用户名: 密码: 验证码:
空天飞行器多模型鲁棒控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空天飞行器(Aerospace Vehicle, ASV)是各国大力发展的新型航空航天飞行器之一,具有重要的军事价值和民用价值。美国等国家都制定了各自的空天飞行器研究计划,且取得了许多重大进展,而目前我国在高超声速方面尚处于起步阶段,很多关键问题还需要深入研究。ASV再入大气层过程中气动参数变化剧烈、控制精度要求高,使得控制系统设计面临许多挑战,其姿态控制系统的设计是一项非常前沿的研究课题。本文围绕这一问题,对ASV再入姿态飞行控制系统设计展开系统研究,并通过理论分析和仿真予以验证。获得的主要结果如下:
     首先,重点考虑了ASV在跨大气层再入飞行时空气稀薄、气动舵面低效或失效且推力系统关机不能提供推力矢量的情况下,建立了ASV在跨大气层再入时的数学仿真模型,所建数学模型包含完整的6自由度动力学方程和运动方程。气动力和力矩系数是迎角、马赫数、高度及控制舵面偏角的函数,反作用控制系统(RCS)推进器属于开关型的,控制量可近似为常值开关型的量。开环特性分析说明整个模型能够体现出ASV复杂的非线性、耦合性以及快时变性等特点,可满足新一代高超声速飞行器轨迹优化、姿态控制等问题的概念设计和仿真研究。
     其次,研究了ASV再入跨大气层飞行时的姿态控制问题,建立了ASV再入多区域T-S模糊模型,在各区域设计区域T-S模糊控制器,这样在模糊规则数相同的情况下由于模糊论域的变小从而提高了控制精度。在ASV跨大气层再入飞行时,通过RCS中的反作用发动机推力产生控制力矩来控制ASV的姿态,以补偿气动舵面操纵失效或者部分失效而引起的控制力矩不足;随着空气密度的增加,气动舵面逐步介入控制系统,RCS随之逐步退出。考虑ASV在空气稀薄、气动舵面低效或失效的情况,设计了基于反作用发动机推力的ASV再入姿态飞行控制系统。
     接着,研究了ASV再入姿态广义模糊多模型跟踪控制问题,通过把一般的模糊模型等价变换到广义模糊模型,从而引入了松弛变量,可以直接求解同一组线性矩阵不等式(LMIs)就能获得全部参数的解,使得求解LMIs的可行性更大,降低了局限性。随后,考虑到ASV再入飞行中很难对各种外界干扰有足够的认识,因此提出新的基于补偿的多模型切换组合控制策略。设计非线性干扰观测器(Nonlinear Disturbance Observer, NDO)来估计外界干扰,通过相应的反馈补偿控制律削弱或抵消外界干扰。基于Lyapunov理论证明了闭环系统的稳定性,仿真结果表明新方案不仅有效且可以提高不确定条件下系统的控制性能和鲁棒性。
     最后,提出一种基于局部T-S模型的非线性系统非脆弱多模型切换控制,且考虑控制器存在可加性摄动的情况下,给出了非脆弱状态反馈控制器的设计方案。将所设计方案应用到ASV再入姿态飞控系统并进行了仿真,仿真结果表明所设计方案降低了控制器对其本身参数摄动的敏感性,亦即提高了控制器的非脆弱性。
Aerospace vehicles (ASV) are a new type of aerospace planes. Many countries are devoting major efforts to develop this reusable flying vehicles. Aerospace vehicles have very important military values and civilian values. The United States and other countries have their own aerospace projects and have achieved significant research progress. However, the research on hypersonic vehicles in our country is still at in the initial stage, a good number of important problems in this field still call for deeper study. Aerospace vehicle’s reentry has the characteristic of violent aero-dynamic parameters change and demands high control performance. These characteristics make the control system face with many grave challenges for aerospace vehicles. The flight attitude control system design methods are studied systematically and comprehensively in this dissertation by means of theoretical analysis and simulation validation. The results attained are as follows.
     First of all, the problems about the modeling of six degrees of freedom of an ASV under the reentry flight condition are studied. The proposed model includes the whole of kinetic equations and motion equations. Aerodynamic force and moment coefficients are given as functions of angle of attack, Mach number, altitude and control surface deflections. The thrusters of reaction control system (RCS) are of switch type and the control value is approximately switching constant. Open-loop dynamics and stability characteristics proves that the whole model can demonstrate the complex nonlinearity, coupling and rapid variation of ASV. Therefore, the proposed model can be used to investigate trajectory optimization, attitude control conceptual design and simulation for a new generation hypersonic vehicle.
