用户名: 密码: 验证码:
声表面波射频辨识标签与系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于声表面波(SAW)技术的射频标签具有纯无源、阅读距离远、环境适应性强等特点,正在逐步受到大家的关注。
     本文对基于声表面波的射频标签系统和阅读器进行了理论研究,着重在提高标签识别率、多标签辨识和提高检测精度等方面。并在此基础上设计制作了一套完整的SAW标签系统。主要研究内容如下:
     首先,介绍了SAW标签系统的远场工作条件,分析了阅读器天线和声表面波标签天线的链路模型。并对SAW标签设计相关的SAW技术进行了论述。
     其次,讨论了SAW标签的各种编码方法及其特点;分析了反射栅多次反射的影响;讨论了SAW标签材料的选择。
     第三,在射频识别系统空间传播技术和信号检测原理分析的基础上,对SAW标签阅读器系统设计做了理论分析。阐述了时域采样和频域采样时的不同检测原理和系统组成及各自工作特点,据此确定本文采用时域采样的阅读器设计方案。
     着重分析了时域采样下的检测理论方法,包括振幅检测、相位检测和相位估计方法。指出在大信噪比时,采用振幅检测能够获得更高的检测概率;而在小信噪比时,相位检测则能够更好地利用有用信息。同时,针对振幅检测和相位检测在不同信噪比下的各自检测特点,采用基于检测距离的单标签融合检测方法来提高阅读识别率。
     第四,由于SAW标签是纯无源标签,不具有任何数据处理能力,因此多目标识别是SAW标签系统的一个难点。本文分析并指出了各种防冲突方法的优点和存在的不足。在此基础上,采用基于Walsh域的匹配门限滤波方法来对多目标进行辨识。并采用滤波门限的方法保证了运算速度。
     第五,反射脉冲的峰值和位置是标签解码的两个主要参数。本文采用基于最小均方误差的权重数据融合方法来估计标签的脉冲响应的幅度和位置信息。
     第六,设计了一套完整的SAW射频识别系统,包括SAW标签和阅读器。SAW标签是按照本文提出的多目标辨识方法筛选并制作。阅读器包括射频发射机、接收机、高速数据采集、数据信号处理等部分,实现了对标签信息的幅度检测和相位检测。并提出了提高阅读器射频通道隔离度的改进措施,在系统工作频段上,将阅读器查询信号的隔离度提高到60dB。
     最后试验测试了SAW标签辨识系统,其阅读距离达到4.5米以上,验证了基于检测距离来提高单标签识别率的融合方法,并测试了多目标标签的识别能力。
     本文的主要创新点:
     1.提出了基于检测距离的融合检测方法来提高单标签阅读识别率。
     2.提出了基于Walsh域的多目标辨识方法。并进一步提出采用滤波门限的方法保证了运算速度。
     3.提出基于匹配追踪-小波包原子分解估计的最小均方误差权重数据融合方法来估计标签脉冲响应的幅度和位置信息。
     4.成功地设计了一套完整的SAW射频识别系统,包括SAW标签和阅读器。并通过试验验证了本文提出的研究方法的正确性和可行性。
Surface Acoustic Wave (SAW) tag is passive and can perform better in harsh environments than other passive RFID tag; so much attention has been paid to it.
     Theoretical analysis about SAW Tag system and reader is discussed. The emphasis of this paper was put on the improvement of identification probability, multi-tags identification and enhancement of accuracy in detection. A complete SAW tag system which includes SAW tag and reader is designed and manufactured. At first, theories on radiation field, antenna model, and antenna noise are introduced in this thesis.
     Secondly, different code methods of SAW tag are discussed and their merit and demerit are given. The influence of multi-reflection of SAW tag reflector is analyzed. The suggestion on selection of SAW tag material is proposed.
     Thirdly, the system structure of reader is discussed based on signal detection theory and free space propagation technique. The different composition and principle of time-domain sampling and frequency-domain sampling method are described and compared, as a conclusion, time-domain sampling method is chosen in reader designing here.
     Detection method of time-domain sampling is investigated, which comprises amplitude detection system, phase detection system and phase evaluation system. Amplitude detection can achieve higher detection probability when SNR is high, on contrary, frequency detection can achieve better detection probability when SNR is low. According with this fact, a fusion detection method depended on the working distance is proposed to improve the identification probability for single tag in this thesis.
     Fourthly, since SAW tags do not contain any intelligence, the question of multiple reads in the capture window comes up. The currently anti-collision methods are introduced. A new Walsh Matched-Threshold Filtering based anti-collision is proposed.
