用户名: 密码: 验证码:
油田电力系统连锁故障分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,世界上发生了数起大停电事故,连锁故障是导致电力系统大停电的主要原因。因此对连锁故障的分析与研究刻不容缓。传统研究电力系统的方法多是把电网分割成发电、输电、配电和负载四个部分建立数学模型进行研究,这种割裂的分析方法对于电力系统连锁故障的研究无从下手,很难使人们意识到电力系统大停电事件的开始。因此,需要用系统的眼光从整体网络的角度对电力系统连锁故障的研究给予更多关注,从而尽最大可能地保证电力系统脆性不被频繁的激发。
     大庆油田电力系统拥有电厂4座,110(35)千伏变电所300多座,各类电压等级输电线路4000千米,是全国石油系统最大的电力企业。本文结合油田电网的特点,给出了一种连锁故障研究的确定性分析方法。首先建立系统的数学模型,在模拟过程中主要考虑了保护的正确动作。当线路功率达到额定功率的200%时,过负荷保护0.1ms动作切除线路。
     在线路开断后,连锁故障研究的条件为:(1)发电机出力和电网所带负荷没有发生变化;(2)线路为无损线路,即各个节点输出和吸收的功率都没有发生变化;(3)不考虑继电保护的误动作和拒动作的情况。
     本文确定的判断连锁故障终止的条件为:(1)开断支路引起系统解裂,认为系统失稳,连锁故障路径搜索终止;(2)连锁故障开断深度大于6,系统还没有出现失稳,则连锁故障路径搜索终止:(3)连锁故障模拟过程中不再有新的线路开断;(4)潮流算法不收敛,认为系统出现失稳,不再继续进行求解。
     电力系统连锁故障分析与研究所确定的连锁故障研究和分析的理论为:
     (1)首先进行首故障选择,从众多的线路中挑选能引起连锁故障的线路进行研究;提出了首故障搜索的三步骤法,即第一步确定系统的关键输电断面;第二步基于相隔中心性模型的首故障支路选择;第三步确定系统的特殊关键支路。
     (2)基于PQ分解法求出系统的基态潮流,即给定系统的节点类型后,据其计算各个节点的电压幅值和相角,然后计算各个支路首端和末端的潮流;
     (3)逐一选择首故障支路开断,采用PQ分解法和补偿法相结合,逐一计算每一条支路开断后,潮流在剩余支路中的分配情况,即计算系统的开断潮流;
     (4)进行暂态稳定分析,计算任意两台发电机间的相角差,如果超过180度,则认为系统失稳,停止计算;否则进入下一步:
     (5)对各个支路的开断潮流与继电保护的整定潮流相对比,如果大于整定潮流,则此支路被开断,重新进行开断计算,如果所有的支路开断潮流均小于整定值,则计算结束:
     (6)对所有的开断线路进行输出,输出时对连锁故障的开断顺序也同时进行顺序输出,如果有一条线路开断引起两条以上支路同时过载的情形,选择一条支路进行开断;
     (7)根据故障树的基础理论,形成开断路径故障树。故障树的最顶层为整个系统失稳,故障树的最下层为首故障支路,中间层即时连锁故障开断路径。给出了大庆油田的某线路连锁故障的故障树。
     (8)对故障树进行定量计算,包括计算连锁故障的发生概率,割集等。
     最后,用C#实现了油田电网程序的编写,并用IEEE39节点的算例进行了连锁故障的计算。包括电力系统发生故障后的潮流计算以及潮流重新分配后的数据显示功能;初始故障线路的选择与显示;初始故障线路开断分析;连锁故障自动结束条件判断与执行;故障树的形成、显示与分析。
A series of power failures have happened worldwide in recent years, the cascading failure is the main cause of the power system failures. So it is urgent to study and analyze for cascading failures. The old method to analyze power system is building the math model after dividing electric network into four parts such as generate electricity , transmit electricity, power distribution and load, this method can not do well in studying the cascading failures of power system ,and it is hard to warn people the beginning of cascading failures. Therefore, we need the whole sight to concern more about the study of cascading failures from the entirety network angle, thus most possibly guarantees the power system's brittleness not stimulated frequently.