     Secondly, the problems concerning the ASV’s atmospheric reentry flight attitude control system are researched. Multiple region T-S fuzzy models are modeled for ASV reentry attitude dynamics, and then local T-S controllers are designed in every region. The approach precision improves as the fuzzy domain decreases under a constant fuzzy rule. During reentry through the atmosphere, the control moment is generated by thrusters of the reaction control system to control attitudes of the ASV, and to compensate for the shortage of aero-surfaces that fail to offer enough moment because of the partially or completely lost efficiency. Along with the increase in air density, aero-surfaces gradually intervene the control system, and the RCS drops out of use. Considering the air scarcity and the decreased efficiency of aero-surfaces, the flight attitude control system for the ASV based on thrust of reaction jets is designed.
     Thirdly, a T-S fuzzy descriptor tracking control design for an atmospheric reentry flight attitude control system of aerospace vehicles is discussed. Slack variables are introduced into the model by equivalent transforming of the ordinary fuzzy model to a fuzzy descriptor model, and then a H∞tracking controller design method which is based on linear matrix inequality (LMI) is obtained. Its advantages are to solve all the controlling variables in LMIs at the same time. This improves the feasibility and debases the limitation to solving LMIs.
     Then, for it is hard to obtain enough knowledge about disturbances generated by an exogenous system, a novel multi-model switching integrated control based on compensation is proposed. A nonlinear disturbance observer is designed to deduce external disturbances and then to compensate for the influence of the disturbances using proper feedback. Based on Lyapunov theory, it is proven that the closed-loop system is exponential stability. The simulation results demonstrate that the proposed method is not only effective but also can improve control performance and robustness under uncertainty condition.
     Finally, a non-fragile multi-model switching control for a class of nonlinear systems based on local T-S models is proposed. The design scheme of non-fragile state-feedback controllers is developed in the presence of additive controller gain perturbations. We apply the scheme to the flight attitude control system for the ASV and make simulation. The simulation results show that the scheme can debase the sensitiveness of the controller with respect to perturbation in its coefficients, in other words, the scheme improves the non-fragile of the controller.
引文
[1]崔尔杰.重大研究计划“空天飞行器的若干重大基础问题”研究进展[J].中国科学基金, 2006, (5): 278-280.
    [2]李大光.太空作战的指导思想[J].国际太空, 2004, (3): 27-30.
    [3] Bowcutt KG. A perspective on the future of aerospace vehicle design. Norfolk, Virginia: 12th AIAA International Space Planes and Hypersonic Systems and Technologies, 2003:1-10.
    [4]王振国,罗世彬,吴建军.可重复使用运载器研究进展[M].长沙:国防工业大学出版社, 2004.
    [5]朱森元.单级入轨运输器的发射技术研究[J].导弹与航天运载技术, 2001, (5): 1-6.
    [6] Chudoba B, Huang X, Coleman G, et al. Future space tourism transportation design requirements. Capua: AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies, 2005:1-21.
    [7]周心红.高超声速武器的发展与应用[J].飞航导弹, 2007, (2): 9-11.
    [8]荆新利,齐泽强,韩鹏. 21世纪空中幽灵——空天飞机[J].国防科技, 2006, (4): 6-9.
    [9]李大光.世界各国高超声速武器发展现状[J].国防技术基础, 2007, (5): 45-48.
    [10]曹秀云.美国临近空间飞行器技术发展概述[J].现代军事, 2007, (3): 54-58.
    [11] Agustin RM, Mangoubi RS, Hain RM, et al. Robust failure detection for reentry vehicle attitude control systems [C]. //In: Guidance, Navigation and Control Conference and Exhibit, Boston, MA: AIAA, 1998: 1-14.
    [12] Boskovic JD, Li SM, Mehra RK. Intelligent spacecraft control using multiple models, switching, and tuning [C]. //In: Proceedings of the 1999 IEEE International Symposium on Intelligent Control/Intelligent Systems and Semiotics, Cambridge, MA, USA: IEEE, 1999: 84-89.
    [13] Boskovic JD, Yu SH, Mehra RK. Stable adaptive fault-tolerant control of overactuated aircraft using multiple models, switching and tuning [C]. //In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Boston, MA: AIAA, Aug. 10-12, 1998: 739-749.
    [14] Maybeck PS, Stevens RD. Reconfigurable flight control via multiple model adaptive controlmethods [J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27 (3): 470-480.
    [15]钟震,段广仁,姜苍华.基于欧拉角的分导飞行器多模型自适应姿态控制[J].系统科学与数学, 2008, 28 (7): 769-779.
    [16]张军,肖余之,毕贞法.基于多模型预测的再入飞行器制导方法[J].航空学报, 2008, 29 (s): s20-s25.
    [17]曹梦龙,崔平远.多模型高精度组合导航算法研究[J].系统工程与电子技术, 2008, 30 (7): 1304-1307.
    [18]赵汉元.飞行器再入动力学和制导[M].长沙:国防科技大学出版社, 1997.
