires Nanotechnology,2005,16,746–749.
    [26] Ma, Y. J. Zhou, F. Lu, L. Zhang, Z. Low-temperature transport properties ofindividual SnO2 nanowires Solid State Communications,2004,130,313–316.
    [27] Huang, L. B. Li, D. D. Chang, P. C. Chu, Bozler, S. H. I Beloborodov g. S. and Lu,J. G. Quantum transport in indium nitride nanowires Phys. Rev. B,2011,83,245310.
    [28] Han, J. P. Shen, M. R. andCao, W. W. Hopping conduction in Mn-doped ZnOAppl. Phys. Lett.,2003,82,67-69.
    [29] Caban-Acevedo, M. Liang, D. K. S. Chew, J. P. DeGrave, N. S. Kaiser, and S. Jin,Synthesis, Characterization, and Variable Range Hopping Transport of Pyrite(FeS2) Nanorods, Nanobelts, and Nanoplates ACS Nano,2013,7,1731–1739
    [30] Viana, E. R. Gonzalez, J. C. Ribeiro G. M.and de Oliveira, A. G.3D hoppingconduction in SnO2nanobelts physica status solidi (RRL),2012,6,262–264.
    [31] Jiang, Y. Meng, X. M. Liu, J. Xie, Z. Y. Lee, C. S. Lee, S. T.Hydrogen‐assisted thermal evaporation synthesis of ZnS nanoribbons on a largescale Adv. Mater,2003,15,323-327.
    [32] Lin, M. Sudhiranjan, T. Boothroyd, C. Lo, K. P. Influence of Au catalyst on thegrowth of ZnS nanowires Chemical Physics Letters,2004,400,175–178.
    [33] Nie, B, Luo, L. B. Chen, J. J. Hu, J. G. Wu, C. Y. Wang, L. Yu, Y. Q. Zhu Z. F.and Jie J. S. Fabrication of p-type ZnSe: Sb nanowires for high-performanceultraviolet light photodetector application Nanotechnology,2013,24,095603.
    [34] Gao P. X. and Wang, Z. L. Substrate atomic-termination-induced anisotropicgrowth of ZnO nanowires/nanorods by the VLS process J. Phys.Chem B,2004,108,7534.
    [35] Wang, Z. W. Li, Z. Y. Structures and energetics of indium-catalyzed siliconnanowires Nano Lett.,2009,9,1467.
    [36] Shen, Y. Q. Xu, N. Hu, W. Xu, X. F. Sun, J. Ying, Z. F. Wu, J. F. Solid-StateElectronics. Bismuth doped ZnSe films fabricated on silicon substrates by pulsedlaser deposition2008,52,1833–1836.
    [37] Li, J. Zhong, H. Z. Liu, H. J. Zhai, T. Y. Wang, X. Liao, M. Y. Bando, Y. Liu R. B.and Zou B. S., One dimensional ternary Cu–Bi–S based semiconductor nanowires:synthesis, optical and electrical properties J. Mater. Chem.,2012,22,17813–17819.
    [38] Mott, N. F. Metal-insulator transitions in VO2, Ti2O3and Ti2-x V x O3Phil.Mag.,1969,19,835.
    [39] Paschoal, W. Jr., Kumar, S. Borschel, C. Wu, P. Canali, C. M. Ronning, C.Samuelson L. and Pettersson, H. Hopping conduction in Mn ion-implanted GaAsnanowires Nano Lett.,2012,12,4838–4842.
    [1] Chen, H. Y. Hou, J. H. Zhang, S. Q. Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y.Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiencyNat. Photonics.,2009,3,649.
    [2] Shen, X. J. Sun, B. Q. Liu, D. S. T. Lee, Hybrid heterojunction solar cell based onorganic–inorganic silicon nanowire array architecture J. Am. Chem. Soc.,2011,133,19408.
    [3] Gratzel, M. Photoelectrochemical cells Nature,2001,414,338.
    [4] Golan, G. Axelevitch, A.26th International Conference on Microelectronics,2008.
    [5] Leschkies, K. S. Divakar, R. Basu, J. Enache-Pommer E, J. E. Boercker, C. B.Carter, U. R. Kortshagen, D. J. Norris, E. S. Aydil, Photosensitization of ZnOnanowires with CdSe quantum dots for photovoltaic devices Nano Lett.,2007,7,1793.