     Fifthly, the peak and position of reflected pulse are two main parameters of tag decoding. A weighted data fusion algorithm based on the matching pursuit (MP)-wavelet packet (WP) atomic decomposition method, which estimates the tag feature parameters of surface acoustic wave (SAW) is presented.
     Sixth, a total SAW tag system is designed successfully, which includes SAW tag and reader. The reader includes RF transceiver, analog-to-digital convertor with high speed, data processing etc. It can detect SAW tag signal by amplitude and phase. The improved radio channel can achieve more than 60dB isolation.
     Finally, test and experiment are made, the result indicates that the working distance reached over 4.5 meter by this own-made reader, it is proved also that the proposed theories and methods are correct and feasible.
     The creations performed in this thesis are:
     1. Fusion detection method depended on working distance is proposed to improve the identification probability for single tag;
     2. A new anti-collision method, the Walsh Matched-Threshold Filtering, used for multi-tags identification;
     3. To estimate the tag’s information presented by amplitude and position using weighted data fusion algorithm based on the matching pursuit(MP)-wavelet packet(WP) atomic decomposition method;
     4. Designing and manufacturing a complete tag reader system successfully.
引文
[1] Clinton S. Hartmann, A Global ID Tag with Large Data Capacity, Proc. 2002 IEEE Ultrasonics Symposium, pp.63-67.
    [2] D.L.Brock, The Electronic Product Code– A Naming Scheme for Physical Objects, Jan 2001, http://www.autoidcenter.org/research/MITautoid-WH-002.pdf.
    [3] R.M White and F.M. Voltmer. Direct piezoelectric coupling to surface acoustic waves. Appl. Phys. Lett. , Vol. 7, 1965: 314-316.
    [4] A. A. Oliner. Acoustic Surface Waves. USA, Springer Verlag Berlin Heidelberg New York, 1978.
    [5] David P. Morgan. History of SAW Devices. IEEE International frequency control symposium, 1998: 439-459.
    [6] Bill Drafts. Acoustic wave technology. IEEE Trans. on Microwave theory and Techniques, Vol. 49, No. 4, 2001: 795-802.
    [7]水永安.声表面波与声表面波器件讲义.南京南京大学电子科学与技术系1998.
    [8] S. Datta. Surface Acoustic wave devices. Englewood Cliffs, N.J., 1986.
    [9]许昌昆译.声表面波器件及其应用.北京科学出版社1984
    [10] W. Buff. SAW sensors. Sensor and Actuators (A), vol.30, 1992: 117-121.
    [11] M.J. Vellekoop. Acoustic wave sensors and their technology. Ultrasonics 36, 1998:7-14.
    [12]胡爱民.声表面波信号处理器件的进展与应用.压电与声光, Vol.22, No.4, 2000: 218-221.
    [13] Kozlov A S, Puzynya I P, Tolstoukhov N I. Surface acoustic wave devices in a radio monitoring system. Telecommun Radio Eng., Vol.45, No.5. 1990: 56-57.
    [14] L. Reindl, C.C.W. Ruppel. Design, fabrication, and application of precise SAW delay lines used in a FMCW radar system. IEEE Trans. Microwave Theory Tech. Vol.49, 2001: 787-794.
    [15] M. Hikita, C. Takubo. High performance SAW convolvers used in high bit rate and wideband spread spectrumCDMAcommunication systems. IEEE Trans. On UFFFC. Vol.47, 2000: 233-241.
    [16] Ken-ya Hashimoto. Surface acoustic wave devices in telecommunications modeling and simulation. Springer, 2000.
    [17] A. Springer, M. Huemer. A robust ultra-broad-bandwireless communication system using SAW chirped delay lines. IEEE Trans. Microwave Theory Tech., Vol.46, 1998: 2213-2219.
    [18] C.C.W. Ruppel, R. Dill, A. Fischerauer,. SAW devices for consumer communication applications. IEEE Trans.on UFFC. Contr..Vol.40, 1993: 438-452.
    [19] A. Springer, et al. Wireless identification and sensing using surface acoustic wave devices. Mechatronics, 9, 1999:745-756.
    [20] F.Schmidit, O. Sczesny, C. Ruppel, et al. Wireless interrogator system for SAWidentification marks and SAW sensor components. 1996 IEEE international frequency control symposium,1996:208-215.
    [21]韩韬.基于声表面波器件的传感器信息无线传输及辨识标签系统的研究[博士学位论文].上海信息检测技术与仪器系2002.
    [22] D.P. Morgan. Surface-Wave Devices for Signal Processing. Amsterdam, The Netherlands,1991.