    [19] Lee CH, Shin MH, Chung MJ. A design of gain-scheduled control for a linear parameter varying system: an application to flight control [J]. Control Engineering Practice, 2001, 9 (1): 11-21.
    [20] Wang JL, Sundararajan N. A nonlinear flight controller design for aircraft [J]. Control Eng. Practice, 1995, 3 (6): 813-825.
    [21]于秀萍.基于动态逆系统和神经网络理论的BTT导弹控制系统研究[D] (博士学位).哈尔滨:哈尔滨工程大学, 2004.
    [22]郭锁风,申功璋,吴成富等.先进飞行控制系统[M].北京:国防工业出版社, 2003.
    [23] Shtessel Y, McDuffie J, Jackson M, et al. Sliding mode control of the X-33 vehicle in launch and re-entry modes [C]. //In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Boston, MA: AIAA, 1998: 1352-1362.
    [24] Shtessel Y, Tournes C, Krupp D. Reusable launch vehicle control in sliding modes [C]. //In: AIAA Guidance, Navigation, and Control Conference, New Orleans: AIAA, 1997: 335-345.
    [25]陈谋.不确定非线性综合火力/飞行/推进系统鲁棒控制方法研究[D] (博士学位).南京:南京航空航天大学, 2003.
    [26] Johnson MD, Calise AJ, Johnson EN. Evaluation of an Adaptive Method for Launch Vehicle Flight Control [C]. //In: AIAA Guidance, Navigation and Control Conference, Austin, Texas: AIAA, 2003: 1-11.
    [27] Johnson MD, Calise AJ, Johnson EN. Further Evaluation of an Adaptive Method for Launch Vehicle Flight Control [C]. //In: AIAA Guidance, Navigation and Control Conference, Providence, Rhode Island: AIAA, 2004: 1-17.
    [28]武国庆,姜长生,张锐等.基于径向基神经网络的不确定非线性系统的鲁棒自适应控制[J].航空学报, 2002, 23 (6): 530-533.
    [29]朱亮.空天飞行器不确定非线性鲁棒自适应控制[D] (博士学位).南京:南京航空航天大学, 2006.
    [30]朱亮,姜长生,张春雨.基于径向基神经网络干扰观测器的空天飞行器自适应轨迹线性化控制[J].航空学报, 2007, 28 (3): 673-677.
    [31]朱亮,姜长生,陈海通等.基于单隐层神经网络的空天飞行器直接自适应轨迹线性化控制[J].宇航学报, 2006, 27 (3): 338-344.
    [32] Bevacqua T, Best E, Huizenga A, et al. Improved trajectory linearization flight controller for Reusable Launch Vehicles [C]. //In: 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada: AIAA, 2004: 1-16.
    [33] Middleton RH, Goodwin GC, Hilland DJ, et al. Design issues in adaptive control [J]. IEEE Trans on Automatic Control, 1988, 33 (1): 50-58.
    [34] Morse AS, Mayne DQ, Goodwin GC. Applications of hysteresis switching in parameter adaptive control [J]. IEEE Trans on Automatic Control, 1992, 37 (9): 1343-1354.
    [35] Weller SR, Goodwin GC. Hysteresis switching adaptive control of linear multivariable systems [J]. IEEE Trans on Automatic Control, 1994, 39 (7): 1360-1375.
    [36] Jota FG, Goodwin GC. Switching control: some stability results [C]. //In: Proceedings of the 36th IEEE Conference on Decision & Control, San Diego, California USA: 1997: 2209-2210.
    [37] De Dona JA, Feuer A, Goodwin GC, et al. A new multi-switch anti-windup scheme for linear systems with saturating actuators [C]. //In: Proceedings of the 37th IEEE Conference on Decision & Control, Tampa, Florida USA: I998: 369-370.
    [38] De Dona JA, Reza Moheimani SO, Goodwin GC. Allowing for over-saturation in robust switching control of a class of uncertain systems [C]. //In: Proceedings of the 38th IEEE Conference on Decision & Control, Phoenix, Arizona USA: 1999: 3053-3058.
    [39] Quevedo DE, Goodwin GC. Control of EMI from switch-mode power supplies via multi-step optimization [C]. //In: Proceeding of the 2004 American Control Conference, Boston, Massachusetts: IEEE, 2004: 390-395.
    [40] Narendra KS, Balakrishnan J. Improving transient response of adaptive control using multiple models and switching [J]. IEEE Trans on Automatic Control, 1994, 39 (9): 1861-1866.
    [41] Narendra KS, Balakrishnan J, Ciliz MK. Adaptation and learning using multiple models, switching and tuning [J]. IEEE Contr. Syst. Mag, 1995, 15 (3): 37-51.
    [42] Narendra KS, Balakrishnan J. Adaptive control using multiple models [J]. IEEE Trans on Automatic Control, 1997, 42 (2): 171-187.