    [6] Goodey, A. P. Eichfeld, S. M. Lew, K. K. J. M. Redwing, T. E. Mallouk, Siliconnanowire array photoelectrochemical cells J. Am. Chem. Soc.,2007,129,12344.
    [7] Lee, Y. J. Ruby, D. S. Peters, D.W. McKenzie, B. B. Hsu, J.W. P. ZnOnanostructures as efficient antireflection layers in solar cells Nano Lett.,2008,8,1501.
    [8] Zhang, Y. Wang, L. Mascarenhas, A.―Quantum coaxial cables‖for solar energyharvesting Nano Lett.,2007,7,1264.
    [9] Schrier, J. Demchenko D. O. and Wang, L. W. Optical properties of ZnO/ZnS andZnO/ZnTe heterostructures for photovoltaic applications Nano Lett.,2007,7,2377.
    [10] Sun, K. Jing, Y. Park, N. C. Li, Y. Bando, Wang, D. L.3D branched nanowireheterojunction photoelectrodes for high-efficiency solar water splitting and H2generation J. Am. Chem. Soc.,2010,132,15465.
    [11] Wang, W. Zhao, Q. Xu, J. Yu, D. P. A unique strategy for improving top contact inSi/ZnO hierarchical nanoheterostructure photodetectors CrystEngComm,2012,14,3015
    [12] He, C. Han, C. B. Xu, Y. R. Li, X. J. Photovoltaic effect of CdS/Sinanoheterojunction array J. Appl. Phys.2011,110,094316.
    [13] Ren, J. Bowers, K. A. Sneed, B. Dreifus, D. L. Cook J. W. and Schetzina, J. F.ZnSe lightemitting diodes Appl. Phys. Lett.,1990,57,1901.
    [14] Haase, M. A. Qiu, J. DePuydt J.M. and Cheng, H. Blue‐green laser diodesAppl. Phys. Lett.,1991,59,1272.
    [15] Mahawela, P. Sivaraman, G. Jeedigunta, S. Gaduputi, J. Ramalingam M.andSubramanian, S. II–VI compounds as the top absorbers in tandem solar cellstructures Mater. Sci. Eng.B,2005,116,283.
    [16] Zhang, X. T. Liu, Z. Leung, Y. P. Li Q.and Hark, S. K. Growth and luminescenceof ternary semiconductor ZnCdSe nanowires by metalorganic chemical vapordeposition Appl. Phys. Lett.,2003,83,5533.
    [17] Xiong, S. L. Xi, B. J. Wang, C. M. Xi, G. C. Liu X. Y.and Qian, Y. T.Solution‐Phase Synthesis and High Photocatalytic Activity of Wurtzite ZnSeUltrathin Nanobelts: A General Route to1D Semiconductor NanostructuredMaterials Chem. Eur. J.,2007,13,7926.
    [18] Leung, Y. P. Choy, W. C. H. Markov, I. Pang, G. K. H. Ong H. C. and Yuk, T. I.Linearly resistive humidity sensor based on quasi one-dimensional ZnSenanostructures Appl. Phys. Lett.,2006,88,183110.
    [19] Laks, D. B. Van de Walle, C. G. Physica B,1993,185,118.
    [20] Jie, J. S. Zhang, W. J. Bello, I. Lee C. S. and Lee, S. T. One-dimensional II–VInanostructures: synthesis, properties and optoelectronic applications Nano Today,2010,5,313.
    [21] Zhang, X. W. Jie, J. S. Wang, Z. Wu, C. Y. Wang, L. Peng, Q. Yu, Y. Q. Jiang P.and Xie, C. surface induced negative photoconductivity in p-type ZnSe:Binanowires and their nano-optoelectronic applications J. Mater. Chem.,2011,21,12632.
    [22] Song, H. S. Zhang, W. J. Yuan, G. D. He, Z. B. Zhang, W. F. Tang, Y. B. Luo, L. B.Lee, C. S. Bello I. and Lee, S. T. p-type conduction in arsenic-doped ZnSenanowires Appl. Phys. Lett.,2009,95,033117.
