用户名: 密码: 验证码:
基于T-S模型的航天器姿态模糊控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
姿态控制系统是航天器诸多系统中非常重要的一个子系统。多种类型航天任务的顺利实现很大程度上依赖于姿态控制系统。航天器的自主姿态控制适用于多种无人航天任务,具有广阔的应用前景。当前,对航天器姿态控制系统要求越来越高,尤其表现在航天器高精度控制、高可靠性等。然而,航天器姿态控制性能不仅取决于姿态控制系统硬件配置,姿态控制算法设计的好坏也直接影响到姿态控制性能指标的优劣。本文针对航天器姿态机动过程,从姿态模型建立、控制律设计以及控制参数选取等系列问题进行探索与研究,提出一套切实可行的控制律设计方法,主要完成以下几方面工作。
     首先,考虑到一般姿态控制系统研究多集中在稳定性问题上,没有考虑或不能同时满足多个性能指标的要求。然而,随着空间任务的发展,对航天器姿态控制已不仅需要满足单一性能指标,同时应该对空间环境的扰动、输入约束和机动时间等方面进行综合考虑。基于此,综合考虑系统的稳定性、扰动抑制、输入约束和响应速度衰减等,提出一种基于线性矩阵不等式(LMI)的具有多指标约束的模糊控制方法。为了达到较好地逼近航天器姿态系统非线性的目的,构建了航天器姿态控制系统Takagi-Sugeno(T-S)模型。将满足不同单一目标的线性矩阵不等式统一到同一个线性矩阵不等式组,从而使多指标控制器的设计转化为LMI的凸优化问题。论文以三种情况进行对比分析,通过对扰动抑制率、响应衰减率等多指标优化选取,使姿态控制系统具有良好的稳定性和较强的干扰抑制能力。
     其次,在实际航天器姿态控制中,系统状态信息可能出现不能完全精确获得的情况,进而造成控制系统性能下降。同时,考虑到高精度的姿态敏感器又比较昂贵。本文考虑到航天器转动惯量的变化,基于航天器姿态T-S模糊模型,提出了一种航天器保性能输出反馈控制方法。将航天器姿态与控制输入二次型成本函数作为模糊闭环系统的性能指标,得到了较小的保性能上界。使得保性能控制器对所有允许的参数不确定性鲁棒,闭环模糊系统鲁棒渐近稳定,既保证了航天器姿态具有良好的过渡过程,又满足航天器执行机构输出力矩的约束条件。
     再次,航天器姿态控制系统设计的另一个核心问题是安全性和可靠性。只有建立航天器姿态控制系统容错控制机制,才能够顺利实现航天器姿态的自主控制,并使之在较长时间与复杂工作环境下顺利完成预定的飞行任务。基于此,本文研究了基于T-S模糊模型的航天器姿态控制系统传感器故障和执行结构故障模式下容错控制器的设计问题。首先,提出了一种针对存在扰动情况下传感器故障估计和补偿方法。将传感器故障作为辅助状态向量,建立增广描述系统。通过模糊观测器实现故障估计,利用提出的故障补偿方法,使得航天器在发生姿态传感器故障的情况下,通过补偿可以获得正确的测量信息,系统仍然能够正常运行。其次,提出了一种执行器故障下考虑控制输入约束、极点配置的多指标条件下的满意容错控制器的设计方法。在执行器发生较严重的增益故障情况下,本文给出的控制律仍然较好地实现对航天器姿态的控制,满足多指标的要求。
     本文最后研究了基于T-S模型的具有时滞的航天器姿态模糊鲁棒控制。针对控制系统中的数据传输时延,提出一种基于T-S模型的状态反馈控制器的设计方法。在T-S模型的基础上采用并行分配补偿策略,应用Lyapunov泛函,获得了时滞相关稳定性的充分条件,并转换为线性矩阵不等式的形式表示出来。本文获得的最大允许时滞保守性较小。将该方法用于航天器姿态控制系统,仿真表明提出的模糊状态反馈控制器具有良好的闭环稳定,且对时延具有一定的鲁棒性。
The spacecraft attitude control system is one of the most important subsystems ofthe spacecraft system, and is the core part of the spacecraft. The autonomousattitude control of spacecraft has very wide applications. Currently, the highdemand on the spacecraft attitude control system is particularly important in termsof spacecraft precision, long life, and high ability. The spacecraft control algorithmdesign has a direct impact on the attitude control performance. Aim at a variety ofcontrol problems of spacecraft attitude maneuver process, this thesis focuses on theattitude model establishment, control law design and control parameters selection.Accordingly, it put forward a set of feasible control law design method in order toresolve the rigid spacecraft attitude fuzzy control problem. The following works arefinished in this thesis.
     Firstly, spacecraft attitude control system not only satisfies a single performance,but also considers the needs of multiple control performance targets. However, thegeneral attitude control system mostly concentrates on the control system stability,and a number of performance targets are not considered simultaneously. For thisphenomenon, this thesis studies the spacecraft attitude control of multi-objectivesynthesis problems based on Linear Matrix Inequalities, for example systemstability, disturbance rejection, input constraint and decay rate. In order to achieve abetter approximation of spacecraft attitude nonlinearity, the T-S fuzzy model isconstructed. The single objective LMI is unified into an LMIs, and themulti-objective controller is designed into LMI convex optimization problem. Bythree cases contrast, the control system has a good transition process anddisturbance rejection capability.
     Secondly, for spacecraft attitude control, all state information is not all exactlyobtained by sensor, which makes the control performance descend. Meanwhile, thehigh-precision sensors are also very high expensive. Taking into account themoment of inertia of the spacecraft, an output feedback control method is proposedbased on the spacecraft attitude T-S uncertain fuzzy model. The quadratic costfunction with the spacecraft attitude control inputs and attitudes is as a fuzzyclosed-loop system performance, smaller upper bound is obtained. The closed-loopfuzzy system is robustly asymptotically stable for all parameter uncertainties, whichensures that the spacecraft attitude has a good transition process, but also to meetthe constraints of the spacecraft actuator output torque.