     Daqing oilfield has 4 electric plant and more than 300 110(35) kV electric stations and 4000 kms all kinds of transportion lines. According as oilfield electric power system, this paper proposed a definiteness method of brittleness study of cascading failures which based on the other author's achievement. Firstly, it built a math model of system, mainly concern the right action of relay protection during the simulation. FP/OLP will cut the line in 0.1ms when the power of line reached the 200% of power rating.
     The power failures in the last few years indicated that most large scope power failures is transmit network run at the extreme limit, the power has transmitted largely because of event of low probability, and cause the adjacent component overload, the overload trip arouse the power failures.
     After cut the line ,the condition of cascading failures research are: (1)the load of network and the power of generator do not change;(2)the line is lossless line ,that is ,the delivered power and absorbed power do not change;(3)no considering the situation of malfunction and refusing action of relay protection.
     Based on the IEEE39 ,this paper regard the condition of judging the terminate of cascading failures as: (1)the cutting line lead to split of system, it can be deemed that the system lose stabilization, the search route of cascading failures is stopped; (2) the depth of cutting is larger than 6, but the system has not destabilized , the search route of cascading failures is stopped;(3)there is no more line cut during the simulation of cascading failures;(4)the power flow algorithm do not convergence, it can be deemed that the system lose stabilization, and needn't to continue to solve.
     Based on lots of documentation, this paper confirms the theory of study and analysis of cascading failures are :
     (1) Chose initial fault firstly, i.e. Chose the line which can arouse cascading failures to study. Three steps method of initial fault search is presented in the paper. Namely ascertain key transmission surface firstly, Chose the branch line of initial fault based on centricity model secondly, and ascertain special key branch line of system thirdly.
     (2) Resolve the ground power flow based PQ method, i.e. calculate voltage value and angle of every node according to given types of system node, then calculate power flow of head terminal and end terminal.
     (3) chose initial fault branch line to open and calculate the distribution of power flow in branch line left using integrate PQ method and compensatory method one by one, i.e. the calculation of system opening power flow.
     (4) Analyze the transient stabilization and calculate the angle difference of arbitrate two generators. If the angle difference exceed 180 degree, it can be deemed that the system lose stabilization. Stop calculation. Otherwise come into the next step.
     (5) Compare the opening power flow and setting power flow of every branch road. branch road is opened if the opening power flow is bigger than the setting power flow and then carry the opening calculation over again. End the calculation if the opening power flow of all the branch roads is all smaller than the setting power flow.
     (6) Export the result of all the opening branch roads. At the same time opening order is also exported orderly during the process of exportation. If the opening of one line cause overload at lines over two, chose one line to open.
     (7) Form fault tree of opening road according to the basic theory of fault tree. The top layer of fault tree means the lost of system stabilization miss. Initial fault branch line is at the substrate layer of fault tree and cascading failures opening road is at the middle layer. It can be got the fault tree of cascading failure in daqing oilfield line.
     (8) Calculate the fault tree quantitatively including the calculation of occurring probability of cascading failures and scalpel collect etc.
     In the end, using the C# to oilfield electric power system program and calculate the cascading failures of IEEE39. Including the power flow calculation, after power system's failures and the data display of power flow after redistributed; the choice and display of initial fault line; the analysis of initial fault line; the judging and execution of automatic ending conditions; the formation and display and analysis of fault tree.
引文
[1]陈浩,王正纲等.从“美加大停电”看加强湖南电网受端系统的必要性.湖南电力,2004,24(5):23-26.
    [2]张建平.美加大停电危机的教训与启示.中国电机工程学报,2008,28(6):126-129.