    [23] Zhang, M. L. Peng, K. Q. Fan, X. Jie, J. S. Zhang, R. Q. Lee, S. T. Wong, N. B.Preparation of large-area uniform silicon nanowires arrays through metal-assistedchemical etching J. Phys. Chem. C2008,112,4444.
    [24] Nair, R. R. Blake, P. Grigorenko, A. N. K. S. Novoselov, T. J. Booth, T. Stauber, N.M. T. Peres, Geim, A. K. Fine structure constant defines visual transparency ofgraphene Science,2008,320,1308.
    [25] Wang X., Zhi, L. J. Mullen, K. Transparent, Conductive Graphene Electrodesfor Dye-Sensitized Solar Cells Nano Lett.,2008,8,323.
    [26] Wu, J. B. Beceril, H. A. Bao, Z. N. Z. F. Liu, Y. S. Chen, Peumans, P. Organicsolar cells with solution-processed graphene transparent electrodes Appl. Phys.Lett.,2008,92,263302.
    [27] Reina, A. Jia, X. T. Ho, J. Nezich, D. Son, H. V. Bulovic, M. S. Dresselhaus andKong J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates byChemical Vapor Deposition Nano Lett.,2009,9,30.
    [28] Zhu, Y. C. Bando, Y. Chemical Physics Letters,2003,377,367.
    [29] Wang, X. Zhi, L. Mullen, J. K. Transparent, Conductive Graphene Electrodes forDye-Sensitized Solar Cells Nano Lett.,2008,8,323.
    [30] Bae, S. K. Kim, H. K.. Lee, Y. B X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T.Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, Ahn, J. H. Hong,B. H. Iijima, S. Roll-to-roll production of30-inch graphene films for transparentelectrodes Nat. Nanotechnol.,2010,5,574.
    [31] Gunes, F. Shin, H. J. Biswas, C. G. H. Han, E. S. Kim, S. J. Chae, Choi, J. Y.Lee,Y. H. Layer-by-layer doping of few-layer graphene film ACS nano,2010,4,4595.
    [32] Balasubramaniana, A. K. Ravindranb, T. R. Kesavamoorthyb, R. Ramachandranc,K Low temperature Raman study on the site symmetry of ZnSe:P Solid StateCommunications,2006,140,1.
    [33] Seghier, D. Gislason, H. P. Morhain, C. Teisseire, M. Tournie, E. Neu, G. Faurie,J.-P. Phys. Stat. Sol.,2002,229,251.
    [34] Xie, C. Lv, P. Nie, B. A. Jie, J. S. Zhang, X. W. Z. Wang, P. Jiang, Z. Z. Hu, L. B.Luo, Z. F. Zhu, Wang, L. Wang, C. Y. Monolayer graphene film/silicon nanowirearray Schottky junction solar cells Appl. Phys. Lett.,2011,99,133113.
    [35] Reina, A. Jia, X. T. Ho, J. Nezich, D. Son, H.V. Bulovic, Dresselhaus, M. S.Kong,J. Large-area synthesis of high-quality and uniform graphene films on copper foilsNano Lett.,2009,9,30.
    [36] Tang, J. Y. Huo, Z. Y. S. Brittman, H. W. Gao, P. D.Yang, Solution-processedcore-shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol.,2011,6,568.
    [1] Yan H, Choe H S, Nam S W, Hu Y J, Das S, Klemic J F, Ellenbogen J C, Lieber CM Programmable nanowire circuits for nanoprocessors2011Nature470240.