     In addition, the significant issue of the spacecraft control system design is safetyand reliability. So the fault-tolerant control mechanism of the spacecraft control system must be established in order to achieve the autonomous control ofspacecraft and to help it complete the scheduled mission successfully in a longerperiod of time and complex space environment. To solve this problem, this thesisstudies the design of the fault-tolerant controller under the conditions of spacecraftcontrol sensor fault and actuator fault based on the T-S fuzzy system. It proposes arobust fault estimation and compensation method for sensor failure in the presenceof disturbance. The augmented described system is constructed through the sensorfault as auxiliary state vector. By the proposed fault compensation method, thecorrect measurement information can be obtained and the system will still be able tooperate normally. And satisfied fault-tolerant controller is obtained under theconditions of an actuator fault satisfying control input constraints, the pole disk.When the actuator is fault seriously, the proposed control law is still better toachieve control of the spacecraft attitude to meet the requirements ofmulti-objective performances. Simulation tests verify that the proposed designmethod is feasiable and effective.
     At last, this thesis studies the fuzzy robust control system based on the T-S modelwith time-delay. Aim at delay in the control system, this thesis proposes a designmethod for state feedback controller based on T-S model. By parallel distributedcompensation strategy and applying Lyapunov function, a sufficient condition fordelay-dependent is obtained based on T-S model and converted to be expressed inthe form of LMIs. The maximum allowable time-delay in this thesis is lessconservative. This strategy is applied in spacecraft attitude control system and thefuzzy state feedback controller has good closed loop stability.
引文
[1] Mao Z H, Jiang B. Fault Estimation and Accommodation for NetworkedControl Systems with Transfer Delay[J]. Automatica,2007,33(7):738-743.
    [2] Huo Z H, Fang Z Z. Research on Fault-Tolerant Control of Networked ControlSystems Based on Information Scheduling[J]. Journal of Systems Engineeringand Electronics,2008,19(5):1024-1028.
    [3] Huo Z, Fang H J. Research on Robust Fault-Tolerant Control of NetworkedControl System with Packet Dropout[J]. Journal of Systems Engineering andElectronics,2007,18(1):76-82.
    [4] Wertz J R. Spacecraft Attitude Determination and Control[M]. Dordrecht:Kluwer Academic Publishers,1978:5-9.
    [5] Wie B. Space Vehicle Dynamics and Control[M]. AIAA Education Series,1998:23-29.
    [6] Parlos A G, Sunkel J W. Adaptive Attitude Control and MomentumManagement for Large-Angle Spacecraft Maneuvers[J]. Journal of Guidance,Control and Dynamics,1992,15(4):1018-1028.
    [7] Skullestad A, Gilbert J M. H∞Control of a Gravity Gradient StabilizedSatellite[J]. Control Engineering Practice.2000,8(9):975-983.
    [8] Chida Y, Yamaguchi Y, Soga H. Attitude Control of an Artificial SatelliteUsing H∞and Two Degree of Freedom Control-on Orbit Experiments UsingETS-VI[C]. Proceedings of Triennial World Congress, San Francisco, USA,1996:189-194.
    [9] Byun K W, Wie B, Geller D. et al. Robust H∞Control Design for the SpaceStation with Structured Parameter Uncertainty[J]. Journal of Guidance, Controland Dynamics,1991,14(6):1115-1122.
    [10] Elgersma M, Stein G, Jackson M R. Robust Controllers for Space StationMomentum Management[J]. IEEE Transactions on Control SystemsTechnology,1992,12(5):14-22.
    [11] Hyde R A. H∞Aerospace Control Design[M]. London: Springer-Verlag,1995:19-35.
    [12] Yang C D, Sun Y P. Mixed H2/H∞State-feedback Design for MicrosatelliteAttitude Control[J]. Control Engineering Practice,2002,10(9):951-970.
    [13] Koma Y, Vukovich G. Vibration Suppression of Flexible Beams with BondedPiezotransducers Using Wave-absorbing Controller[J]. Journal of Guidance,Control, and Dynamics,2000,23(2):347-354.
    [14]陈金莉,李东海,孙先仿.航天器姿态的非线性鲁棒分散控制器设计[J].宇航学报,2007,27(1):6-11.
    [15] Tsiotras P. Stabilization and Optimality Results for the Attitude ControlProblem[J]. Journal of Guidance, Control, and Dynamics,1996,19(4):772-779.
    [16] Sharma R, Tewari A. Optimal Nonlinear Tracking of Spacecraft AttitudeManeuvers[J]. IEEE Transactions on Control Systems Technology,2004,12(5):677-682.
    [17] Bhat S P, Bernstein D S. A Topological Obstruction to Continuous GlobalStabilization of Rotational Motion and the Unwinding Phenomenon[J].Systems and Control Letters,2000,39(1):63-70.
    [18] Ahmed J, Coppola V T, Bernstein D S. Asymptotic Tracking of SpacecraftAttitude Motion with Inertia Matrix Identification[J]. Journal of Guidance,Control, and Dynamics,1998,21(5):684-691.
    [19] Sanyal A K, Chaturvedi N A. Almost Global Robust Attitude Tracking Controlof Spacecraft in Gravity[C]. AIAA Guidance, Navigation, and ControlConference, Honolulu, HI,2008:2008-6979.
    [20] Glenn C.Attitude Determination and Control of Clementine During LunarMapping[J]. Journal of Guidance, Control, and Dynamics,1996,19(3):505-511.
    [21] Zwartbol T, Van den Dam R F, Terpstra A P. Attitude Estimation and Control ofManeuvering Spacecraft[J]. Automatica,1985,21(5):513-52.