    [3]朱成章.美加大停电最终调查报告----提出要建立、实行高可靠性标准的制度.陕西能源与节能,2007,35(4):34-35.
    [4]李莉华,宋平等.“美加8[1].14大停电”初步分析与各方评论.华东电力,2003,29(9):18-22.
    [5]徐永禧.美国、加拿大8.14大停电.国际电力,2003,7(5):15-20.
    [6]本刊编辑.输电协作联盟查明意大利2003年9月28日大停电原因.国际电力,2003,7(6):38.
    [7]本刊编辑.意大利2003年9月29日大停电简介.公用电,2003,20(6):3-5.
    [8]本刊编辑.伦敦、北欧及意大利发生大停电.国际电力,2003,7(5):43.
    [9]唐堡生.伦敦南部地区大停电及其教训.电网技术,2003,27(11):1-6.
    [10]本刊编辑.美国旧金山地区大面积停电.国际电力,1999,3(1):60.
    [11]于群,郭剑波.中国电力系统停电事故统计与自组织临界性特征.电力系统自动化,2006,30(2).
    [12]丁明,韩平平.基于复杂系统理论的电网连锁故障研究.合肥工业大学学报(自然科学版),2005,28(9):1047-1051.
    [13]姚峰,张保会,周德才等.输电断面有功安全性保护及其快速算法.中国电机工程学报,2006,26(13):31-36.
    [14]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象.电力系统技术,2005,29(15):1-4.
    [15]占勇,程浩忠等.电力网络连锁故障综述.电力自动化设备,2005,25(9):93-99.
    [16]Carreras B A,Lynch V E,et al.Complex dynamics of blackouts in power transmission systems,Chaos,2004,14(3):643-652.
    [17]Dobson I,Carreras B A,et al.A loading-dependent model of probabilistic cascading failure,Probability in the Engineering and Informational Sciences,2005,19(1):1-20.
    [18]information on Blackouts in North America,Disturbance Analysis Working Group(DAWG) Database,North American Electric Reliability Council(NERC),Princeton, New Jersey USA 08540-5731.Available:http://www.nerc.com/dawg/database.Html.
    [19]Carreras B A,Newman D E,et al.Evidence for self organized criticality in electric power system blackouts,IEEE Transactions on Circuits and Systems.part Ⅰ.,2004,51(9):1733-1740.
    [20]陈德树.大电网安全保护技术初探.电网技术,2004,28(9):14-19.
    [21]曹一家,刘美君,丁理杰等.大电网安全性评估的系统复杂性理论研究.电力系统及其自动化学报,2007,19(1):1-8.
    [22]Chen J,Thorp J S,et al.Analysis of electric power system disturbance data,Thirty-fourth Hawaii International Conference on System Sciences.Maui,Hawaii.January 2001:1-8.
    [23]Carreras B A,Newman D E,et al.Initial evidence for self- organized criticality in electric power blackouts,http:// eceservO.ece.wisc.edu/dobson/ PAPERS/publications.html/,2004:1-9.
    [24]易俊,周孝信,肖逾男.用连锁故障搜索算法判别系统的自组织临界状态.中国电机工程学报,2007,27(25):1-5.
    [25]丁明,韩平平.基于复杂系统理论的电网连锁故障研究.合肥工业大学学报(自然科学版),2005,28(9):1047-1052.
    [26]孙可,韩祯祥等.复杂电力系统连锁故障模型评述.电力系统技术,2005,13(29):1-4.
    [27]Dobson I,Chen J,et al.Examining criticality of blackouts in power system models with cascading events.Hawai International Conference on System Science,Hawaii,2001:2311-2317.
    [28]Dobson I,Carreras B A,et al.Complex systems analysis of series of blackouts:cascading failure,criticality,and self-organization.Bulk Power System Dynamics and Control-Ⅵ,Italy.2004:1-14.