    [43] Narendra KS, Cheng Xiang. Adaptive control of discrete-time systems using multiple models [J]. IEEE Trans on Automatic Control, 2000, 45 (9): 1669-1686.
    [44] Chen Lingji, Narendra KS. Nonlinear adaptive control using neural networks and multiple models [J]. Automatica, 2001, 37 (8): 1245-1255.
    [45] Narendra KS, Driollet Osvaldo A. Stochastic adaptive control using multiple models for improved performance in the presence of random disturbances [J]. Int. J. Adapt. Control Signal Process, 2001, 15 (3): 287-317.
    [46] Narendra KS, George K. Adaptive control of simple nonlinear systems using multiple models [C]. //In: Proceedings of the American Control Conference, Anchorage, AK: IEEE, 2002: 1779-1784.
    [47] Narendra KS. To tune, to switch, or to switch and tune: adapting to constantly changing environments [C]. //In: Proceedings of the 2002 IEEE International Conference on Control Applications, Glasgow, Scotland, U.K: IEEE, 2002: 18-20.
    [48] Chen Lingji, Narendra KS. Intelligent control using multiple neural networks [J]. Int. J. Adapt. Control Signal Process, 2003, 17 (6): 417-430.
    [49] Narendra KS, Driollet Osvaldo A, Feiler M, et al. Adaptive control using multiple models, switching and tuning [J]. Int. J. Adapt. Control Signal Process, 2003, 17: 87-102.
    [50] Fu MY, Barmish BR. Adaptive stabilization of linear systems via switching control [J]. IEEE Trans on Automatic Control, 1986, 31 (12): 1097-1103.
    [51] Zhivoglyadov PV, Richard HM, Fu MY. Localization based switching adaptive control for time-varying discrete-time systems [J]. IEEE Trans on Automatic Control, 2000, 45 (4): 752-755.
    [52] Zhivoglyadov PV, Richard HM, Fu MY. Further results on localization-based switching adaptive control [J]. Automatica, 2001, 37 (2001): 257-263.
    [53] Li XR, Bar-Shalom Y. Design of an interacting multiple model algorithm for air traffic control tracking [J]. IEEE Transactions on Control Systems Technology, 1993, 1 (3): 186-194.
    [54] Li XR, Bar-Shalom Y. Performance prediction of the interacting multiple model algorithm [J]. IEEE Transactions on Aerospace and Electronics, 1993, 29 (3): 755-771.
    [55] Li XR, Bar-Shalom Y. A recursive multiple models approach to noise identification [J]. IEEE Transactions on Aerospace and Electronics, 1994, 30 (3): 671-684.
    [56] Li XR, Bar-Shalom Y. Multiple-model estimation with variable structure [J]. IEEE Trans on Automatic Control, 1996, 41 (4): 478-493.
    [57] Li XR. Multiple-model estimation with variable structure–Part II: Model-set adaptation [J]. IEEE Transactions on Automatic Control, 2000, 45 (11): 2047-2060.
    [58] Li XR, Zhi XR, Zhang YM. Multiple-model estimation with variable structure–Part III: Model-group switching algorithm [J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35 (1): 225-241.
    [59] Li XR, Zhang YM, Zhi XR. Multiple-model estimation with variable structure–Part IV: Design and evaluation of model-group switching algorithm [J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35 (1): 242-254.
    [60] Li XR, Zhang YM. Multiple-model estimation with variable structure–Part V: Likely-model set algorithm [J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36 (2): 448-466.
    [61] Li XR, Jilkov VP, Ru JF. Multiple-model estimation with variable structure-Part VI: expected-mode augmentation [J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41 (3): 853-867.
    [62] Zhang YM, Li XR. Detection and diagnosis of sensor and actuator failures using IMM estimator [J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34 (4): 1293-1313.
    [63] Li XR. Optimal selection of estimate for multiple-model estimation with uncertain parameter [J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34 (2): 653-657.
    [64] Li XR, Zhang YM. Numerically robust implementation of multiple-model algorithms [J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36 (1): 266-278.
    [65] Wang XZ, Challa S, Evans R, et al. Minimal submodel-set algorithm for maneuvering target tracking [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39 (4): 1218-1231.
    [66] Zhao ZL, Li XR. Probabilistic model distortion measure and its application to model-set design of multiple model approach [C]. //In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Asilomar, USA: IEEE, 2004: 2146-2150.
    [67] Li XR, Zhao ZL, Li XB. General model-set design methods for multiple-model approach [J]. IEEE Trans on Automatic Control, 2005, 50 (9): 1260-1276.
    [68] Li XR, Jilkov VP. Survey of maneuvering target tracking. Part V: Multiple-model methods [J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41 (4): 1255-1321.