    [22] Zhao Z Y, Tomizuka M, Isaka S. Fuzzy Gain Scheduling of PID Controllers[J].IEEE Transactions on System, Man Cybernetics-Part B,1993,23(5):1392-1398.
    [23] Iyer A, Singh S N. Variable Structure Attitude Control and Elastic ModeStabilization of Flexible Spaceeraft[C]. The39th Conference on Decision andControl, Tampa,1999:809-8l4.
    [24] Matthew A, Franco B Z, Riccardo S. Sliding Mode Control of a Large FlexibleSpace Structure[J]. Control Engineering Practice,2000,8(8):861-871.
    [25] Sundareshan M K, Askew C. Neural Network-assisted Variable StructureControl Scheme for Control of a Flexible Manipulator Arm[J]. Automatica,1997,33(9):1699-1710.
    [26] Crassidis J L, Vadali S R, Markley F L. Optimal Variable Structure ControlTracking of Spacecraft Maneuvers[J]. Journal of Guidance, Control, andDynamics,2000,23(3):564-566.
    [27] Joshi S M, Kelkar A G, Wen J T. Robust Attitude Stabilization of Spacecraftusing Nonlinear Quaternion Feedback[J]. IEEE Transactions on AutomaticControl,1995,40(10):1800-1803.
    [28] Boskovic J D, Li S M, Mehra R K. Robust Adaptive Variable Structure Controlof Spacecraft under Control Input Saturation[J]. Journal of Guidance, Control,and Dynamics,2001,24(1):14-22.
    [29] Banga H, Tahka M J, Choib H D. Large Angle Attitude Control of Spacecraftwith Actuator Saturation[J]. Control Engineering Practice,2003,11(9):989-997.
    [30] Chaturvedi N A, Mcclamroch N H. Attitude Stabilization of the Inverted3DPendulum on TSO(3) with Control Saturation[C]. The IEEE Conference onDecision and Control, Piscataway, NJ,2007:1910-1915.
    [31] Arambel P O, Manikonda V, Mehra R K. Spacecraft Attitude Tracking in thePresence of Input Magnitude Constraints[C]. The American ControlConference, Piscataway, NJ,2000:4082-4086.
    [32] Akella M R, Valdivia A, Kotamraju G R. Velocity-free Attitude ControllersSubject to Actuator Magnitude and Rate Saturations[J]. Journal of Guidance,Control,and Dynamics,2005,28(4):659-666.
    [33] Akella M R. Rigid Body Attitude Tracking without Angular VelocityFeedback[J]. Systems and Control Letters,2001,42(4):321-326.
    [34] Subbarao K, Akella M R. Differentiator-free Nonlinear Proportional-integralControllers for Rigid-body Attitude Stabilization[J]. Journal of Guidance,Control,and Dynamics,2004,27(6):1092-1096.
    [35]张景瑞,李俊峰.基于Lyapunov方法的卫星非线性姿态控制[J].清华大学学报(自然科学版),2004,44(5):670-673.
    [36] Li C J, Ma G F, Song B. A Nonlinear Proportional-Integral Control Schemewithout Velocity Measurements for a Spacecraft Attitude Tracking[C]. TheInternational Conference on Sensing, Computing and Automation, Harbin,China,2006:2423-2427.
    [37] Park Y. Robust and Optimal Attitude Stabilization of Spacecraft with ExternalDisturbances[J]. Aerospace Science and Technology,2005,9(3):253-259.
    [38] Di Gennaro S. Stabilization of Rigid Spacecraft with Uncertainties and InputSaturation in a Central Gravitational Field[C]. The Conference on Decisionand Control, San Diego, California USA,1997:4204-4209.
    [39] Di Gennaro S. Tracking Control Using Attitude Measurements for FlexibleSpacecraft in Presence of Disturbances[C]. IEEE Conference on Decision andControl,2004:2123-2128.
    [40] Fragopoulos D, Innocenti M. Stability Considerations in Quaternion AttitudeControl using Discontinuous Lyapunov Functions[J]. Control Theory andApplications,2004,151(3):253-258.
    [41] Wie B, Byun K W, Warren V W, et al. New Approach to Attitude/MomentumControl for the Space Station[J]. Journal of Guidance, Control, and Dynamics,1989,12(5):714-722.
    [42] Sunkel J W, Shieh L S. Multistage Design of an Optimal MomentumManagement Controller for the Space Station[J]. Journal of Guidance, Control,and Dynamics,1991,(14):492-502.
    [43] Rhee I, Speyer J L. Robust Momentum Management and Attitude ControlSystem for the Space Station[J]. Journal of Guidance, Control and Dynamics,1992,(15):342-351.
    [44] Wie B, Liu Q, Bauer F. Classical and Robust Control Redesign for the HubbleSpace Telescope[J]. Journal of Guidance, Control, and Dynamics,1993,16(6):1069-1077.
    [45] Wie B, Liu Q, Sunkel J. Robust Stabilization of the Space Station in thePresence of Inertia Matrix Uncertainty[J]. Journal of Guidance, Control, andDynamics,1995,18(3):611-617.
    [46] Chen B S, Wu C S, Jan Y W. Adaptive Fuzzy Mixed H2/H∞Attitude Control ofSpacecraft[J]. IEEE Transaction on Aerospace and Electronic Systems,2000,36(4):1343-1359.
    [47] Park Y, Tahk M J, Park J. Optimal Stabilization of Takagi-Sugeno FuzzySystems with Application to Spacecraft Control[J] Journal of Guidance,Control, and Dynamics,2001,24:767-777.
    [48] Cheng C H. Attitude Control of a Satellite using Fuzzy Controllers[J]. ExpertSystems with Applications,2009,36(3):6613-6620.