    [23] A. A. Oliner. Acoustic Surface Waves. USA, Springer Verlag Berlin Heidelberg New York,1978.
    [24]陈戈林乐光启.微波声学.北京电子工业出版社1989.
    [25]孙慷张福学.压电学.北京国防工业出版社1984.
    [26] B.A. Auld. Acoustic fields and waves in solids. Wiley, New York, 1973.
    [27] Bill Drafts. Acoustic wave technology. IEEE Trans. on Microwave theory and Techniques,Vol. 49, No. 4, 2001: 795-802.
    [28] David P. Morgan. History of SAW Devices. IEEE International frequency control symposium,1998: 439-459.
    [29] M.J. Vellekoop. Acoustic wave sensors and their technology. Ultrasonics 36, 1998:7-14.
    [30]吉小军,高温偏载条件下的声表面波压力传感器理论研究,[博士学位论文].上海信息检测技术与仪器系2004.
    [31] L. Reindl, C.C.W. Ruppel. Design, fabrication, and application of precise SAW delay lines used in a FMCW radar system. IEEE Trans. Microwave Theory Tech. Vol.49, 2001: 787-794.
    [32]张国伟,基于LGS的声表面波压力传感器研究,[博士学位论文].上海信息检测技术与仪器系2004.
    [33]李平,无源无线声表面波传感器及仪器系统研究,[博士学位论文].重庆大学仪器科学与技术2003.
    [34] Lal Chand Godara, "Handbook of Antennas in Wireless Communications," CRC Press 2002
    [35]赵凯华,陈熙谋,《电磁学》第二版,高等教育出版社,1998
    [36]康行健,《天线原理与设计》,北京理工大学出版社,1993
    [37]邱关源,《电路》第三版,高等教育出版社,1997.
    [38] A.M.D Turkmani and A. F. de Toledo,“Modeling of radio transmissions into and within multistory buildings at 900, 1800 and 2300 MHz”, IEE Proceedings I, vol. 140, pp. 462-470, December 1993.
    [39] J. Bach Andersen, P. Eggers and B. L. Andersen, "Propagation Aspects of Data communication over the Radio Channel-- A Tutorial", Electrotechnics, 1988. Conference Proceedings on Area Communication, EUROCON 88., 8th European Conference on,13-17 June 1988
    [40] A. M. D. Turkmani and A. F. de Toledo, "Modeling of radio transmissions into and within multistory buildings at 900, 1800 and 2300MHz", IEE Proceedings I, vol. 140, pp.462-470, December 1993.
    [41] A. J. Motley, J. M. P 900 MHz and 1700 Udo Karthaus,MHz"Keenan,``Personal communication radio coverage in buildings at Electronics Letters, vol. 24, pp. 763-764, June 1988.
    [42] Martin Fischer.Fully Integrated Passive UHF RFID Transponder IC With 16.7-uW Minimum RF Input Power No. 10, October 2003.IEEE Journal of Solid-State Circuits, Vo1.38
    [43] A.J. Motley, J. M. P. Keenan,“Personal communication radio coverage in buildings at 900 MHz and 1700 MHz”, Electronics Letters, vol. 24, pp. 763-764, June 1988
    [44]张福学,《现代压电学》,科学出版社,2001.
    [45]孙慷张福学.压电学.北京国防工业出版社1984.
    [46] Ken-ya Hashimoto, Surface Acoustic Wave Devices in Telecommunications Modelling and Simulation, Springer- Verlag Berlin Heidelberg 2000
    [47] White R.M., Voltmer F.W.“Direct piezoelectric couplingto sufrace elastic waves”, Appl. Phys.Let.Vol.17, 1965: 314-316
    [48] D. C. Malocha, Quadrature 3-Phase Unidirectional Transducer, IEEE Trans, Sonics and Ultrason., SU-26 (1979) pp. 313-315.
    [49] C.S. Hartmann and B.P. Abott: Overview of Design Chanllenges for Single Phase Unidirectional SAW Filters, Proc. IEEE Ultrason. Symp. (1989) pp. 79-89.
    [50] R.C. Rosenfeld, R.B. Brown and C.S. Hartmann, Unidirectional AcousticSruface Wave Filters with 2 dB Insertion Loss, Proc. IEEE Ultrason. Symp. (1974) pp. 425-428.
    [51] K. Yamanouchi, F. Nyfeller and K. Shibayama, Low Insertion Loss Acoustic Surface Wave Filter Using Group-type Unidirectional Interdigital Transducers, Proc. IEEE Ultrason. Symp. (1975) pp. 317-321.