    [29]Dobson I,Carreras B A,et al.A probabilistic loading dependent model of cascading failure and possible implications for blackouts.Hawaii International Conference on System Science,Hawaii,2003:1-10.
    [30]Dobson I,Carreras B A,et al.A branching process approximation to cascading load-dependent system failure.35th Hawaii International Conference on System Science,Hawaii.2004:1-10.
    [31]Dobson I,Carreras B A,et al.A criticality approach to monitoring cascading failure risk and failure propagation in transmission systems.Electricity Transmission in Deregulated Markets Conference,Pittsburgh.2004:1-13.
    [32]朱旭凯,刘文颖,杨以涵.基于协同学思想的电网连锁反应故障预防模型.电网技术,2007,31(23):62-67.
    [33]Albert R.Statistical mechanics of complex network.Review of Modern Physics.2002,74(1):47-97.
    [34]Newman D E.The structure and function of complex network.SIAM Review,2003,45(1):167-256.
    [35]Watts D J,Strogatz S H.Collective dynamics of 'small-world'networks.Nature.1998,393(4):440-442.
    [36]Ferreri R C.The small-world of human language.Proceedings of the Royal Society of London.2001,B268:2261-2266.
    [37]Fell D A,Wagner A.The small world of metabolism.Nat Biotechnol.2000,18:1121-1122.
    [38]丁明,韩平平.小世界电网的连锁故障传播机理分析.电力系统自动化,2007,31(18):6-10.
    [39]易俊,周孝信,肖逾男.具有不同拓扑特征的中国区域电网连锁故障分析.电力系统自动化,2007,31(10):7-10.
    [40]韩平平.基于小世界网络理论的电网连锁故障机理解析.合肥工业大学博士论文.2007,10:57-70.
    [41]Surdutovich G,Cortez C,Vitilina R et al.Dynamics of “small world” networks and vulnerability of the electric power grid.Ⅷ Symposium of Specialists in Electric Operational and Expansion Planning,2002:135-139.
    [42]孟仲伟,鲁宗相等.中美电网的小世界拓扑模型比较分析.电力系统自动化,2004,28(15):21-24.
    [43]Barabasi A L,Albert R,Hawoong J.Mean-field the ory for scale-free random networks.J·Physical A,1999,272:173-187.
    [44]Watts D J,Strogatz S H.Collective dynamics of 'small-world' networks.J.Nature,1998,393:440-442.
    [45]Albert R.,Barabasi A L.Emergence of scaling in random networks.J.Science,1999,286:509-512.
    [46]丁理杰,曹一家,刘美君.复杂电力网络的连锁故障动态模型与分析.浙江大学学报(工学版),2008,42(4):641-646.
    [47]鲁宗相.电力系统复杂性及大停电事故的可靠性研究.电力系统自动化,2005,29(12):93-98.
    [48]李蓉,张哗,江全元.复杂电力系统连锁故障的风险评估.电网技术,2006,30(10):18-24.
    [49]李蓉蓉.复杂电力系统连锁故障风险评估研究.浙江大学硕士学位论文.2006,4.
    [50]程林,郭永基.可靠性评估中多重故障算法的研究.清华大学学报(自然科学版),2001,41(3):69-72.
    [51]单渊达,吴桀等.电力系统连锁性发展事件的概率评估与预防控制.电力系统自动化,2005,13(29):13-17.
    [52]陈为化,江全元,曹一家.基于模糊神经网络的电力系统连锁故障风险评估.浙江大学学报,2007,41(6):973-979.
    [53]刘昊,艾欣,邓慧琼.衡量复杂电力系统连锁反应事故新的可靠性指标及其应用.沈阳工程学院学报(自然科学版),2006,2(1):33-37.
    [54]史慧杰,葛斐等.输电力系统络运行风险的在线评估.电力系统技术.2005,29(6):43-48.