    [69] Zhao ZL, Li XR. The Behavior of Model Probability in Multiple Model Algorithms [C]. //In: The 7th International Conference on Information Fusion (FUSION), IEEE, 2005: 331-336.
    [70]李晓理,王伟,孙维.多模型自适应控制[J].控制与决策, 2000, 15 (4): 390-394.
    [71]王伟,李晓理.多模型自适应控制[M].北京:科学出版社, 2001.
    [72] Joshi A, Sivan K. Reentry guidance for generic RLV using optimal perturbations and error weights [C]. //In: 2005 AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, CA, USA: AIAA, 2005: 1-14.
    [73] Lu Ping, Shen Zuojun. On-board entry trajectory planning expanded to sub-orbital flight [C]. //In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, TX: AIAA, 2003: AIAA 2003-5736.
    [74] Mease KD, Teufel P, Schoenenberger H, et al. Re-entry trajectory planning for a reusable launch vehicle [C]. //In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, Portland: AIAA, 1999: 381-388.
    [75]闫晓东,唐硕.亚轨道飞行器返回轨道设计方法研究[J].宇航学报, 2008, 29 (2): 467-471.
    [76] Wu SF, Costa RR, Chua QP, et al. Nonlinear dynamic modeling and simulation of an atmospheric re-entry spacecraft [J]. Aerospace Science and Technology, 2001, 5 (5): 365-381.
    [77] Wu SF, Engelen CJH, Chu QP, et al. Fuzzy logic based attitude control of the spacecraft X-38 along a nominal re-entry trajectory [J]. Control Engineering Practice, 2001, 9 (7): 699-707.
    [78] Shen Zuojun, Lu Ping. Onboard generation of three-dimensional constrained entry trajectories [J]. Journal of Guidance, Control, and Dynamics, 2003, 26 (1): 111-121.
    [79] Shtessel YB, Hall CE. Sliding mode control of the X-33 with an engine failure [A]. //In: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit[C], Huntsville: AIAA, 2000, A0036991.
    [80] Slotine JJ. Tracking control of nonlinear system using sliding surface with application to robust manipulators [J]. Int. J. Contr., 1983, 38 (3): 465-492.
    [81] Shtessel Y, Zhu JJ, Daniels D. Reusable launch vehicle attitude control using time-varying sliding modes [A]. //In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Monterey: AIAA, 2002, A0237883.
    [82] Shtessel Y, Strott J, Zhu JJ. Time-varying sliding mode control with sliding modeobserver for reusable launch vehicle [A]. //In: AIAA Guidance, Navigation, and Control Conference and Exhibit[C], Austin: AIAA, 2003, A0343070.
    [83] Smith R, Ahmed A. Robust parametrially varying attitude ontroller designs for the X-33 vehile [A]. //In: AIAA Guidance, Navigation, and Control Conference and Exhibit[C], Denver: AIAA, 2000, A0037073.
    [84] Johnson EN, Calise AJ, El-Shirbiny H A. Feedback linearization with neural network augmentation applied to X-33 attitude control [A]. //In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Denver: AIAA, 2000, A0037072.
    [85] Bikdash M, Sartor K, Homaifar A. Fuzzy guidance of the shuttle orbiter during atmospheric reentry [J]. Control Engineering Practice, 1999, 7 (3): 295-303.
    [86] Lian BH, Bang H, Hurtado JE. Adaptive backstepping control based autopilot design for reentry vehicle [A]. //In: AIAA Guidance, Navigation, and Control Conference and Exhibit[C], Providence: AIAA, 2004-5328.
    [87]黄国勇.基于Terminal滑模的空天飞行器再入鲁棒自适应控制[D] (博士学位).南京:南京航空航天大学, 2007.
    [88]黄国勇,姜长生,王玉惠.基于快速模糊干扰观测器的UASV再入Terminal滑模控制[J].宇航学报, 2007, 28 (2): 292-297.
    [89]黄国勇,姜长生,薛雅丽.新型自适应Terminal滑模控制及其应用[J].航空动力学报, 2008, 23 (1): 156-162.
    [90] Caporicci M, Basile L. ESA activities on atmospheric re-entry systems [A]. //In: 12th AIAA International Space Planes and Hypersonic Systems and Technologies[C], Norfolk: AIAA, 2003, 2003-7017.
    [91] Juliana S, Chu QP, Mulder JA, et al. Flight control of atmospheric re-entry vehicle with non-linear dynamic inversion [A]. //In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Providence: AIAA, 2004, 2004-5330.
    [92] Mooij E. Direct model reference adaptive control of a winged re-entry vehicle [A]. //In: AIAA 9th International Space Planes and Hypersonic Systems and Technologies Conference [C], Norfolk: AIAA, 1999, A9945484.
    [93] Ohno M, Yamaguchi Y, Hata T, et al. Robust flight control law design for anautomatic landing flight experiment [J]. Control Engineering Practice, 1999, 7 (9): 1143-1152.