    [49] Park Y, Tahk M J, Bang H. Design and Analysis of Optimal Controller forFuzzy Systems with Input Constraint[J]. IEEE Transactions on Fuzzy Systems,2004,12(6):766-779.
    [50] Guan P, Liu X J, Liu J Z. Adaptive Fuzzy Sliding Mode Control for FlexibleSatellite[J]. Engineering Application of Artificial Intelligence,2005,18:451-459.
    [51] Wilson D G, Starr G P, Parker G. Nonlinear Adaptive Control for SlewingFlexible Active Structures[J]. Journal of Guidance, Control, and Dynamics,2004,27(1):142-145.
    [52] Costic B T, Dawson D M, De Queiroz M S. Quaternion-based AdaptiveAttitude Tracking Controller without Velocity Measurements[J]. Journal ofGuidance, Control, and Dynamics,2001,24(6):1214-1222.
    [53] Wong H, De Queiroz M S, Kapila V. Adaptive Tracking Control UsingSynthesized Velocity from Attitude Measurements[J]. Automatica,2001,37(6):947-953.
    [54] Miwa H, Akella M R. Global Adaptive Stabilization using Output Feedback forSpacecraft Attitude Tracking[J]. Advances in the Astronautical Sciences,2002,112(1):345-357.
    [55] Wen J T, Delgado K K. The Attitude Control Problem[J]. IEEE Transactions onAutomatic Control,1991,36(10):1148-1162.
    [56] Egeland O, Godhavn J M. Passivity Based Adaptive Attitude Control of a RigidSpacecraft[J]. IEEE Transactions on Automatic Control,1994,39(4):842-845.
    [57] Shahravi M, Kabganian M. Attitude Tracking and Vibration Suppression ofFlexible Spacecraft Using Implicit Adaptive Control Law[C]. AmericanControl Conference, Ukraine,2005,913-918.
    [58] Banirazi Motlagh R, Jahed Motlagh M R. Adaptive Robust Attitude TrackingControl of Spacecraft[C]. IEEE Conference on Control Applications, Tehran,2005,498-503.
    [59] Niederlinski A. A Heuristic Approach to the Design of InteractingMultivariable System[J]. Automatica,1971,7:691-701.
    [60] Seljuk D. Reliable Control Using Multiple Control Systems[J]. InternationalJournal of Control,1980,31(2):303-329.
    [61] Patton R J. Robustness Issues in Fault Tolerant Control[C]. InternationalConference on Fault diagnosis, Toulouse, France,1993:1087-1117.
    [62] Patton R J. Fault-tolerant Control: the1997Situation[C]. IFAC/IMACsSymposium of Fault Detection, Supervision and Safety for Technical Process,Hull, England,1997:1033-1055.
    [63] Blanke M, Kinnaert M, Lunze J. Diagnosis and Fault-tolerant Control[M].Springer, Berlin,2003:102-138.
    [64] Ducard G J. Fault-tolerant Flight Control and Guidance Systems[M].Springer-Verlag, London,2009:335-339.
    [65] Mahmoud M, Jiang J, Zhang Y M. Active Fault Tolerant Control Systems[M].Springer-Verlag, NewYork,2003:201-212.
    [66] Vidyasagar M, Viswanadham N. Reliable Stabilization Using a MultiController Configuration[J]. Automatica,1985,21(4):599-602.
    [67] Gundes A N. Controller Design for Reliable Stabilization[C]. IFAC WorldCongress,1993,4:1-4.
    [68] Sebe N, Kitamori T. Reliable Stabilization Based on a Multi-CompensatorConfiguration [C]. IFAC World Congress,1993,4:5-8.
    [69]陈雪芹,耿云海,张迎春.基于LMI的鲁棒容错控制及其在卫星姿态控制中的应用[J].控制理论与应用,2008,25(1):95-99.
    [70] Liang J J, Dong C Y, Wang Q. A Fault-tolerant Attitude Control System for aSatellite Based on Fuzzy Global Sliding Mode Control Algorithm[C].International Symposium on Instrumentation and Control Technology, Beijing,China,2008:127-128.
    [71] Godard G, Kumar K D. Fault Tolerant Reconfigurable Satellite FormationsUsing Adaptive Variable Structure Techniques[J]. Journal of Guidance, Control,and Dynamics,2010,33(3):969-984.
    [72] Olbrot A W. Fault Tolerant Control in the Presence of Noise:A New Algorithmand Some Open Problems[C]. IFAC World Congress,1993,7:467-470.
    [73] Kaminer I. A Velocity Algorithm for the Implementation of Gain-scheduledControllers[J]. Automatica,1995,31(8):1185-1192.
    [74] Li W, Xu W Z, Wang J. Active Fault Tolerant Control Using BP NetworkApplication in the Temperature Control of3-layer PE Steel Pipe Producing[C].World Congress on Intelligent Control and Automation, Hangzhou, China,2004:1525-1529.
    [75] Moerder D D. Application of Pre-computed Laws in a Reconfigurable AircraftFlight Control System[J]. Journal of Guidance, Control, and Dynamics,1989,12(3):325-333.
    [76] Srichander R, Walker B K. Stochastic Stability Analysis for Continuous-timeFault Tolerant Control Systems[J]. International Journal of Control,1993,57(3):433-452.
    [77] Ranmamurthi K, Agogino A M. Real-time Expert System for Fault TolerantSupervisory Control[J]. Journal of Dynamic Systems, Measurement, andControl,1993,115(3):219-227.
    [78] Wu N E, Zhou K, Salomon G. Control Recongurability of LinearTime-invariant Systems[J]. Automatica,2000,36(12):1767-1771.
    [79] Morse W D, Ossman K A. Model-following Reconfigurable Flight ControlSystems for the AFTI/F-16[J]. Journal of Guidance, Control, and Dynamics,1990,13(6):969-976.