    [55]Tamaronglak S.Analysis of power system disturbances due to relay hidden failures.Virginia Polytechnic and State University,Blacksburg,Virginia.1994:1-8.
    [56]Phadeke A G,Thorp J S.Expose hidden failures to prevent cascading outages.IEEE Computer Application in Power,1996,9(3):20-23.
    [57]Chen J,Thorp J S.Study on cascading dynamics in power transmission systems via a DC hidden failure model,lEE Fifth International Conference on Power System Management and Control,2002:384-389.
    [58]陈为化,江全元,曹一家.考虑继电保护隐性故障的电力系统连锁故障风险评估.电网技术,2006,30(13):14-19.
    [59]别朝红,王锡凡.复杂电力系统一类连锁反应事故可靠性评估模型和算法.电力系统自动化,2001,(34)10:30-34.
    [60]易俊,周孝信.考虑系统频率特性以及保护隐藏故障的电网连锁故障模型.电力系统自动化,2006,30(14):1-5.
    [61]Rei A M,Silva A M L,Jardim J L et al.Static and dynamic aspects in bulk power systems reliability evaluation.IEEE Trans on PowerSystems,2000,15(1):189-195.
    [62]丁明,李生虎,吴红斌.电力系统概率充分性和概率稳定性的综合评估.中国电机工程学报,2003,23(3):20-25.
    [63]Yu X B,Singh C.Power system reliability analysis considering protection failures[C].IEEE PES Summer Meeting,Chicago,USA,2002,2:963-968.
    [64]李生虎,丁明,王敏等.考虑故障不确定性和保护动作性能的电网连锁故障模式搜索.电网技术,2004,28(13):27-31.
    [65]李生虎,丁明等.考虑故障不确定性和保护动作性能的电力系统连锁故障模式搜索.电力系统技术,2004,28(13):27-32.
    [66]张鹏,郭永基.基于故障模式影响分析法的大规模配电系统可靠性评估.清华大学学报(自然科学版),2002,42(3):353-357.
    [67]Wang H,Thorp J S.Optimal locations for protection system enhancement:a simulation of cascading outages.IEEE Trans on Power Systems,2001,16(4):528-533.
    [68]邓慧琼,艾欣等.基于不确定多属性决策理论的电网连锁故障模式搜索方法.电网技术,2005,29(13):50-55.
    [69]易俊,周孝信.基于连锁故障搜索模型的降低电网发生连锁故障风险的方法.电网技术,2007,31(6):19-23.
    [70]陈晓刚,陶佳,江全元,曹一家,易永辉.考虑高风险连锁故障的PMU配置方法.电力系统自动化,2008,32(4):11-15.
    [71]程浩忠,陈章潮,任年荣,张式训,陈勇.电网大面积停电可能性定量分析.上海交通大学学报,1999,33(12):1540-1544.
    [72]程浩忠,陈春霖等.大面积停电可能性的一些定量分析方法.上海电力,2003,13(6):510-515.
    [73]刘昊,艾欣,邓慧琼.基于循环完善法和树状结构事故链的电网连锁故障研究.现代电力,2006,23(2):24-30.
    [74]陈媛,卢锦玲,于成洋,刘海军.复杂电网连锁故障预测.电力科学与工程,2008,24(3):9-13.
    [75]卢锦玲,陈媛,朱永利.基于输电线路过负荷特性的连锁事件识别.华北电力大学学报,2007,34(5):27-31.
    [76]张玮,潘贞存,赵建国.新的防止大停电事故的后备保护减载控制策略.电力系统自动化,2007,31(8):27-31.
    [77]薛禹胜.综合防御由偶然故障演化为电力灾难--北美“8·14大停电的警示”.电力系统自动化,2003,27(18):1-5.
    [78]郭永基.加强电力系统可靠性的研究和应用--北美东部大停电的思考.电力系统自动化,2003,27(19):1-5.