    [94] Ohara A, Yamaguchi Y, Morito T. LPV modeling and gain scheduled control of re-entry vehicle in approach and landing phase [A]. //In: AIAA Guidance, Navigation, and Control Conference and Exhibit[C], Montreal: AIAA, 2001, 2001-4038.
    [95]方炜,姜长生,朱亮.空天飞行器再入制导的预测控制[J].宇航学报, 2006, 27 (6): 1216-1222.
    [96]张春雨,姜长生,朱亮.基于模糊干扰观测器的空天飞行器轨迹线性化控制[J].宇航学报, 2007, 28 (1): 33-38.
    [97]宁国栋,张曙光,方振平.跨大气层飞行器再入段RCS控制特性[J].飞行力学, 2005, 23 (3): 16-20.
    [98] Nakano MM. Space shuttle on-orbit flight control system [C]. //In: Guidance and Control Conference, San Diego, CA, United States: AIAA, 1982: 429-436.
    [99] Shaughnessy JD, Pinckney SZ, McMinn JD, et al. Hypersonic vehicle simulation model: winged-cone configuration. 1990.
    [100] Keshmiri S, Mirmirani MD, Colgren RD. Six-DOF modeling and simulation of a generic hypersonic vehicle for conceptual design studies [C]. //In: AIAA Modeling and Simulation Technologies Conference and Exhibit, Providence, Rhode Island: AIAA, 2004.
    [101] Douglas Z, Draper L. On-orbit flight control design for the Kistler K-1 reusable launch vehicle [C]. //In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Reston, VA, USA: AIAA, 1999: 1266-1274.
    [102] Zimmerman C, Duckeman G. An automated method to compute orbital re-entry trajectories with heating constraints [C]. //In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, USA: AIAA, 2002: 1-9.
    [103]郭锁凤,申功璋,吴成富等.先进飞行控制系统[M].北京:国防工业出版社, 2003.
    [104]王希季,林华宝,李姬黎等.航天器进入与返回技术[M].北京:宇航出版社, 1991.
    [105] Ning Guodong, Zhang Shuguang, Fang Zhenping. Entry control allocation for reusable launch vehicle [C]. //In: Proceedings of the IEEE/AIAA 2006 1st International Symposium on Systems and Control in Aerospace and Astronautics, Harbin: IEEE, 2006: 633-638.
    [106]王玉惠.空天飞行器基于模糊理论的鲁棒自适应控制研究[D] (博士学位).南京:南京航空航天大学, 2008.
    [107] Harald B. Full missile autopilot design using gain scheduled robust control [J]. Journal of Guidance, Control, and Dynamics, 1999, 22 (1): 115-122.
    [108] Ducard G, Geering HP. A reconfigurable flight control system based on the EMMAE method [C]. //In: Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA: IEEE, 2006: 5499-5504.
    [109]陈谋,姜长生,吴庆宪.基于多模型方法的全包络鲁棒飞行控制器设计[J].航空学报, 2006, 27 (3): 486-492.
    [110] Narendra KS, Balakrishnan J. Adaptive control using multiple models [J]. IEEE Trans on Automatic Control, 1997, 42 (2): 171-187.
    [111]钱承山,姜长生,吴庆宪.基于在线学习优化动态模型库的多模型自适应控制[J].吉林大学学报(理学版), 2007, 45 (4): 401-406.
    [112]席裕庚,王凡.非线性系统预测控制的多模型方法[J].自动化学报, 1996, 22 (4): 456-461.
    [113]皮道映,孙优贤.多模型MIMO系统的模糊加权控制策略[J].自动化学报, 1998, 24 (3): 387-390.
    [114]钱承山,吴庆宪,姜长生, et al.基于局部T-S模型的非线性系统多模型切换控制[J].应用科学学报, 2007, 25 (4): 382-386.
    [115] Bontempi G, Birattari M, Bersini H. Lazy learning for local modelling and control design [J]. International Journal of Control, 1999, 72 (7): 643-658.
    [116]孙维,王伟,朱瑞军.即时学习算法在非线性系统迭代学习控制中的应用[J].控制与决策, 2003, 18 (3): 263-266.
    [117] Badr A, Binder Z, Ray D. Weighted multi-model control [J]. International Journal of Systems Science, 1992, 23 (1): 145 - 149
    [118]孙希明.切换时滞系统的稳定性分析[D] (博士学位论文).沈阳市:东北大学, 2005.
    [119] Liberzon D, Morse A. Basic problems in stability and design of switched systems [J]. IEEE Control Systems Magazine, 1999, 19 (5): 59–70.
    [120] Liberzon D. Switching in Systems and Control [M]. Boston, MA: Birkh?user, 2003.
    [121] Sun Z D, GE S S. Switched Linear Systems-Control and Design [M]. New York: Springer-Verlag, 2004.