    [80] Hou Q, Cheng Y H, Lu N Y. Study on FDD and FTC of Satellite AttitudeControl System Based on the Effectiveness Factor[C]. InternationalSymposium on Systems and Control in Aerospace and Astronautics, Shenzhen,China,2008:1096-1101.
    [81] Chen W, Saif M. Observer-based Fault Diagnosis of Satellite Systems Subjectto Time-varying Thruster Faults[J]. Journal of Dynamic Systems Measurementand Control,2007,129(3):352-356.
    [82] Mahmoud M, Jiang J, Zhang Y M. Stochastic Stability Analysis ofFault-Tolerant Control Systems in the Presence of Noise[J]. IEEE Transactionson Automatic Control,2001,46(11):1810-1815.
    [83] Tao G. Direct Adaptive Control of Systems with Actuator Failures:State of theArt and Continuing Challenges[C]. AIAA Guidance, Navigation and ControlConference, Honolulu, Hawaii,2008:1-23.
    [84] Kim K S, Lee K J, Kim Y D. Reconfigurable Flight Control System DesignUsing Direct Adaptive Method[J]. Journal of Guidance, Control, and Dynamics,2003,26(4):543-550.
    [85] Tandale M D, Valasek J. Fault-tolerant Structured Adaptive InversionControl[J]. Journal of Guidance, Control, and Dynamics,2006,29(3):635-642.
    [86] Cieslak J, Henry D, Zolghadri A. Development of an Active Fault-tolerantFlight Control Strategy[J]. Journal of Guidance, Control, and Dynamics,2008,31(1):135-147.
    [87] Bokovic J D, Li S M, Mehra R K. Intelligent Control of Spacecraft in thePresence of Actuator Failures[C]. IEEE Conference on Decision and Control,Wodurn,1999,4472-4477.
    [88] Li L, Ma L Y, Khorasani K. A Dynamic Recurrent Neural Network FaultDiagnosis and Isolation Architecture for Satellite’s Actuator/ThrusterFailures[J]. Lecture Notes in Computer Science,2005,3498(3):574-583.
    [89] Wu Q, Saif M. Robust Fault Diagnosis for a Satellite Large Angle AttitudeSystem Using an Iterative Neuron PID Observer[C]. American ControlConference, Minneapolis, USA,2006:5710-5715.
    [90] Jin J H, Ko S H, Ryoo C K. Fault Tolerant Control for Satellites with FourReaction Wheels[J]. Control Engineering Practice,2008,16:1250-1258.
    [91] Yu D L, Chang T K, Yu D. W. Fault Tolerant Control of MultivariableProcesses uing Auto-tuning PID Controller[J]. IEEE Transaction on SystemsMan and Cybernetics-Part B: Cybernetics,2005,35(1):32-42.
    [92] Wang M, Zhou D H. Fault Tolerant Control of Feedback Linearizable Systemswith Stuck Actuators[J]. Asian Journal of Control,2008,10(1):74-87.
    [93] Bokovic J D, Jackson J A, Mehra R K, et al. Multiple-Model AdaptiveFault-Tolerant Control of a Planetary Lander[J]. Journal of Guidance, Control,and Dynamics,2009,32(6):1812-1826.
    [94] Boskovic J D, Mehra R K. Multiple-model Adaptive Flight Control Scheme forAccommodation of Actuator Failures[J]. Journal of Guidance, Control, andDynamics,2002,25(4):712-724.
    [95] Shaffer P J, Ross I M, Oppenheimer M W, et al. Fault-tolerant OptimalTrajectory Generation for Reusable Launch Vehicles[J]. Journal of Guidance,Control, and Dynamics,2007,30(6):1794-1802.
    [96] Ye S J, Zhang Y M, Wang X M, et al. Robust Fault-tolerant Control UsingOn-line Control Re-allocation with Application to Aircraft[C]. AmericanControl Conference, New York,2009:5534-5539.
    [97] Alwi H, Edwards C. Fault Tolerant Control using Sliding Modes with On-lineControl Allocation[J]. Automatica,2008,44(7):1859-1866.
    [98] Alwi H, Edwards C, Stroosma O, et al. Fault Tolerant Sliding Mode ControlDesign with Piloted Simulator Evaluation[J]. Journal of Guidance, Control,and Dynamics,2008,31(5):1186-1201.
    [99] Shin J Y, Wu N E, Belcastro C. Adaptive Linear Parameter Varying ControlSynthesis for Actuator Failure[J]. Journal of Guidance, Control, and Dynamics,2004,27(5):787-794.
    [100]Wang H, Yang G H. Integrated Fault Detection and Control for LPVSystems[J]. International Journal of Robust and Nonlinear Control,2009,19(3):341-363.
    [101]Gao Z W, Ding S X. Actuator Fault Robust Estimation and Fault-tolerantControl for a Class of Nonlinear Descriptor Systems[J]. Automatica,2007,43(5):912-920.
    [102]Yang H, Cocquempot V, Jiang B. Fault-tolerant Control for a Class of HybridSystems with Uncontrollable Switching[J]. International Journal of SystemsScience,2009,40(10):1063-1075.
    [103]Tanaka K, Sugeno M. Stability Analysis and Design of Fuzzy ControlSystems[J]. Fuzzy Sets System,1992,45(2):135-156.
    [104]Wang H O, Tanaka K, Griffin M. Parallel Distributed Compensation ofNonlinear Systems by Takagi and Sugeno’s Fuzzy Model[C]. IEEEInternational Conference on Fuzzy Systems, Yokohama,1995:531-538.
    [105]Wang H O, Tanaka K, Griffin M. An Analytical Framework of FuzzyModeling and Control of Nonlinear System: Stability and Design Issue[C].American Control Conference, East Hartford,1995:2722-2726.