    [79]鲁宗相.电网复杂性及大停电事故的可靠性研究.电力系统自动化,2005,29(12):93-97.
    [80]周玉兰 许勇 沈晓凡.1998年全国电力系统继电保护及安全自动装置运行情况.电网技术,1999,23(11):62-67.
    [81]周玉兰,王俊永,王玉玲等.1999年全国电力系统继电保护及安全自动装置运行情况.电网技术,2000,24(7):66-70.
    [82]周玉兰,许勇,王俊永.2000年全国电力系统继电保护与安全自动装置运行情况.电网技术,2001,25(8):63-68.
    [83]周玉兰,詹荣荣,舒治淮等.2003年全国电网继电保护与安全自动装置运行情况与分析.电网技术,2004,28(20):48-54.
    [84]周宗发,艾欣,邓慧琼等.基于故障树和模糊推理的电网连故障分析方法.电网技术,2006,30(8):86-91.
    [85]张玮,潘贞存,赵建国.新的防止大停电事故的后备保护减载控制策略.电力系统自动化,2007,31(8):27-31.
    [86]邓慧琼.电网连锁故障预测分析方法及其应用研究.华北电力大学工学博士学位论文.2007,6:64-78.
    [87]朱旭凯,刘文颖,杨以涵等.电网连锁故障演化机理与博弈预防.电力系统自动化,2008,32(5),29-33.
    [88]黄阮明.大停电预防控制的区域划分与输电断面选择.东南大学研究生学报,2006,4(1):59-61.
    [89]周晶,张毅威,闵勇.电力系统连锁反应事故机理的初步研究.现代电力,2006,23(4):1-5.
    [90]刘昊.电网连锁故障模式搜索方法研究.华北电力大学硕士学位论文,2005,12:20-36.
    [91]史慧杰,葛斐等.输电网络运行风险的在线评估.电网技术,2005,29(6):43-48.
    [92]吴磊.电力系统连锁反应事故的初步研究.科技咨询,2008,6(10):51.
    [93]单渊达,吴傑,许京等.电力系统连锁性发展事件的概率评估与预防控制.电力系统自动化,2005,29(13):13-17.
    [94]高翔,张沛超,章坚民等.电网故障信息系统应用技术.北京:中国电力出版社,2006,6:5-17
    [95]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考.电力系统自动化,2004,28(3):1-5.
    [96]陈建华.电力系统连锁故障预测初探.天津大学硕士学位论文,2005,12:57-65
    [97]谭文林.N-1安全准则在德国电网中的应用.华中电力,2000,13(4):58-60.
    [98]陈为化,江全元,曹一家.基于模糊神经网络的电力系统连锁故障风险评估.浙江大学学报,2007,41(6):973-979.
    [99]陈为化,江全元,曹一家.考虑继电保护隐性故障的电力系统连锁故障风险评估.电网技术,2006,30(13):14-19.
    [100]闫丽梅.系统的脆性理论及其在电力系统中的应用.哈尔滨工程大学工学博士论文,2006,3:100-110
    [101]张伯明,陈寿孙.高等电力网络分析.北京:清华大学出版社.1996:57-68
    [102]周宗发,艾欣,邓慧琼等.基于故障树和模糊推理的电网连故障分析方法.电网技术,2006,30(8):86-91.
    [103]邓惠琼,艾欣,罗啸.电网连锁故障防治策略初探及连锁过载识别方法研究.现代电力,2007,24(1):5-11.
    [104]徐惠明,毕天姝,黄少锋等.基于潮流转移因子的广域后备保护方案.电网技术,30(15):65-71.
    [105]徐惠明,毕天姝,黄少锋等.计及暂态过程的多支路切除潮流转移识别算法研究.中国电机工程学报,2007,27(16):24-30.
    [106]Tan J C,Crossley P A,Kirschen D,et al.An expert system for the back-up protection of a transmission network[J].IEEE Trans.On Power Delivery,2000,15(2):508-514.