    [52] T. Kodama, H. Kawabata, Y. Yasuhara and H. Sato, Design of Low-Loss SAW Filters Employing Distributed Acoustic Reflection Transducers, Proc. IEEE Ultrason. Symp. (1986) pp. 313-324.
    [53] K.Yamanouchi and H. Furuyashiki, New Low-Loss SAW Filter Using Internal Floating Electrode Reflection Types of Single-Phase Unidirectional Transducer, Electron. Lett., 20 (1984) pp. 989-990.
    [54] P.V. Wright, Natural Single-Phase Unidirectional Transducer, Proc. IEEE Ultrason. Symp. (1985) pp. 58-63.
    [55] C.S. Hartmann, P.V. Wright, R.J. Kansy and E.M. Garber, Analysis of SAW Interdigital Transducer with Internal Reflections and the Application to the Design of Single-Phase Unidirectional Transducers, Proc. IEEE Utrason. Symp. (1982) pp. 40-45.
    [56] R.H. Tancrell and M.G. Holland: Acoustic Surface Wave Filters, Proc. IEEE, 59 (1971) PP. 393-409.
    [57] W.R. Smith, H.M. Gerard, J,H. Collins, T.M. Reeder and H.J.. Show: Analysis of Interdigital Surface Wave Transducers By Use of an Equivalent Circuit Model, IEEE Trans. Microwave Theory and tech., MTT-17(1969) pp. 856-864
    [58] W.R. Smith: Experimental Distinction Between Crossed-Field and In-Line Three-Port Circuit Models for Interdigital Transducers, IEEE Trans. Microwave Theory and tech., MTT-17 (1974) pp. 960-964
    [59] W.P. Mason : Physical Acoustics, Vol. 1A, Academic Press (1964) pp. 335-416
    [60] [日]Ken-ya Hashimoto著,王景山等译,声表面波器件模拟与仿真,国防工业出版社2002.09
    [61] R.C.M. Li and J. Melngailis, The Influence of Stored Energy at Step Discontinutions on th Behavior of Surface-Wave Gratings, IEEE Trans. Sonics and Ultranson., SU-22 (1975) pp. 189-198.
    [62] G.S. Kino, Acoustic Waves Devices, Imaging & Analog Signal Processing, Prentice-Hall, Englewood Cliffs (1987).
    [63] B.A. Auld, Acoustic Waves and Fields in Solids, Vol. II, Chap. 12, Wiley and Sons, New York (1973) pp. 271-332.
    [64] C.C.W. Ruppel, W, Ruile, G. Sholl, K.C. Wagner, Review of Models for Low-Loss Filter Design and Applications, Proc. IEEE Ultranson. Symp. (1994) pp. 313-324.
    [65] W. P. Mason, Physical Acoustics, Vol. 1A, Academic Press pp. 335-416 (1964)
    [66] T. Kojima and K. Shibayama,“An Analysis of an Equivalent Circuit Model for an Interdigital Surface-Acoustic-Wave Transducer”, Jpn. J. Appl. Phys.,(1988 ) pp 163-165.
    [67] K. Hashimoto and M. Yamaguchi, SAW Device Simulation Using Boundary Element Method, Jpn. J. Appl. Phys., 29-1 (1990) pp. 122-124.
    [68] F.Schmidt, G. Scholl, Wireless SAW Identification and Sensor Systems, International Journal of High Speed Electronics and System, Vol. 10, No. 4 (2000) 1143-1191.
    [69] L. Reindl, W. Ruile, Programmable Reflectors for SAW-ID-Tags, Ultrasonics Symposium (1993) 125-131.
    [70] Paul A. Nysen, Sunnyvale, Michael R. McCoy, Los Altos, Passive Interrogator Label System Having Offset Compensation and Temperature Compensation for a Surface Acoustic Wave Transponder, USA, 4,734,698, 1988.
    [71] Clinton S. Hartmann, US Patent, US 2003/0111540 A1, Jun. 19, 2003.
    [72] C.S.Hartmann, P. Brown, and J. Bellamy, Degign of global SAW RFID Tag Devices, Preceedings of the second international symposium on acoustic wave devices for future mobile communication systems, Chiba University, Japan, March 2004.
    [73] C.S Hartmann, Future High Volume Applications of SAW devices, IEEE Ultrasonics Symp. Proc. 1985, pp. 64-73.
    [74] B.Fleischmann, P.Zibis, Reflektive Verzogerungsleitung in Oberflachen- wellentechnik, German Patent P4111867.7 (1991).