    [106]Wang H O, Tanaka K, Griffin M. An Approach to Fuzzy Control of NonlinearSystem: Stability and Design Issue[J]. IEEE Transaction on Fuzzy Systems,1996,4(1):14-23.
    [107]Cao S G, Ress N W, Feng G. Stability Analysis and Design for a Class ofContinuous Time Fuzzy Control System[J]. International Journal of Control,1996,(64):1069-1087.
    [108]Cao S G, Ress N W, Feng G. Analysis and Design for a Class of ComplexControl Systms[J]. Automatica,1997,(33):1029-1039.
    [109]Cao S G, Ress N W, Feng G. Analysis and Design of Fuzzy Control SystemsUsing Dynamic Fuzzy-State Space Models[J]. IEEE Transaction Fuzzy System,1999,(7):192-200.
    [110]Johansson M, Arzen K, Rantzer E A. Piecewise Quadratic Stability of FuzzySystems[J]. IEEE Transaction on Fuzzy Systems,1999,(7):713-722.
    [111]Choi D. Park P. H∞State-Feedback Controller Design for Discrete-Time FuzzySystems Using Fuzzy Weighting-Dependent Lyapunov Functions[J]. IEEETransaction on Fuzzy Systems,2003,(11):271-278.
    [112]陈志盛,孙克辉,李勇刚等.基于模糊Lyapunov函数的离散模糊时滞系统H∞控制[J].控制与决策,2006,21(5):546-549.
    [113]Tanaka K, Hori T, Wang H O. A Fuzzy Lyapunov Approach to Fuzzy ControlSystem Design[C]. American Control Conference, Arlington, VA,2001:4790-4795.
    [114]Chen B, Li X P, Tong S C. Delay-Dependent Stability Analysis and ControlSynthesis of Fuzzy Dynamic Systems with Time Delay[J]. Fuzzy Sets andSystems,2006,(157):2224-2240.
    [115]Luo Y B, Cao Y Y. Robust Stability of Uncertain Takagi-Sugeno FuzzySystems with Time-Varying Input-Delay[J]. Automatica,2008,34(1):87-92.
    [116]Zhang G S, Chen X M. Delay-Dependent Fuzzy Robust Stability for UncertainNonlinear Systems with Time-Delay[C]. World Congress on Intelligent Controland Automation, Dalian,2006:4002-4006.
    [117]Liu X W, Zhang H B, Zhang F L. Delay-Dependent Stability of UncertainFuzzy Large-Scale Systems with Time Delays[J]. Chaos, Solitons and Fractals,2005,(26):147-158.
    [118]Zuo Z, Wang Y. Robust Stability and Stabilization for Nonlinear UncertainTime-delay Systems via Fuzzy Control Approach[J]. Control Theory andApplications,2007,1(1):422-429.
    [119]Lam H K, Leung F H F. Stability Analysis of Discrete-Time Fuzzy-Model-Based Control Systems with Time Delay: Time Delay-IndependentApproach[J]. Fuzzy Sets and Systems,2008,159(8):990-1000.
    [120]Glower J S. Designing Fuzzy Controllers from a Variable StructureStandpoint[J]. IEEE Transaction on Fuzzy Systems,1997,5(1):138-144.
    [121]Palm R. Robust Control by Fuzzy Sliding Mode[J]. Automatica,1994,30(9):1429-1437.
    [122]Kim S W, Lee J J. Design of a Fuzzy Controller with Fuzzy Sliding Surface[J].Fuzzy Sets and Systems,1995,71(3):359-367.
    [123]Htani Y O, Yoshimura T. Fuzzy Control of a Manipulator Using the Concept ofSliding Mode[J]. International Journal of Systems Science,1996,27(2):179-186.
    [124]Wang S Y, Hong C M, Yang W T. Design of a Static Reactive PowerCompensator Using Fuzzy Sliding Mode Control[J]. International Journal ofControl,1996,63(2):393-413.
    [125]Yi S Y, Chung M J. A Robust Fuzzy Logic Controller for Robot Manipulatorswith Uncertainties[J]. IEEE Transaction on Systems Man and Cybernetic,1997,27(4):706-713.
    [126]Palm R, Driankov D. Stability of Fuzzy Gain Schedulers: Sliding-Mode BasedAnalysis[C]. The Sixth IEEE International Conference on Fuzzy Systems,Barcelona,1997:177-183.
    [127Aly G M, Tayeb M A. Fuzzy Logic-Based Variable Structure Controllers[J].Journal of Micro Computer Applications,1995,18(2):115-125.
    [128]Suyitno A, Fujikawa J, Obayashieta H K. Variable-Structured RobustController by Fuzzy Logic for Servomotors[J]. IEEE Transaction on IndustrialElectronics,1993,40(1):80-88.
    [129]Yi S Y, Chung M J. Systematic Design and Stability Analysis of a Fuzzy LogicController[J]. Fuzzy Sets and Systems,1995,72(3):271-298.
    [130]Zhang T P, Feng C B. Fuzzy Variable Structure Control via OutputFeedback[J]. International Journal of Systems Science,1997,28(3):309-319.
    [131]Li H X, Gatland H B, Green A W. Fuzzy Variable Structure Control[J]. IEEETransaction on Systems Man and Cybernetics,1997,27(2):306-312.
    [132]Ding Y S, Ying H, Shao S H. Structure and Stability Analysis of aTakagi-Sugeno Fuzzy PI Controller with Application to Tissue HyperthermiaTherapy[J]. Soft Computing,1999,2(4):183-190.
    [133]Lo J C, Lin Y T. State Feedback via Circle Criterion for Systems Subject toInput Saturations[C]. IEEE of Networking, Sensing and Control, Taiwan:920-925.
    [134]Tanaka K, Ikeda T, Wang H O. Robust Stabilization of a Class of UncertainNonlinear Systems via Fuzzy Control: Quadratic Stabilizability, H∞ControlTheory, and Linear Matrix Inequalities[J]. IEEE Transaction on Fuzzy Systems,1996,(4):1-13.