    [107]Tan J C,Crossley P A,Mclaren P G,et al.Sequential tripping strategyfor a transmission network back-up protection expert system[J].IEEE Trans.on Power Delivery,2002,17(1):68-74.
    [108]Serizawa Y,Myoujin M,Kitamura K,et al.Wide-area current differential backup protection employing broadband communications and time transfer systems[J].IEEE Trans.on Power Delivery,1998,13(4):1046-1052.
    [109]Kangvansaichol K,Crossley P A.Multi-zone differential protection for transmission networks[C].Eighth IEE International Conference on Developments in Power System Protection,Amsterdam,Netherlands 2004:428-431.
    [110]何扬赞,温增银.电力系统分析.第3版.湖北:华中科技大学出版社,2003,3:20-39.
    [111]黄阮明.大停电预防控制的区域划分与输电断面选择.东南大学研究生学报,2006,4(1):59-63
    [112]姚峰,张保会,周德才等.输电断面有功安全性保护及其快速算法.中国电机工程学报,2006,26(13):31-36.
    [113]王成山,许晓菲,余贻鑫,等.基于割集功率空间上的静态电压稳定域局部可视化方法.中国电机工程学报,2004,24(9):13-18.
    [114]李响,郭志忠.N-1静态安全潮流约束下的输电断面有功潮流控制.电网技术,2005,29(3):29-32.
    [115]张保会,姚峰,周德才等.输电断面安全性保护及其关键技术研究.中国电机工程学报,2006,26(21):1-7.
    [116]周德才,张保会,姚峰等.基于图论的输电断面快速搜索.中国电机工程学报,2006,26(12):32-38.
    [117]曹一家,陈晓刚,孙可.基于复杂网络理论的大型电力系统脆弱线路辨识.电力自动化设备,2006,2(12):1-5.
    [118]姚峰,张保会.输电断面无功安全性保护及其快速算法.中国电机工程学报,2007,27(10):11-16.
    [119]王立永,张保会,王克球等.考虑安全约束的输电断面经济传输容量及其计算.西安交通大学学报,2006,40(10):1125-1128.
    [120]方竹,白晓民,丁剑等.电力系统关键输电断面的动态搜索算法.第十一届 全国电工数学学术年会论文集.223-231.
    [121]刘广利,李响.基于输电断面划分原则及方法.东北电力技术,2005,23(11):13-16.
    [122]张海霞,艾欣.一种基于有功灵敏度分析的输电断面保护策略研究.中国电力教育,2007年研究综述与技术论坛专刊:154-155.
    [123]Holme P.Edge overload breakdown in evolving networks.Physical Review E,2002,66(3):036119/1-7.
    [124]Holme P,Kim B J.Vertex overload breakdown in evolving networks.Physical Review E,2002,65(6):066109/1-8.
    [125]赵建军.线路故障原因及预防措施.农村电气化,2004,21(8):32-33.
    [126]王锡凡,王秀丽.实用电力系统静态安全分析.西安交通大学学报,1988,22(1):25-36.
    [127]诸俊伟.电力系统分析.北京:中国电力出版社,1995.56-78
    [128]吴际舜.电力系统静态安全分析.上海:上海交通大学出版社,1985.34-78
    [129]吴际舜,侯志俭.电力系统潮流计算机方法.上海:上海交通大学出版社,2000,2:87-89.
    [130]张步涵,何仰赞.补偿法在电力系统预想事故分析中的应用.华中理工大学学报,1993,21(2):48-52.
    [131]孟祥萍,高娥.电力系统分析.北京:高等教育出版社,2004.230-239.
    [132]陈志业,董铸.故障树的编制和应用.北京:北京科学技术出版社.1989,5.6-8.
    [133]陈志业,王平,董铸.故障树分析与计算机算法.北京:北京科学技术出版社.1989,5.34-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700