    [75] R.F. Milsom, N.H.C. Reilly and M. Redwood, The Interdigital Transducer, in Surface Wave Filters, H.Matthews (ed), Wiley (1977) pp. 55-108.
    [76] Middleton, D., An Introduction to Statistical Communication Theory, McGraw-Hill, N.Y., 1960.
    [77] Woodard, P.M., Probability and Information Theory with Applications to Radar, McGraw-Hill, New York, 1953.
    [78] Selin, I., Detection Theory, Princeton University, Princeton, New Jersey, 1965.
    [79] Marcum .J. I., Swerling P., A Statistical Theory of Target Detection by Pulsed Radar, IRE Trans., IT-6(1960).
    [80]多维概率密度函数鞠德行,林可祥,陈捷《信号检测理论导论》,科学出版社,1977
    [81] Clinton S. Hartmann, Surface Acoustic Wave Identification Tag having enhanced data content and methods of operation and manufacture thereof, USA, US 2003/0111540 A1, Jun. 19, 2003.
    [82] C. S. Hartmann, Anti-Collision Methods for Global SAW RFID Tag Systems, Proc. 2004 IEEE Ultrasonics Symposium, pp. 805-808.
    [83] Gerald Ostermayer, Correlative Signal Processing in Wireless SAW Sensor Applications to Provide Multiple-Access Capability, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 4, APRIL 2001.
    [84] S. Mallat and Z. Zhang.“Matching pursuit with time-frequency dictionaries,”IEEE Trans. Signal Process, 1993, 41, pp. 3397-3415.
    [85] Yashida, H.“Matching pursuit with optimally weighted wavelet packets for extraction of microcalcifications in mammograms,”Appl. Signal Process, 1998, 5, pp. 127-141.
    [86] R. F. Pawula, S. O. Rice, and J. H. Roberts,“Distribution of the phase angle between two vectors perturbed by Gaussian noise,”IEEE Trans. Comm., vol. COM-30, pp.1828-1841, Aug. 1982.
    [87] V. V. Tsvetnov,“Unconditional statistical characteristics of signals and uncorrelated Gaussian noises in two-channel phase systems,”Radiotekh. i Elektronika, vol. XIV, no. 12, pp. 2147—2159, 1969.
    [88] V. V. Tsvetnov,“Statistical properties of signals and noises in two channel phase systems,”Radiotekh., vol. 12, no. 5, pp. 12—29, 1957.
    [89] Wiener, N.. Extrapolation, Interpolation and Smoothing of Stationary Time Series, M. I. T., Press, Cambridge, Mass(1964).
    [90] K. G. Beauchamp, Walsh Functions and Their Applications, Academic Press, (1975).
    [91] G.Oster-mayer I, A.Pohl, L.Reindl and F.Seifert. Multiple Access to SAW Sensors Using Matched Filter Properties. Proceedings 1997 IEEE Ultrasonic Symposium, pp.339-342, 1997.
    [92] G. Yang, G.Y. Tian, P.W. Que and Y. Li, Data fusion algorithm for pulsed eddy current, IET Sci. Meas. Technol., 2007, 1, (6), pp. 312 312–316
    [93] Y. L. Zhai and Y. S. Dai.“Study of adaptive weighted fusion estimated algorithm of multisensor data,”Acta Metrologica Sin., 1998, 19, pp. 69-75.
    [94] L. J. Xu, J. Q. Zhang, and Y. Yang.“A wavelet-based multisensor data fusion algorithm,”IEEE Transaction. Instrument, Measurement, 2004, 53, pp. 1539-1545.
    [95] X.D. Zhang.“Modern Signal Processing Techniques,”Tsinghua University Press, Beijing, China, 1995.
    [96] D. Ju, K. Lin, and J. Chen,“Signal Detection Theory Introduction,”Science Press, Beijing, China, 1977.
    [97] Yang, H.Y., Mathew, J., and Ma, L.“Fault diagnosis of rolling element bearings using basis pursuit”, Mech. Syst. Signal Process., 2005, 19, pp. 341–356.
    [98] Pratt, W.K., Linear and non-linear filtering in the Walsh domain. Proceedings: Applications of Walsh Functions, Washington D. C., AD 727000 (1971).
    [99] Gethoffer, H., Sequency analysis using correlation and convolution, Applications of Walsh Functions. Washington D.C, (1971)
    [100] Beauchamp, K.G., Theory and applications of Walsh and related orthogonal transformations. IEE Thesis Institution of Electrical Engineers, London. (1972)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700