    [135]Yang D D, Zhang H G. Robust H∞Networked Control for Uncertain FuzzySystems with Time-Delay[J]. Automatica,2007,3(7):726-730.
    [136]Xu S Y, Lam J. Robust H∞Control for Uncertain Discrete-Time-Delay FuzzySystems via Output Feedback Controllers[J]. IEEE Transaction on FuzzySystems,2005,13(1):82-93.
    [137]Lee K R, Jeung E T, Park H B. Robust Fuzzy H∞Control for UncertainNonlinear Systems via State Feedback: An LMI Approach[J]. Fuzzy Sets andSystems,2001,120:123-134.
    [138]Liu X W. Delay-Dependent H∞Control for Uncertain Fuzzy Systems withTime-Varying Delays[J]. Nonlinear Analysis,2008,68(5):1352-1361.
    [139]Chen B S, Tseng C S, Uang H J. Mixed H2/H∞Fuzzy Output Feedback ControlDesign for Nonlinear Dynamic Systems: an LMI Approach[J]. IEEETransaction on Fuzzy Systems,2000,8(3):249-265.
    [140]Lin C, Wang Q G, Lee T H. Observer-Based H∞Fuzzy Control Design for T-SFuzzy Systems with State Delays[J]. Automatica,2008,44(3):868-874.
    [141]Zhou S S, Li T. Robust Stabilization for Delayed Discrete-Time FuzzySystems via Basis-Dependent Lyapunov-Krasovskii Function[J]. Fuzzy Setsand Systems,2005,151(1):139-153.
    [142]Cao Y Y, Frank P M. Robust H∞Disturbance Attenuation for a Class ofUncertain Discrete-Time Fuzzy Systems[J]. IEEE Transaction on FuzzySystems,2000,8(4):406-415.
    [143]Ren J. H. Delay-Dependent Fuzzy H∞Filtering for a Class of NonlinearSystems with Time Delays[C]. IEEE International Conference on Control andAutomation, Guangzhou,2007:1388-1393.
    [144]Takagi T, Sugeno M. Fuzzy Identification of Systems and Its Applications toModeling and Control[J]. IEEE Transactions on Systems, Man and Cybernetics,1985,15(1):116-132.
    [145]Tanaka K, Wang H O. Fuzzy Control Systems Design and Analysis: a LinearMatrix Inequality Approach[M]. Wiley-Interscience Publication, New York,2001.
    [146]Shuster M D. A Survey of Attitude Representations[J]. The Journal of theAstronautical Sciences,1993,41(4):439-517.
    [147]Wie B, Roithmayr C M. Attitude and Orbit Control of a Very LargeGeostationary Solar Power Satellite[J]. Journal of Guidance, Control, andDynamics,2005,28(3):439-451.
    [148]Xing G Q, Parvez S A. Alternate Forms of Relative Attitude Kinematics andDynamics Equations[C]. NASA, Coddard Space Flight Center, Greenbelt,Maryland,2001:83-97.
    [149]Khalil H K.非线性系统[M].北京:电子工业出版社,2005:181-192.
    [150]佟绍成,王涛,王艳平等.模糊控制系统的设计及稳定性分析[M].北京:科学出版社,2004:89-102.
    [151]Ying H. Analytical Analysis and Feedback Linearization Tracking Control ofthe General Takagi-Sugeno Fuzzy Dynamic Systems[J]. IEEE Transactions onSystem, Man, Cybernetics,1999,29(3):290-298.
    [152]James L, Xu S Y, Zhan S. Robust Stabilization of Uncertain T-S FuzzyTime-Delay Systems with Exponential Estimates[J]. Fuzzy Sets and Systems,2009,160(12):1720-1737.
    [153]Xie X P, Zhang H G. Stabilization of Discrete-Time2-D T-S Fuzzy SystemsBased on New Relaxed Conditions[J]. Automatica,2010,36(2):267-273.
    [154]Kevin G, Tahar B, Noureddine M. Robust Dynamic Output Feedback FuzzyLyapunov Stabilization of Takagi-Sugeno Systems-A Descriptor RedundancyApproach[J]. Fuzzy Sets and Systems,2009,160(19):2796-2811.
    [155]Lee D H, Park J B, Joo Y H. Further Improvement of Periodic ControlApproach for Relaxed Stabilization Condition of Discrete-Time Takagi-SugenoFuzzy Systems[J]. Fuzzy Sets and Systems,2011,174(1):50-65.
    [156]Lee D H, Park J B, Joo Y H. Approaches to Extended Non-Quadratic Stabilityand Stabilization Conditions for Discrete-Time Takagi-Sugeno FuzzySystems[J]. Automatica,2011,47(3):534-538.
    [157]Chang X H, Yang G H. Relaxed Stabilization Conditions for Continuous-TimeTakagi-Sugeno Fuzzy Control Systems[J]. Information Sciences,2010,180(17):3273-3287.
    [158]Ding D W, Li X L, Yin Y X, et al. Further Studies on Relaxed StabilizationConditions for Discrete-Time Two-Dimension Takagi-Sugeno FuzzySystems[J]. Information Sciences,2012,189(15):143-154.
    [159]Sheng L, Gao M. Stabilization for Markovian Jump Nonlinear Systems withPartly Unknown Transition Probabilities Via Fuzzy Control[J]. Fuzzy Sets andSystems,2010,161(21):2780-2792.
    [160]Ko J W, Lee W I, Park P G. Stabilization for Takagi–Sugeno Fuzzy SystemsBased on Partitioning the Range of Fuzzy Weights[J]. Automacitca,2012,18(5):970-973.