    [122]马国梁.切换系统的若干问题研究[D] (博士学位).南京:南京理工大学, 2006.
    [123] Morse AS. Supervisory control of families of linear set-point controllers-Part 1: exact matching [J]. IEEE Trans. Automat. Contr., 1996, 41 (10): 1413-1431.
    [124] Hespanha J P, Morse A S. Stability of switched systems with average dwell-time [C]. //In: Proceedings of the 38th Conference on Decision & Control, Phoenix, Arizona: Omnipress, 1999: 2655–2660.
    [125] S Morse A. Supervisory control of families of linear set-point controllers-part 1: exact matching [J]. IEEE Trans. Automat. Contr., 1996, 41 (10): 1413-1431.
    [126] Paxman J. Switching Controllers: Realization, Initialization and Stability [D] (PhD Thesis). London: University of Cambridge, 2003.
    [127] Peleties P, DeCarlo RA. Asymptotic stability of m-switched systems using Lyapunov-like functions [C]. //In: Proceedings of American Control Conference, Boston, MA: 1991: 1679-1684.
    [128] Branicky MS. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [J]. IEEE Transactions on Automatic Control, 1998, 43 (4): 475-482.
    [129]佟绍成,王涛,王艳平等.模糊控制系统的设计及稳定性分析[M].北京:科学出版社, 2004.
    [130] Tanaka K, Iwasaki M, Wang H O. Switching control of an R/C hovercraft: stabilization and smooth switching [J]. IEEE Trans. SMC-Part B: Cybernetics, 2001, 31 (6): 853-863.
    [131]连葆华,崔平远,崔祜涛.高速再入飞行器的制导与控制系统设计[J].航空学报, 2002, 23 (2): 115-119.
    [132] Shertzer R H. Control allocation for the next generation of entry vehicles [A]. //In:AIAA Guidance, Navigation, and Control Conference and Exhibit[C], Monterey, California: AIAA, 2002, AIAA2002-4849.
    [133] Costa RR, Chu QP, Mulder JA. Re-Entry Flight Controller Design Using Nonlinear Dynamic Inversion [A]. //In: AIAA Guidance, Navigation, and Control Conference and Exhibit[C], Montreal, Canada: AIAA, 2001, AIAA-2001-4219.
    [134]李言俊,张科.自适应控制理论及应用[M].西安:西北工业大学出版社, 2005.
    [135]徐湘元.自适应控制理论与应用[M].北京:电子工业出版社, 2007.
    [136] Tseng CS, Chen BS, Uang HJ. Fuzzy tracking control design for nonlinear dynamic system via T-S fuzzy model [J]. IEEE Trans. on Fuzzy Systems, 2001, 9 (3): 381-392.
    [137] Wang YY, Xie LH, De Souza CE. Robust control of a class of uncertain nonlinear systems [J]. Systems & Control Letters, 1992, 19 (2): 139~149.
    [138]俞立.鲁棒控制--线性矩阵不等式处理方法[M].北京:清华大学出版社, 2002.
    [139] Taniguchi T, Tanaka K, Wang HO. Fuzzy Descriptor Systems and Nonlinear Model Following Control [J]. IEEE Transactions on Fuzzy Systems, 2000, 8 (4): 442-452.
    [140]周林娜,张庆灵,刘国义. T-S模糊广义系统的次优控制[J].东北大学学报(自然科学版), 2006, 27 (3): 244-247.
    [141]胡跃冰,张庆灵,张艳.非线性系统广义模糊跟踪控制[J].自动化学报, 2007, 33 (12): 1341-1344.
    [142]杨冬梅,张庆灵,姚波等.广义系统[M].北京:科学出版社, 2004.
    [143]朱宝彦,张庆灵,笪可宁.基于状态反馈的广义T-S模糊系统鲁棒H∞控制[J].东北大学学报(自然科学版), 2004, 25 (5): 453-456.
    [144] Khalil HK. Nonlinear systems [M]. Upper Saddle River, New Jersey: Prentice Hall, 2002.
    [145] Bader A, Khalil HK. Robust adaptive control of nonlinear systems with unmodeled dynamics [C]. //In: Proceedings of the 37th IEEE conference on decision & control, Tampa, Florida USA: IEEE, December 1998: 2872-2873.
    [146] Dabroom AM, Khalil HK. Output feedback sampled-data control of nonlinear systems using high-gain observers [J]. IEEE Transactions on Automatic Control,2001, 46 (11): 1712-1725.
    [147] Strangas EG, Khalil HK, Oliwi BA, et al. A robust torque controller for induction motors without rotor position sensor: analysis and experimental results [J]. IEEE Transactions on Energy Conversion, 1999, 14 (4): 1448-1458.