    [2] Jie J S, Zhang W J, Bello I, Lee C S, Lee S T One-dimensional II–VInanostructures: synthesis, properties and optoelectronic applications2010NanoToday5313
    [3] Hochbaum A I and Yang P D Semiconductor nanowires for energy conversion2010Chem. Rev.110527
    [4] Chuang S, Gao Q, Kapadia R, Ford A C, Guo J and Javey A Ballistic InAsnanowire transistors2013Nano Lett.13555
    [5] Fan Z Y, Ho J C, Jacobson Z A, Yerushalmi R, Alley R L, Razavi H and Javey AWafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays byContact Printing2008Nano Lett.820
    [6] Nguyen T D, Nagarah J M, Qi Y, Nonnenmann S S, Morozov A V, Li S, Arnold CB and McAlpine M C Wafer-scale nanopatterning and translation intohigh-performance piezoelectric nanowires2010Nano Lett.104595
    [7] Wu D, Jiang Y, Wang L, Li S Y, Wu B, Lan X Z, Yu Y Q, Wu C Y, Wang Z B andJie J S High-performance CdS:P nanoribbon field-effect transistors constructedwith high-κ dielectric and top-gate geometry2010Appl. Phys. Lett.96123118
    [8] Jiang Y, Zhang W J, Jie J S, Meng X M, Fan X and Lee S T PhotoresponseProperties of CdSe Single‐Nanoribbon Photodetectors2007Adv. Funct. Mater.171795
    [9] Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L, Lieber C MCoaxial silicon nanowires as solar cells and nanoelectronic power sources2007Nature449885
    [10] Jie J S, Zhang W J, Jiang Y, Meng X M, Li Y Q and Lee S T Photoconductivecharacteristics of single-crystal CdS nanoribbons2006Nano Lett.61887
    [11] Javey A, Guo J, Wang Q, Lundstrom M and Dai H J Ballistic carbon nanotubefield-effect transistors2003Nature424654
    [12] Krames M R, Shchekin O B, Regina M M, Mueller G O, Zhou L, Harbers G,Craford M G2007Status and Future of High-Power Light-Emitting Diodes forSolid-State Lighting J. Display Technol.3160
    [13] Nakamura S The roles of structural imperfections in InGaN-based bluelight-emitting diodes and laser diodes1998Science281956
    [14] Monroy E, Munoz E, Sanchez F J, Calle F, Calleja E, Beaumont B, Gibart P,Munozk J A and Cusso F High-performance GaN pn junction photodetectors forsolar ultraviolet applications1998Semicond. Sci. Technol.131042
    [15] Riordan M, Hoddeson L1997IEEE Spectrum34
    [16] Sze S M, Ng K K2008Physics of Smeiconductor Devices (Third Edition, Xi,anJiaotong University Press)
    [17] Wang L, Jie J S, Wu C Y, Wang Z, Yu Y Q, Peng Q, Zhang X W, Hu Z Z, Wu D,Guo H E and Jiang Y Coaxial ZnSe/Si nanocables with controlled p-type shelldoping2010Nanotechnology21285206
    [18] Cheng G, Kolmakov A, Zhang Y, Moskovits M, Munden R, Reed M A, Wang G,Moses D and Zhang J2003Appl. Phys. Lett.831578
    [19] Lauhon L J, Gudiksen M S, Wang C L and Lieber C M Epitaxial core–shell andcore–multishell nanowire heterostructures2002Nature42057
    [20] Min K W, Kim Y K, Shin G, Jang S, Han M, Huh J, Kim G T and Ha J S2011Adv. Funct. Mater.21119
    [21] Minot E D, Kelkensberg F, Kouwen M, Dam J A, Kouwenhoven L P, Zwiller V,Borgstrom M T, Wunnicke O, Verheijen M A and Bakkers E P A M SingleQuantum Dot Nanowire LEDs2007Nano Lett.7367
    [22] Qian F, Li Y, Gradecak S, Wang D, Barrelet C J and Lieber C M Core/multishellnanowire heterostructures as multicolor, high-efficiency light-emitting diodes2004Nano Lett.41975
    [23] Tian B, Zheng X, Kempa T J, Fang Y, Yu N, Yu G, Huang J and Lieber C MCoaxial silicon nanowires as solar cells and nanoelectronic power sources2007Nature449885
    [24] Tang J Y, Huo Z Y, Brittman S, Gao H W and Yang P D Solution-processedcore-shell nanowires for efficient photovoltaic cells2011NatureNanotechnology6568
    [25] Zhang M Y, Wang Y N, Moulin Ee, Grutzmacher D, Chien C J, Chang P C, Gao XF, Carius R and Lu J G Core–shell CdTe–TiO2nanostructured solar cell2012J.Mater. Chem.2210441
    [26] Li Y, Xiang J, Qian F, Gradecak S, Wu Y, Yan H, Blom D A, Lieber C MDopant-Free GaN/AlN/AlGaN RadialNanowire Heterostructures as High ElectronMobility Transistors2006Nano Lett.61468
    [27] Yu Y, Zeng L, Yang J, Jie J, Ultralow Contact Resistivity of Cu/Au With p-TypeZnS Nanoribbons for Nanoelectronic Applications IEEE Electron Device Letters2013;34(6):810-812.