    [161]Gao Q, Feng G, Wang Y, et al. Universal Fuzzy Controllers Based onGeneralized T-S Fuzzy Models[J]. Fuzzy Sets and Systems,2012,201:55-70.
    [162]Lin C J, Wang Y, Xu L. Spacecraft Attitude Stabilization using Optimal SlidingMode Control[C]. Systems and Control in Aeronautics and Astronautics,Harbin: IEEE,2010:1085-1089.
    [163]胡庆雷.挠性航天器姿态机动的主动抑制控制[D].哈尔滨:哈尔滨工业大学博士学位论文,2006:92-122.
    [164]Wang Y H, Wu Q X, Jiang C S. Guaranteed Cost Fuzzy Output FeedbackControl Via LMI Method for Re-entry Attitude Dynamic[J]. Journal ofUncertain Systems,2007,1(4):291-302.
    [165]Cai W C, Xiao X L, Song Y D. Indirect Robust Adaptive Fault-tolerantControl for Attitude Tracking of Spacecraft[J]. Journal of Guidance, Control,and Dynamics,2008,31(5):1456-1463.
    [166]陈雪芹,王峰,李冬柏等.一类时滞不确定系统鲁棒容错控制方法[J].哈尔滨工业大学学报,2012,44(9):14-19.
    [167]Rajesh R, Kaimal M R. T-S Fuzzy Model with Nonlinear Consequence andPDC Controller For a Class of Nonlinear Control Systems[J]. Applied SoftComputing,2007,7(3):772-782.
    [168]Huang C P, Juang Y T. A Projection Scheme to Stability Analysis of DiscreteT-S Fuzzy Models[J]. Mathematics and Computers in Simulation,2004,64(6):643-648.
    [169]Su B, Chen Z Q, Yuan Z Z. Constrained Predictive Control Based on T-SFuzzy Model For Nonlinear Systems[J]. Journal of Systems Engineering andElectronics,2007,18(1):95-100.
    [170]Wu X J, Zhu X J, Cao G Y, et al. Dynamic Modeling of SOFC Based on a T-SFuzzy Model[J]. Simulation Modelling Practice and Theory,2008,16(5):494-504.
    [171]Chang W J, Ku C C, Huang P H, et al. Fuzzy Controller Design For PassiveContinuous-Time Affine T-S Fuzzy Models with Relaxed StabilityConditions[J]. ISA Transactions,2009,48(3):295-303.
    [172]Chen B, Liu X P, Tong S C, et al. Guaranteed Cost Control of T-S FuzzySystems with State and Input Delays[J]. Fuzzy Sets and Systems,2007,158(20):2251-2267.
    [173]Chen C W. The Stability of an Oceanic Structure with T-S Fuzzy Models[J].Mathematics and Computers in Simulation,2009,80(2):402-426.
    [174]Gao Z W, Jiang B, Shi P. Sensor Fault Estimation and Compensation forMicrosatellite Attitude Control Systems[J]. International Journal of Control,Automation, and Systems,2010,8(2):228-238.
    [175]薄翠梅,王执铨,张广明等.一类多指标约束下模糊非线性系统的满意容错控制[J].控制与决策,2010,25(7):1000-1003.
    [176]王小丽,倪茂林.基于自适应观测器的非线性系统故障诊断[J].空间控制技术与应用,2008,34(4):33-37.
    [177]Xiao B, Hu Q L. Robust Fault Tolerant Control for Spacecraft AttitudeStabilization under Actuator Faults and Bounded Disturbance[J]. Journal ofDynamic Systems, Measurement, and Control,2011,9(133):1-8.
    [178]姜野.控制受限的挠性航天器姿态容错控制[D].哈尔滨:哈尔滨工业大学博士学位论文,2011:70-76.
    [179]杨学博.航天器自主交会对接控制问题研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2011:87-93.
    [180]Zhang X H, Zeng M. Multi-Objective Control of Spacecraft AttitudeManeuver Based on Takagi-Sugeno Fuzzy Model[J]. Control Engineering andApplied Informatics,2012,14(1):31-36.
    [181]徐利杰,董朝阳,王青.空间飞行器姿态网络控制系统的模糊变结构控制[J].宇航学报,2008,29(2):590-595.
    [182]Nelson J P, Balas M J. Model Reference Adaptive Control of SpacecraftAttitude for a PNP Satellite with Unknown Time Varying Input/OutputDelays[C]. IEEE International on Systems Conference, Vancouver, BC,2012:1-6.
    [183]Eekal B, Kaynak O. Design of a Fuzzy Variable Structure Controller forControlling Satellite Attitude Suffering From Sensor Data Delay[C].International Conference on Recent Advances in Space Technologies, Istanbul,2011:566-569.
    [184]李雯.飞行器网络控制系统研究[D].长沙:国防科学技术大学博士学位论文,2007:3-13.
    [185]黄鹤,谢德晓,张登峰等.基于T-S模糊模型的网络控制系统鲁棒H∞容错控制[J].系统工程与电子技术,2010,32(6):1292-1298.
    [186]陶洪峰,胡寿松.执行器饱和T-S模糊系统的鲁棒耗散容错控制[J].控制理论与应用,2010,27(2):205-210.
    [187]王申全,伦淑娴.基于T-S模型网络控制系统模糊鲁棒控制[J].控制工程,2010,7:81-84.
    [188]Dong C Y, Xu L J, Yu C. Networked Flexible Spacecraft Attitude ManeuverBased on Adaptive Fuzzy Sliding Mode Control[J]. Astronautica,2009,65:1561-1570.
    [189]李雯,戴金海.航天领域研究网络控制系统的必要性分析[J].航天控制,2008,26(5):93-96.
    [190]Kim D S, Lee Y S, Kwona W H. Maximum Allowable Delay Bounds ofNetworked Control Systems[J]. Control Engineering Practical,2003,11(11):1301-1313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700