    [148] Chen WH. Nonlinear Disturbance Observer Enhanced Dynamic Inversion Control of Missiles [J]. Journal of Guidance, Control, and Dynamics, 2003, 26 (1): 161-166.
    [149] Chen WH. Disturbance Observer Based Control for Nonlinear Systems [J]. IEEE/ASME Transactions on Mechatronics, 2004, 9 (4): 706-710.
    [150] Chen WH, Balance DJ, Gawthrop PJ, et al. A Nonlinear Disturbance Observer for Robotic Manipulators [J]. IEEE Transactions of Industrial Electronics, 2000, 47 (4): 932-938.
    [151] Chen XK, Fukuda T, Young KD. A New Nonlinear Robust Disturbance Observer [J]. Systems & Control Letters, 2000, 41 (3): 189-199.
    [152] Chen XK, Komada S, Fukuda T. Design of a Nonlinear Disturbance Observer [J]. IEEE Transactions of Industrial Electronics, 2000, 47 (2): 429-437.
    [153] Chen XK, Su CY, Fukuda T. A nonlinear disturbance observer for multivariable systems and its application to magnetic bearing systems [J]. IEEE Transactions on Control Systems Technology, 2004, 12 (4): 569-577.
    [154] Kawamura A, Itoh H, Sakamoto K. Chattering reduction of disturbance observer based sliding mode control [J]. IEEE Transactions on Industry Applications, 1994, 30 (2): 456-461.
    [155] Kim E. A fuzzy disturbance observer and its application to control [J]. IEEE Transactions on Fuzzy Systems, 2002, 10 (1): 77-84.
    [156] Kim E. A discrete-time fuzzy disturbance observer and its application to control [J]. IEEE Transactions on Fuzzy Systems, 2003, 11 (3): 399-410.
    [157] Kim E, Lee SY. Output feedback tracking control of MIMO systems using a fuzzy disturbance observer and its application to the speed control of a PM synchronous motor [J]. IEEE Transactions on Fuzzy Systems, 2005, 13 (6): 725-741.
    [158] Kim E, Park CW. Fuzzy disturbance observer approach to robust tracking control of nonlinear sampled systems with the guaranteed suboptimal performances [J].IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics, 2004, 34 (3): 1574-1581.
    [159] Komada S, Machii N, Hori T. Control of redundant manipulators considering order of disturbance observer [J]. IEEE Transactions on Industrial Electronics, 2000, 47 (2): 413-420.
    [160] Tamaki K, Ohishi K, Ohnishi K, et al. Microprocessor-based robust control of a DC servo motor [J]. IEEE Control Systems Magazine, 1986, 6 (5): 30-36.
    [161] Tomita M, Senjyu T, Doki S, et al. New sensorless control for brushless DC motors using disturbance observers and adaptive velocity estimations [J]. IEEE Transactions on Industrial Electronics, 1998, 45 (2): 274-282.
    [162] White MT, Tomizuka M, Smith C. Improved track following in magnetic disk drives using a disturbance observer [J]. IEEE/ASME Transactions on Mechatronics, 2000, 5 (1): 3-11.
    [163]陈谋,姜长生,梅容等.基于干扰观测器的新一代歼击机鲁棒飞行逆控制器设计[J].飞机设计, 2004, 1: 38-41.
    [164] Chen WH. Harmonic Disturbance Observer for Nonlinear systems [J]. Journal of Dynamic Systems, Measurement and Control, 2003, 125 (1): 114-117.
    [165] Keel LH, Bhattacharyya SP. Robust, Fragile or optimal? [J]. IEEE Trans on Automatic Control, 1997, 42 (8): 1098-1105.
    [166] Cho SH, Kim KT, Park HB. Robust and Non-fragile H∞State Feedback Controller Design for Time Delay Systems [J]. International Journal of Control, Automation, and Systems, 2003, 1 (4): 503-510.
    [167] Ren JS. Non-fragile LQ Fuzzy Control for a Class of Nonlinear Descriptor System with Time Delays [C]. //In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou: IEEE, 2005: 797-802.
    [168] Takahashi RHC, Dutra DA, Palhares RM, et al. On Robust Non-fragile Static State-feedback Controller Synthesis [C]. //In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney , Australia: December , 2000: 4909-4914.
    [169]汪锐,冯佳昕,赵军.一类不确定切换系统的非脆弱控制器设计方法[J].控制与决策, 2006, 21 (7): 735-738.
    [170] Tankagi T, Sugeno M. Fuzzy Identification of Systems and its Application to Modeling and Control [J]. IEEE Trans. SMC-Part B: Cybernetics, 1985, 15 (1): 116-132.
    [171]刘金琨.智能控制[M].北京:电子工业出版社, 2005.
    [172] Wang YY, Xie LH, De Souza CE. Robust control of a class of uncertain nonlinear systems [J]. Systems & Control Letters, 1992, 19 (2): 139-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700