    [28] He Z B, Zhang W J, Zhang W F, Jie J S, Luo L B, Yuan G D, Wang J X, Wu C M,Bello L, Lee C S and Lee S T High-performance CdSe:In nanowire Field-effecttransistors based on top-gate configuration with high-k non-oxide dielectrics2010J. Phys. Chem. C1144663
    [29] Kim G T, Muster J, Burghard M and Roth S2001MRS Symp. Proc.703505
    [30] Bae M Y, Min K W, Yoon J, Kim G T and Ha J S Electronic properties oflight-emitting pn hetero-junction array consisting of p+-Si and aligned n-ZnOnanowires2013J. Appl. Phys.113084310
    [31] Yoon J, Min K W, Kim J, Kim G T and Ha J S p–n hetero-junction diode arrays ofp-type single walled carbon nanotubes and aligned n-type SnO2nanowires2012Nanotechnology23265301
    [32] M. Nonnenmacher, M. P. O'Boyle, and H. K. Wickramasinghe. Kelvin probe forcemicroscopy. Appl. Phys. Lett.1991,58(25):2921.
    [33] M. A. Rafq, Y. Tsuchiya, H. Mizuta, S. Oda, S. Uno, Z. A. K. Durrani, and W. I.Milne, Charge injection and trapping in silicon nanocrystals Appl. Phys. Lett.87,182101,2005.
    [34] M. Koehler, J. R. de Lima, M. G. E. da Luz, and I. A. Hummelgen, Chargeinjection into thin conjugated polymer films Phys. Status Solidi A173,29,1999.
    [35] PRADIP KR. K, SARMA B K and DAS, H L Bull. Mater. Sci., V26,2003,613–617.
    [36] Gu Y. andLauhon, L. J. Space-charge-limited current in nanowires depleted byoxygen adsorption Appl. Phys. Lett.200689,143102
    [1] Lewis, N. S. Toward Cost-Effective Solar Energy Use Science2007,315,798–801.
    [2] Gratzel, M. Photoelectrochemical cells Nature2001,414,338–344.
    [3] Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air-stable all-inorganicnanocrystal solar cells processed from solution Science2005,310,462–465.
    [4] Chen, H. Y.; Hou, J. H.; Zhang, S. Q.; Liang, Y. Y.; Yang, G. W.; Yang,Y.; Yu, L. P.;Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage andefficiency Nat. Photonics2009,3,649.
    [5] Shen, X. J.; Sun, B. Q.; Liu, D.; Lee,S. T. Hybrid heterojunction solar cell based onorganic–inorganic silicon nanowire array architecture J. Am. Chem. Soc.2011,133,19408.
    [6] Ashour, A. The physical characteristics of Cu~2S/CdS thin-film solar cell JOPTOELECTRON ADV M2006,8,1447–1451.
    [7] Zhang, Y.; Wu, Z.; Zheng, J.; Lin, X.; Zhan, H.; Li, S.; Kang, J.; Bleuse, J.;Mariette, H.; ZnO/ZnSe type II core/shell nanowire array solar cell Solar EnergyMaterials&Solar Cells2012,102,15–18.
    [8] Tang, J.; Huo, Z.; Brittman, S.; Gao, H.; Yang, P.; Solution-processed core-shellnanowires for efficient photovoltaic cells Nature Nanotechnology2011,6,568–572.
    [9] Bard, A. J.; Fox, M. A. Artificial photosynthesis: solar splitting of water tohydrogen and oxygen Acc. Chem. Res.1995,28,141145.
    [10] Sven, R.; Akiba, S.; Ayelet, V.; Sarah, R. K.; Larissa, G.; Arie, Z.; Igor, L.; David,C.; J. Renewable Sustainable Energy2009,1,013106.
    [11] King, R. R.; Bhusari, D.; Boca, A.; Larrabee, D.; Liu, X.-Q.; Hong, W.; Fetzer, C.M.; Law, D. C.; Karam, N. H. Band gap-voltage offset and energy production innext-generation multijunction solar cells Prog. Photovolt: Res. Appl.2011,19,797–812.
    [12] Tayagaki, T.; Hoshi, Y.; Usami, N. Investigation of the open-circuit voltage insolar cells doped with quantum dots SCIENTIFIC REPROT DOI:10.1038/srep02703.
    [13] Sven, R.; Akiba, S.; Ayelet, V.; Sarah, R. K.; Larissa, G.; Arie, Z.; Igor, L.; David,C.; J. Renewable Sustainable Energy2009,1,013106.
    [14] Haase, M. A.; Qiu, J.; DePuydt, J. M.; Cheng, H. Blue‐green laser diodes Appl.Phys. Lett.1991,59,1272.
    [15] Mahawela, P.; Sivaraman, G.; Jeedigunta, S.; Gaduputi, J.; Ramalingam, M.;Subramanian, S. Mater. Sci. Eng: B2005,116,283.
    [16] Jie, J. S.; Zhang, W. J.; Jiang, Y. Meng, X. M.; Li, Y. Q.; Lee, S. T.Photoconductive characteristics of single-crystal CdS nanoribbons Nano Lett.2006,6,1887.
    [17] Fan, Z. Y.; Ho,J. C.; Takahashi, T.; Yerushalmi, R.; Takei, K.; Ford, A. C.; ChuehY. L.; Javey, A.; Toward the development of printable nanowire electronics andsensors Adv. Mater.2009,21,3730.
    [18] Huang, Y.; Duan, X. F.; Lieber, C. M. Nanowires for integrated multicolornanophotonics Small2005,1,142.
    [19] Britt, J.; Ferekides, C. Thin‐film CdS/CdTe solar cell with15.8%efficiencyAppl. Phys. Lett.1993,62,2851.
    [20] Chopra, K. L.; Paulson, P. D.; Dutta, V.; Thin-film solar cells: an overview Prog.Photovolt: Res. Appl.2004,12,69–92.
    [21] Tachibana, Y.; Umekita, K.; Otsuka Y.; Kuwabata, S. Performance improvementof CdS quantum dots sensitized TiO2solar cells by introducing a dense TiO2blocking layer J. Phys. D: Appl. Phys.2008,41,102002.
    [22] Li, L.; Yang, X.; Gao, J.; Tian, H.; Zhao, J.; Hagfeldt, A.; Sun, L. Highly efficientCdS quantum dot-sensitized solar cells based on a modified polysulfideelectrolyte J. Am. Chem. Soc.2011,133,8458-8460.
    [23] Kumar, S. G.; Rao, K. S. R. K. Physics and chemistry of CdTe/CdS thin filmheterojunction photovoltaic devices: fundamental and critical aspects EnergyEnviron. Sci.2014,7,45.
    [24] Jie, J. S.; Zhang, W. J.; Bello, I.; Lee, C. S.; Lee, S. T. One-dimensional II–VInanostructures: synthesis, properties and optoelectronic applications Nano Today2010,5,313.
    [25] Laks, D. B.; Van de Walle, C. G. Doping limits in ZnSe Phys. B1993,185,118.
    [26] Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J.L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronicpower sources Nature,2007,449,885-889.
    [27] Oelhafen, P.; Schuler, A. Nanostructured materials for solar energy conversionSolar Energy2005,79,110–121.
    [28] Huang, C. Y.; Yang, Y. J.; Chen, J. Y.; Wang, C. H.; Chen, Y. F. p-Sinanowires/SiO2/n-ZnO heterojunction photodiodes Appl. Phys. Lett.2010,97,013503.
    [29] Bie, Y. Q.; Liao, Z. M.; Wang, P. W.; Zhou, Y. B.; Han, X. B.; Ye, Y.; Zhao, Q.;Wu, X. S.; Dai, L.; Xu, J.; Sang, L. W.; Deng, J. J.; Laurent, K.; Wang, Y. L.; Yu,D. P. Single ZnO Nanowire/p‐type GaN Heterojunctions for PhotovoltaicDevices and UV Light‐Emitting Diodes Adv. Mater.2010,22,4284–4287.
    [30] Wei, W.; Bao, X.; Soci, C.; Ding, Y.; Wang, Z.; Wang, D.; Direct Heteroepitaxy ofVertical InAs Nanowires on Si Substrates for Broad Band Photovoltaics andPhotodetection Nano Lett.2009,9,2926–2934.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700